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Abstract
Despite the seeming success of contemporary
grounded text generation systems, they of-
ten tend to generate factually inconsistent text
with respect to their input. This phenomenon
is emphasized in tasks like summarization, in
which the generated summaries should be cor-
roborated by their source article. In this work
we leverage recent progress on textual entail-
ment models to directly address this problem
for abstractive summarization systems. We
use reinforcement learning with reference-free,
textual-entailment rewards to optimize for fac-
tual consistency and explore the ensuing trade-
offs, as improved consistency may come at
the cost of less informative or more extractive
summaries. Our results, according to both au-
tomatic metrics and human evaluation, show
that our method considerably improves the
faithfulness, salience and conciseness of the
generated summaries.

1 Introduction

Recent advancements in abstractive summarization
systems (Zhang et al., 2019; Liu et al., 2022b) are
often impeded by their tendency to output infor-
mation that is either contradicting or unsupported
by their input article, often termed as “hallucina-
tions” or factual inconsistency (Falke et al., 2019;
Maynez et al., 2020; Pagnoni et al., 2021). While
these systems produce highly relevant and coherent
text, this lack of factual consistency often limits
their wide-spread adoption in real-world applica-
tions. An example is depicted in Figure 1, where
the highlighted statement in the summary, while
plausible, has no support in the input article.

∗Equal contribution

Figure 1: Summaries produced by multiple methods
from a news article in the XSum dataset. Hallucina-
tions or contradictions are highlighted in red. Note how
the T5 generated summary mentions that there is a fall
in operating profits for the second year in a row, while
the article only discusses a recent decline in earnings
and a warning made in the previous year.

Since widely-used metrics such as ROUGE (Lin,
2004) were shown to be inefficient for detecting
hallucinations, many recent research efforts intro-
duced novel automatic metrics for measuring fac-
tual consistency (Kryscinski et al., 2020; Goyal and
Durrett, 2020; Scialom et al., 2021, inter alia). We
propose to leverage these automatic metrics within
a reinforcement learning (RL) framework at train-
ing time. Specifically, we apply textual entailment
assessment (a.k.a. natural language inference, or
NLI; Dagan et al., 2005; Bowman et al., 2015) be-
tween the source article and the generated summary
as a reward.

Our reward is based on the well studied textual
entailment task (Pavlick and Kwiatkowski, 2019;
McCoy et al., 2019; MacCartney and Manning,
2007, inter alia), for which there are many pub-
licly available datasets (Nie et al., 2020; Liu et al.,
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2022a). While these NLI datasets are not specific to
summarization, it was shown that classifiers trained
on these datasets perform well in detecting factual
inconsistencies in summarization and other genera-
tive tasks (Honovich et al., 2022). Because faithful
summaries must be textually entailed from the cor-
responding input documents, using such a reward
explicitly should guide a summarization model to-
wards generating more factually consistent sum-
maries. Yet, a high-quality summary should also be
coherent and contain relevant information (Fabbri
et al., 2021), aspects which may not be captured by
entailment alone. Moreover, a reward that is based
only on entailment raises the risk of degenerate so-
lutions, leading to either highly extractive (Ladhak
et al., 2022) or less informative summaries (“re-
ward hacking”; Amodei et al., 2016; Skalse et al.,
2022; Pan et al., 2022).

To address these issues, we propose Reinforce-
ment Learning with Entailment Feedback (RLEF):
Start with a model trained to produce summaries
with the conventional cross-entropy objective, and
further fine-tune it using RL with an entailment-
based reward. Throughout the RL procedure, we
constrain the candidate models to stay close to the
initial model. This way, while the model is be-
ing corrected for higher consistency, it also retains
other summarization capabilities that were learnt
with the maximum-likelihood (MLE) objective. In
this work we explore the consistent vs. informative
trade-off in our RL-based summaries w.r.t. various
aspects including model scale, regularization and
decoding strategies. We find those aspects to be
highly important and interdependent for the final
model performance, highlighting the importance
of carefully tuning them.

Our work stands in contrast to two prior RL-
based approaches. The first approach induces a
reward function from human feedback that encom-
passes various task-specific requirements into a
single value (Böhm et al., 2019; Stiennon et al.,
2020). Collecting such feedback is expensive and
requires dedicated data collection for each target
task. In contrast, we use readily-available mod-
els and datasets for the reward, which address a
specific aspect of generation that is generic across
many different tasks. Other works modeled the
reward using different similarity functions between
the reference and the generated summaries (Pa-
sunuru and Bansal, 2018; Gunasekara et al., 2021),
thus requiring reliable reference data. Instead, our

NLI
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Figure 2: RLEF training loop: (Left) given an input
document, the policy generates a summary to be scored
by the NLI model for consistency; (Right) given a doc-
ument and the current generated summary, the KL dis-
tance between the RL and anchor model policies is
used for regularization; Both scores are combined for
training the policy. The black lines represents reward
feedback to the model.

reward function evaluates the generated output only
w.r.t. the input, enabling to train using RL on data
without reference summaries. We evaluated our
approach on the widely used XSum (Narayan et al.,
2018a) dataset, using both automated metrics and
human raters. The results show considerable im-
provements over strong baselines for factual con-
sistency, salience, and conciseness of the generated
summaries.

2 Method

We would like to increase factual consistency us-
ing an entailment-based reward, while retaining the
high salience and coherence that current summa-
rization models already obtain. To achieve this,
we propose to initialize an RL policy with a sum-
marization model trained on supervised data (the
anchor model). From there, in each RL-based train-
ing step we update the parameters according to two
signals: an entailment reward and a regularization
term grounded on the anchor model. During RL
training, the entailment reward directs the model
towards increased faithfulness, while the regular-
ization term keeps the model from drifting to degen-
erate solutions and “forgetting” how to summarize.
The process is illustrated in Figure 2.
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2.1 RLEF: RL from Entailment Feedback
Problem Formulation. We denote the input doc-
ument and output summary as x, y respectively.
Let V denote the input and output vocabulary, and
y:n = (y1, ..., yn) denote the generated summary
up to the n-th token. We define the token-wise
generative summarization process as a determinis-
tic Contextual Markov Decision Process (CMDP,
Hallak et al. 2015) with observable context, where
the context is the input text x, the state at the n-th
token generation is the sequence generated thus
far y:n−1, and the action space is defined over the
vocabulary V. A policy π(· | y:n−1, x), is a proba-
bility distribution over all tokens in V, conditioned
on the context and state. We note that following
this formulation, the policy is identical to a token-
level auto-regressive language model (Bengio et al.,
2003). The RL objective is to find the optimal pol-
icy, which maximizes the cumulative reward signal.

Rewards. We use an NLI classification model
as a factual consistency reward signal. Since
the model is trained to evaluate complete utter-
ances and expects as input a grammatical premise
(document) / hypothesis (summary) pair, we use
sequence-level rewards and define the token-level
NLI reward to be zero on every token except for
the end-of-sequence (EOS) token. For the EOS
token we set the reward to be the log-probability
for an “entailment” decision according to the NLI
classifier, using x as the premise and y:n as the
fully generated hypothesis:

rNLI(yn; y:n−1, x) =

{
NLI(y:n;x) yn = [EOS];

0 otherwise,

where [EOS] is an end-of-sequence symbol, and
NLI(y:n;x) = log Pr(entailment | y:n, x).

To retain the summarization capabilities of the
anchor model, we use Kullback-Leibler (KL) regu-
larization to keep the RL-based policy close to the
supervised anchor policy (Jaques et al., 2017):

rKL(yn; y:n−1, x) = log
πSL(yn | y:n−1, x)

πRL
θ (yn | y:n−1, x)

.

This term is added to the NLI reward, producing
the final token-level reward:

r(yn; y:n−1, x) = (1− α)rNLI(yn; y:n−1, x)

+ αrKL(yn; y:n−1, x) . (1)

The hyperparameter α enables controlling the trade-
off between enforcing faithfulness through the re-
ward and remaining close to the anchor policy.

Training Algorithm. We train the policy to opti-
mize for the rewards defined in Equation (1) using
an on-policy actor-critic policy gradient (PG) ap-
proach. Since we keep proximity to the anchor
model via the KL penalty reward, the algorithm
can be considered a regularized PG algorithm, sim-
ilarly to works by Geist et al. (2019); Shani et al.
(2020); Abdolmaleki et al. (2018); Tomar et al.
(2022); Vaswani et al. (2021); see Appendix C for
a detailed formulation. Specifically, two models
are learned: a policy (the generation model) and the
expected value of the policy (the value network).
We use the supervised model to initialize the pa-
rameters of both models, with the exception that
the last layer of the value network outputs single
scalars instead of a distribution over the vocabulary.

The RL training process consists of the following
stages: (1) Generating summaries with the current
policy and (2) Scoring the summaries using the
reward signal. Then, (3) Policy and value networks
are trained, jointly: the policy is trained via the PG
loss while using the value for generalized advan-
tage estimation (GAE, Schulman et al. (2016)); the
value is trained via standard bootstrapping, using
the GAE predictions. Notably, this process does
not require reference summaries for learning the
policy. More details regarding the algorithm and
losses can be found in Appendix A.

2.2 Decoding at Inference Time

As a direct consequence of RL training, the model
explicitly learns to generate tokens with the goal of
maximizing the long-term sequence reward. This is
in contrast to MLE-based training, where the model
learns to generate each token myopically, requiring
heuristic decoding strategies such as beam-search
to plan ahead. As a result, we can use the more
efficient temperature sampling instead of beam-
search when decoding from an RL-trained policy.1

3 Experimental Design

3.1 Data

We focus on XSum (Narayan et al., 2018a), an
abstractive summarization dataset that poses chal-
lenges around factual consistency. XSum is com-
piled from 200K web-scraped BBC news articles,
where the lead (introductory) sentence in every ar-
ticle is taken as the summary, and the rest of the

1We found that temperature sampling is sufficient for RL,
while beam-search is required to improve the supervised pol-
icy.
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sentences are taken as the source document.
Due to this formulation, XSum summaries may

contain additional information that was not re-
peated in the rest of the sentences. Indeed, prior
work found that only 20% of the reference sum-
maries in XSum are entailed from their source doc-
ument (Maynez et al., 2020), and that summariza-
tion systems trained on XSum are likely to generate
factually inconsistent summaries. For this reason
we find XSum suitable for our experiments, as we
would like to see if the RL-based reward could al-
leviate the factual inconsistencies that supervised
models learn to generate based on this data.

We also experiment on two additional datasets to
compare to prior work. The TL;DR dataset (Völske
et al., 2017), using the same cleaned version pro-
vided by Stiennon et al. (2020), which contains
120K Reddit posts and their short summaries, and
the CNN/DM (Nallapati et al., 2016) dataset. The
latter contains 200K news articles and their bullet-
point highlights, which are mostly copied excerpts
from article sentences. In this work we focus on ab-
stractive summarization, and therefore evaluate our
methods on CNN/DM with models trained, both
supervised and reinforced, over TL;DR.

3.2 Entailment Model

In this work we focus on combining an existing
entailment model as a reward in an RL framework.
We employ the NLI classifier from Honovich et al.
(2022) across our study as a reward as well as for
evaluation and data labelling for baseline meth-
ods. It was trained over the ANLI dataset (Nie
et al., 2020) with the T5-XXL architecture. The
classifier produces the characters ‘1’ or ‘0’ as its
output for binary entailment and non-entailment
decisions, respectively. We pose the source docu-
ment as the premise and the predicted summary as
the hypothesis, and use the log-probability of the
decoded character ‘1’ conditioned on the input as
our reward.2 We leave improvements to the under-
lying factual consistency models for future efforts.
See Section 6 for more discussion about different
factual consistency models.

3.3 Baseline Methods

SL. Our supervised learning baseline is obtained
by fine-tuning a T5 model on document-summary
pairs. We use the T5X framework (Roberts et al.,

2We use an empirically validated classification threshold
of 0.5 for entailment decisions.

2022) for fine-tuning with batch size of 32 and
keep the other hyperparameters to their default
values (see Appendix A for details). Fine-tuning
is stopped once the model converges in terms of
ROUGE on the validation set. This supervised
baseline will also be used as the initialization check-
point of our RL methods. Decoding a summary us-
ing this model is implemented using beam search.

Filtered. Similar to the SL approach, with the
distinction that we filter out training data where the
summaries are not entailed by the input document
according to our NLI model. This filtering leaves
60% of the original XSum training set. We train the
model similarly to the SL model, and evaluate on
the full validation and test splits, without filtering.

CTRL. Inspired by Filippova (2020); Rashkin
et al. (2021b), we train the model on the full train-
ing set to explicitly differentiate between generat-
ing faithful and unfaithful summaries: each training
document is prepended with a phrase indicating if
the target summary is entailed or not according
to our NLI model. At inference, since we aim
to produce consistent summaries, each document
is always prepended with the phrase denoting an
entailing summary, and continue decoding the sum-
mary using beam search. Other parameters are
similar to the SL method.

FactPegasus. Wan and Bansal (2022) employ
a tailored pre-training setup similar to PEGA-
SUS (Zhang et al., 2019) that also takes factual
consistency into account, and combine it with data
pre-processing, and contrastive learning to generate
more faithful summaries.

CLIFF. Cao and Wang (2021) propose a con-
trastive learning objective that distinguishes be-
tween reference and heuristically created noisy
summaries.

RLHF. Stiennon et al. (2020) uses an RL ap-
proach with a reward model that learns from human
comparisons of summaries. They iteratively add
new feedback from humans for summaries gener-
ated by the current policy, and re-train the reward
model. We use their publicly released samples of
the TL;DR validation set and the CNN/DM test set.

3.4 Proposed Models

We train two flavors of RL-based models. The first,
RLEFL, gives a lower weight to the regularization
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reward by setting α = 0.1 and the sampling tem-
perature to 1. The second model, RLEFH, gives
a higher weight to the regularization reward with
α = 0.2 and a sampling temperature of 0.3. We
altered both the α values and the sampling temper-
atures since we saw that both parameters affect the
trade-off between factual consistency, as measured
by the NLI model, and lexical similarity, as mea-
sured by ROUGE (see Figure 3). For additional
implementation details see Appendix A.

3.5 Automatic Evaluation Metrics

We report the common lexical n-gram overlap eval-
uation metrics and a set of factual consistency met-
rics, as the former were shown to be ill-suited for
detecting unfaithful outputs (Falke et al., 2019;
Pagnoni et al., 2021).

For factual consistency, we report NLI, which
is the percent of entailed summaries according to
our NLI classifier, and the Q2 score (Honovich
et al., 2021). Q2 is similar to QAGS (Wang et al.,
2020) and QuestEval (Scialom et al., 2021) but was
shown to work better on XSum data (Honovich
et al., 2022) with higher correlation with human
judgements.

When optimizing for faithfulness, an RL policy
may resort to less abstractive summaries that are
copied verbatim from the source (Ladhak et al.,
2022), or less informative ones with a reduced level
of detail. To explicitly measure these attributes
in a summary, we report extractiveness metrics:
COVERAGE and DENSITY (Grusky et al., 2018),
where the first measures the percent of summary
tokens that also appear in the document, while the
second measures a quantity similar to the average
length of extractive spans in the summary. Finally,
we report the average summary length3 (LENGTH).

3.6 Manual Evaluation Protocol

We asked human evaluators to rate a sample of the
XSum test-set from several selected methods. Each
summary was evaluated by 3 different raters. In-
spired by Fabbri et al. (2021), we pose 4 questions
outlining comprehensibility, attribution, salience
and conciseness (see example in Figure 5 in the
appendix). To get conclusive results, similarly to
Rashkin et al. (2021a) we request binary yes/no
answers and ask to answer “No” for any slight devi-

3We use SequenceMatcher::get_matching_blocks
from the python standard library to compute the set of
extractive spans. Texts are tokenized with NLTK (Loper and
Bird, 2002).

Faithfulness ROUGE Extractiveness
Size Method NLI Q2 1 2 L Coverage Density Length

XXL

SL 63.93 41.08 45.32 22.77 37.56 68.93 0.79 21.69
Filtered 74.54 43.01 43.84 21.36 36.24 69.21 0.81 20.74
CTRL 71.64 43.26 45.19 22.70 37.57 69.83 0.82 20.94
RLEFL 94.66 54.84 41.77 19.95 34.75 75.03 0.98 17.72
RLEFH 83.17 48.40 44.8 22.37 37.29 72.08 0.91 20.14

Base

SL 52.44 36.16 39.84 17.77 32.63 71.77 0.87 20.52
RLEFL 79.90 46.70 38.13 16.47 31.33 76.06 1.06 17.72
CLIFF 68.16 45.71 45.17 23.32 37.61 73.37 1.21 20.86
FactPegasus 62.01 42.69 37.16 15.13 30.36 78.33 1.42 18.47

Table 1: Automatic evaluation results, XSum test set.
RLEF with various regularization patterns vs. baseline
methods. Highest values are in bold. Due to stability
issues in T5-Base RL-training (see Section 5), T = 0.3
was used.

Faithfulness ROUGE Extractiveness
Test set Method NLI Q2 1 2 L Coverage Density Length

TL;DR
SL 94.11 74.34 36.75 14.87 29.13 91.40 3.86 27.69
RLEFL 99.39 77.55 36.58 14.81 29.12 92.89 4.14 26.57
RLHF-6B 94.56 74.19 33.68 11.86 25.49 89.22 3.56 37.12

CNN/DM
(transfer)

SL 92.53 69.52 31.72 11.85 27.42 94.67 5.5 30.14
RLEFL 95.00 71.08 31.28 11.79 27.20 95.24 5.32 28.16
RLHF-6B 91.48 70.42 32.51 11.93 27.85 93.10 4.85 32.73

Table 2: Automatic evaluation results for TL;DR and
CNN/DM test sets. Highest values are in bold. RLEF
models are based on T5-XXL. For CNN/DM (transfer)
we employ the RLEF and SL models trained on TL;DR
and predict summaries on the CNN/DM test-set, simi-
larly to the transfer setting in Stiennon et al. (2020).
For RLHF, we use the publicly available predictions of
their human feedback model in the transfer setting.

ation from the desired property. For unfaithful sum-
maries, the evaluator also provides the offending
phrase. Our evaluator pool consists of 11 workers
that successfully completed a short training round
of 10 examples (for details, see Appendix B).

4 Results

Automatic Evaluation. Table 1 presents the au-
tomatic evaluation results on the XSum test set,
comparing the supervised baselines to the two RL-
based models (RLEFL, RLEFH).

The table shows that the RL-based models
achieve the highest entailment scores as measured
by the NLI and Q2 metrics. Notably, the RL ap-
proach is the most effective approach to utilize the
NLI signal, scoring favorable compared to super-
vised baselines Filtered and CTRL, which leverage
the same signal.

Analyzing ROUGE reveals the trade-off be-
tween the entailment and other summarization
traits. Without strong regularization, RLEFL scores
highest on entailment but lower on ROUGE, indi-
cating that in order to reach higher factual con-
sistency, the model pushed farther away from the
supervised starting point. The more strongly reg-
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Size Method COMPREHENSION ATTRIBUTION SALIENCE CONCISENESS

XXL

SL 99.0 ± 1.1 27.3 ± 5.0 61.6 ± 5.5 35.0 ± 5.4
Filtered 96.3 ± 2.1 31.3 ± 5.2 61.3 ± 5.5 34.3 ± 5.3
RLEFL 98.7 ± 1.3 56.6 ± 5.6 78.0 ± 4.7 61.0 ± 5.5
RLEFH 98.0 ± 1.5 39.0 ± 5.5 70.6 ± 5.1 45.3 ± 5.6

Base
RLEFH 96.0 ± 2.2 38.3 ± 5.5 64.3 ± 5.4 44.3 ± 5.6
CLIFF 99.3 ± 0.9 28.3 ± 5.1 58.3 ± 5.6 33.3 ± 5.3

XSum reference 99.3 ± 0.9 23.6 ± 4.8 62.6 ± 5.4 30.3 ± 5.2

Table 3: Human evaluation results over 100 test set
samples, each summary rated by 3 workers, results are
micro-averaged. Each value corresponds to a percent-
age of positive answers per category with 95% confi-
dence intervals around the sample proportion. Highest
values for each model size are in bold.

ularized RLEFH achieves a ROUGE score on par
with the CTRL and SL baselines, suggesting that
our KL-regularization prevented the policy from
drifting.

Looking at extractiveness, the Density metric
suggests that RL policies do not resort to copying
text, and the increased Coverage implies that they
tend to use more terms from the document, suggest-
ing fewer hallucinations. Lower ROUGE scores
may hint at lower quality summaries for the less
regularized entailment model, yet the other met-
rics actually point at higher conciseness. We next
present our human evaluation to shed light on these
differences, and analyze whether the improvement
in entailment is also captured by human readers,
and whether the lexical divergence from the refer-
ence summary affects has implications on salience
or conciseness.

Human Evaluation. The results of our human
evaluation are detailed in Table 3. Our raters fully
agreed on 60% of the examples regarding attri-
bution. From attribution (factual consistency) per-
spective, the results strengthen the evidence that the
RL approach is superior to other methods by a large
gap. Interestingly the XSum reference summaries
scored lowest with 23.6%, showing that they are
ill-suited to serve as faithful references for ROUGE
and similar reference-based metrics. Notably, the
human attribution evaluation was much stricter than
the NLI metric, with much lower scores for all mod-
els, and we analyze this discrepancy in Section 5.

Surprisingly, the RLEF models outperforms all
other models also on Salience and Conciseness.
Specifically, the less regularized RLEFL learned
to generate not only the most factually consistent
summaries but also to improve on Salience and
Conciseness, indicating that they are correlated
w.r.t human quality perception.

Comparison with RLHF. We applied our RL
approach on the TL;DR dataset. We used the same
input format and data split as in Stiennon et al.
(2020) for both the supervised and RL training pro-
cesses. For the supervised model (SL) we used
hyper-parameters identical to our previous experi-
ments (see Appendix A) except for a batch size of
128 and learning rate of 2e-4.

We compared our results using automated met-
rics with the RLHF approach (Stiennon et al.,
2020). This approach is also based on the T5 model
and uses a similar RL setup, yet it employs a re-
ward model trained on task-specific human pref-
erences and applying a KL-based anchor. The re-
sults, detailed in Table 2, show that RLEF achieves
higher entailment scores in both NLI and Q2 met-
rics, while our supervised model is on par with
RLHF. We also note that RLHF produces notice-
ably different and longer summaries compared to
our supervised baseline, while RLEF maintains
similar length and ROUGE to the supervised base-
line.

We also compared the two approaches in a trans-
fer learning setting, where we predicted a summary
on a different dataset (CNN/DM) using models
trained on TL;DR. The results show similar trends,
with higher entailment score for RLEF. These re-
sults hint at the benefit of utilizing a general NLI
reward function, which managed to outperform the
domain-specific RLHF reward both on the source
domain and on a transfer setting.

5 Analysis

Regularization and Sampling Temperature.
Figure 3 describes an ablation experiment where
we vary the regularization α and the decoding tem-
perature and measure the effect on different auto-
matic metrics. Higher sampling temperature cor-
relates with higher entailment and lower ROUGE
scores. We conjecture that this is since higher tem-
perature generates more diverse summaries, which
amplifies exploration away from the original gold
references. A similar phenomenon is observed
when considering token length, as lower tempera-
ture policies produce summaries closer in length to
the data-mean than their higher temperature coun-
terparts.

As for the regularization coefficient α, we ob-
serve the expected trade-off: lower regularization
(smaller α) leads to higher entailment (NLI), lower
similarity to the supervised summary (ROUGE),
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Figure 3: Trade-offs between entailment and Rouge-1, Summary Token Length and Document Coverage as mea-
sured over the XSum validation set. Setups differ in KL-regularization (color) and sampling temperature (dot
shape), model architecture is fixed to T5-XXL.

and higher Coverage. These may be explained by
removal of external hallucinations that often use vo-
cabulary terms that are unrelated to the document.

Surprisingly, in each KL setting, the lower
temperature policy favors more document-aligned
terms (perhaps for their higher initial probability),
yet this is not reflected in the NLI metric, that stays
lower than its higher-temperature counterpart. We
also observe that the summaries get shorter with
less regularization, as the policy learns to mention
fewer details as a way to alleviate generating incon-
sistencies.

Model Size. We tested our approach with differ-
ent model sizes to study the effect of scale in the
RLEFH setup. We compared T5-Base (220M pa-
rameters), T5-Large (770M) and T5-XXL (11B),
using the same hyper-parameters for all three mod-
els. Figure 4 shows the entailment rate on the
XSum validation set during RL-finetuning. For
all model sizes, our approach improved the entail-
ment ratio over the supervised model by a large
margin.

However, while the Large and XXL models
changes the average summary length only slightly,
the Base model completely degenerates, “hacking”
the NLI reward by generating summaries that are
half as short as the reference. This suggests that
higher-capacity models are essential to prevent re-
ward hacking, perhaps due to two possible reasons.
First, the larger policies have higher generalization
capabilities overall and can better accommodate
different rewards, such as entailment and summa-
rization regularization in our case. Second, since
the anchor model uses the same architecture, the
higher capacity anchor model is more robust to
changes in the summary and produces lower scores
for less informative or more extractive summaries.
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Figure 4: Entailment ratio and summary length during
RL training for different model sizes.

5.1 Manual Analysis.
To gain more insight into the inner workings of
RLEF, we propose two manual inspections about
the types of changes being induced by the policy,
and analysis of attribution errors found by our hu-
man evaluation procedure.

Changes to the summary during RL training.
We study the changes that the RLEFH policy in-
duces on a summary during RL training, focusing
on the changes that cause a flip in entailment deci-
sion. We sample 200 documents from the valida-
tion set for which we obtain the predicted summary
at different checkpoints throughout the RL train-
ing process in 4K steps intervals. We apply the
NLI classifier for each document and summary list,
and select 60 examples for which the NLI decision
has flipped between any pair of consecutive check-
points, and study what changes have been made to
the summary that caused the flip. Notably, most
flips occur only once during training, and from the
non-entailed to the entailed decision. Examples are
shown in Table 4 together with our categorization
of the changes, with some summaries morphing
in more than one way. We notice that for sum-
maries produced by RLEFH most changes are lo-
cal, meaning that the main predicate clause and the
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Summary before the NLI flip Summary after the NLI flip NLI Description

1 Two astronauts who spent a year living on the International Space Station
have landed in Florida.

Two astronauts who spent a year living on the International Space Station
have returned to Earth.

3 Abstractive
Rephrasing

2 Afghan forces have repelled an advance by Taliban fighters on the northern
city of Kunduz, officials say.

Afghan forces have been battling Taliban insurgents in the northern city of
Kunduz.

3 Abstractive
Rephrasing

3 A senior Nigerian military official has said militant Islamist group Boko
Haram is no longer a threat, after a mosque attack that left at least 82 people
dead.

A senior Nigerian official has denied that Islamist militant group Boko Haram
was behind a mosque attack in the north in which more than 100 people were
killed.

3 Claim Change

4 Two people have been arrested on suspicion of manslaughter after a three-
year-old boy died at a water park.

Two people have been arrested after a four-year-old boy died at a water park. 3 Argument
Omission

5 Bolton Wanderers manager Lee Trotter has apologised after he and striker
Aaron Lennon swore at fans on live television.

Bolton Wanderers manager Lee Trotter has apologised after he and team-
mate Gary Caldwell swore at fans on live television.

7 Argument
Change

Table 4: Examples of summaries for the same document on consecutive checkpoints during RL training, before
and after the NLI classification of the summary has flipped. The summaries maintain a stable main structure which
enables manual inspection. The main changes are highlighted in gray, the NLI column depicts the entailment
decision for the latter summary, and the description specifies the type of the semantic change.

core participants remain the same throughout most
checkpoints. We classified 13 out of 60 examples
as abstractively rephrased, where a specific detail is
replaced with a broader description, e.g. returned
to earth instead of landed in Florida (ex. 1). How-
ever, we also found that 27 examples contained
argument omissions, where verbal arguments or
noun modifiers with typically non-core semantic
roles (Palmer et al., 2005) are removed (e.g. Loca-
tive or Temporal descriptions). See for example
the “Cause for arrest” omission in ex. 5. Such
omissions keep the information regarding the main
participants intact, while lowering the risk of errors
around non-core details. Other changes included
claim changes (16 cases) where a predicate has
been replaced (see ex 3), argument replacements
(8 cases), and other non-specific alterations.

Attribution error analysis. We analyzed attri-
bution errors from the human evaluation of our
best policy, RLEFL, aggregated by majority vote.
We inspect the offending phrase supplied by the
evaluator for 39 out of 100 examples that are found
to be non-attributable. 28 are considered as a lo-
cal hallucination, mostly confirming to addition of
personal names, numbers, places, and roles that
did not appear in the article. For example, an ar-
ticle mentioned Kevin O’Malley without alluding
to his job title, while the summary referred to him
as the Irish Ambassador. While Kevin O’Malley
was indeed an Irish ambassador, the model should
not add such details if they are not explicitly men-
tioned in the article. Since most of these examples
were found as entailing by our reward, this may
point at issues with the NLI model that are due
to knowledge conflicts between its parametric and
contextual knowledge (Neeman et al., 2022). The
rest of the examples include 5 contradictions and 5
major hallucinations.

6 Related Work

RL for text generation. RL has been applied to
many text generation tasks like neural machine
translation (Wu et al., 2018; Leblond et al., 2021),
extractive summarization (Narayan et al., 2018b;
Wu and Hu, 2018; Gao et al., 2019; Arumae and
Liu, 2019), abstractive summarization (Chen and
Bansal, 2018) and others (Bahdanau et al., 2017;
Welleck et al., 2019; Bai et al., 2022a; Ouyang
et al., 2022; Bai et al., 2022b).

Specifically for summarization, prior RL ap-
proaches used different reference-based metrics
as a reward function. In Pasunuru and Bansal
(2018), two reward signals are measured between
the generated and reference summaries: lexical
overlap (ROUGE) to gauge salience and an entail-
ment score to measure factual consistency. Gu-
nasekara et al. (2021) employed a similar approach
with question-answering, they produced QA pairs
conditioned on the generated summary to detect
inconsistencies with the reference, and another
set of QAs conditioned on the reference to mea-
sure salience. Additionally, Nan et al. (2021) pro-
posed QUALS, a more computationally efficient
QA approach, that was used in a contrastive learn-
ing setting. While their approach could be used
without comparing outputs to reference summaries,
they observed that adding such comparisons with
the reference is essential for the stability of their
method. We note that for some datasets, refer-
ence summaries are likely to contain factual errors
(Maynez et al., 2020), decreasing the effectiveness
of reference-based rewards.

Other RL methods, instead of explicitly defin-
ing the quality of a summary suggest to model it
directly from human feedback (Böhm et al., 2019;
Ziegler et al., 2019; Wu et al., 2020; Stiennon et al.,
2020). This technique can prevent errors due to ref-
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erences that are misaligned with human judgment.
While it is a promising approach, it also requires
acquiring task-specific annotation, which can be
labor-intensive.

Another hybrid approach interleaves a cross-
entropy objective with policy gradients (Pang et al.,
2021) in multi-document summarization (MDS).
They use an in-domain NLI model, for which they
annotate their MDS dataset with entailment deci-
sions. To stabilize their policy they employ an
additional GAN-like training regime and add a dis-
criminator loss between generated and reference
summaries to their reward.

Trade-offs in consistency models. The choice
of which factual consistency approach to use has in-
teresting consequences for the RL setup. Our work
employs a binary NLI decision that does not point
towards the specific inconsistent parts in the output
summary. Consequently, the reward is assigned
to the final token of the summary, leaving proper
credit assignment to the RL algorithm. Other meth-
ods, specifically those based on question-answering
(Durmus et al., 2020; Wang et al., 2020; Honovich
et al., 2021) can frame misaligned answers in the
generated summary and assign the reward explicitly
to the offending tokens. However, these QA-QG
based methods may be much slower to compute.
Our reward requires a single forward pass using
a transformer model over the document-summary
pair, in comparison, QA-QG approaches require
generating answer candidates, questions, answers
from both sources and computing answer align-
ment. Some of this complexity is remedied by gen-
erating jointly questions-and-answers (Nan et al.,
2021), but it still requires a lengthy decoding of QA
pairs. A different NLI-based approach decomposes
the document and summary into smaller blocks
of sentences (Laban et al., 2022) and aggregates
the final decision over a matrix of block-level NLI
scores. Such approach could aid the RL algorithm
with credit assignment when generating long sum-
maries. In practice, the abstractive summarization
datasets in this study use short single sentence sum-
maries.

7 Conclusions and Future Work

We propose to leverage NLI models as a ready-
made, reference-free reward signal for RL training
of factually consistent abstractive summarization
models. Our experiments and thorough analysis
with automatic and human evaluation show promis-

ing results for this approach, with our RL approach
outperforming all baselines on factual consistency,
while maintaining and even improving on other
desired summarization attributes as well.

In future work, we would like to extend this
approach to other grounded generation tasks, like
knowledge-driven dialog. In addition, we find it
interesting to explore additional reference-free re-
ward models for other summarization attributes (or
for other tasks). Then, an important research direc-
tion would be to understand how to properly adapt
our method to work with multiple such rewards.

Limitations

While our approach shows promising results in
both automatic and human evaluation, it relies on
two significant pillars: a strong entailment model
and a strong initial summarization model. The NLI
model implicitly encodes the biases and other data
regularities that were part of the NLI training set
into the generated summaries of our policy. This is
well demonstrated by the gap between human attri-
bution judgements and the automatic NLI metric.
Our RL policies cannot improve on factual consis-
tency errors if they are undetectable by the NLI
reward. Hopefully, as NLI capabilities get better,
so will the efficacy of RLEF and the abilities to au-
tomatically flag hallucinations and contradictions.

Secondly, a strong summarization model is es-
sential for our method in two ways: as an initialized
starting point for RL exploration and as an anchor
point to a policy. While our RL training does not
require any reference data and opens the possibility
to use more un-summarized documents, it would
probably not succeed as well without initializing
from a high-quality supervised model.

Another limitation is that our experiments sug-
gest that model size is important when using RLEF
(Figure 4): both our summarization and NLI mod-
els are 11B parameters models. We believe it is
important to further understand how to make our ap-
proach more robust to smaller models, to increase
its computational efficiency and availability.

Ethics Statement

Our work aims at solving the ethical issue of ad-
dressing misinformation in automated text genera-
tion tasks. Yet, adopting automatic summarization
by real users can amplify misinformation in cases
where the model still makes an error or when the
input text itself is not trustworthy. As we stated
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in the limitations, our trained models heavily rely
on other predictive models and therefore carry the
biases of their training data, and may implicitly en-
code these into our generative process. Therefore,
we believe that to reach real-world use, not just
our method should be scrutinized but also the NLI
and summarization datasets that were used to train
these models. Thus, such methods should be used
with caution and combined with other techniques to
ensure humans are capable of judging the validity
of the information generated by the model.
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A Experimental Details

RL Algorithm Details. We use an actor-critic
on-policy PG algorithm with a learned value func-
tion Vψ and a parameterized policy πθ to maximize
the RL objective. The policy gradient w.r.t. to the
regularized reward r(yt; y:t−1, x) defined in Equa-
tion (1) is

∇θJ(θ)

= Ex,y∼πθ
[ T∑

t=0

∇θ log πθ(yt|y:t−1, x)Gαt

]
,

where for brevity we denote Gαt =∑T
t′=t r(yt; y:t−1, x), the accumulated regu-

larized return. For more details on the derivation
of this expression, and framing the regularized
objective as an RL problem, we refer the reader to
Appendix C.

We use the value Vψ as a baseline, a state-
dependent function that can be subtracted in the
policy gradient without changing it. This leads to
the following equivalent policy gradient

∇θJ(θ) = Ex,y∼πθ
[ T∑

t=0

∇θ log πθ(yt|y:t−1, x)×

(
Gαt − Vψ(y:t−1, x)

)]

= Ex,y∼πθ
[ T∑

t=0

∇θ log πθ(yt|y:t−1, x)AGAE
ψ (y:t)

]

where Aψ is termed the advantage function. Ap-
plying this PG can be regarded a variant of the
REINFORCE (Williams, 1992) algorithm with a
baseline. In practice, we replace the advantage
in the expression above by generalized advantage
estimation (GAE, Schulman et al., 2016), which
allows to better control the bias-variance trade-off
via the λ parameter:

AGAE
ψ (yt; y:t−1, x) =

+∞∑

t′=t

(γλ)t
′−t×

(
r(yt′ ; y:t′−1, x) + γVψ(y:t′ , x)− Vψ(y:t′−1, x)

)
.

Finally, the above policy gradient definition leads
to the following per-example loss for learning the
policy πθ,

Lπ(θ)(y:t, x) = AGAE
ψ (y:t, x) log πθ(yt|y:t−1, x),

where the gradients are only propagated here w.r.t.
the policy parameters.

The value Vψ itself is learned via regression to-
wards the return estimate induced by GAE, which
is equivalent to minimizing the GAE advantage:

LV (ψ)(y:t, x) =
(
AGAE
ψ (y:t, x)

)2
.

We now describe more intricate implementation
details and hyper parameter choices.

RL Implementation Details. Given that we op-
erate in the finite horizon setting, we naturally set
the discount factor γ to 1. Similarly to the PPO
algorithm (Schulman et al., 2017b), we normalize
the advantages in a given batch of data so that they
approximately follow a standard normal distribu-
tion. We also normalize the value loss by dividing
it by the variance of the batch returns. An impor-
tant difference between our implementation and the
standard (regularized) PG implementation is that
instead of treating KL penalties along a given se-
quence as immediate rewards, we accumulate those
and treat the resulting quantity as a sequence-level
penalty. We found this to lead to more stability in
the RL procedure.

Unlike the conventional RL setting where both
the policy and value are randomly initialized, in
our case the policy is already fine-tuned to solve
the required task. Thus, to make the value function
accurate w.r.t. the already initialized policy, we ob-
served that we needed a small number of iterations
before the value estimation is sufficiently accurate
to avoid detrimental policy gradients. To do so, we
run RL fine-tuning for 20K steps, with a warmup
of 5K steps for the value network. We also noticed
that it was beneficial to use distinct values for the
policy and value learning rates, so we decouple
them in practice.

Optimization. We use Adafactor (Shazeer and
Stern, 2018) with a learning rate warmup phase:
the learning rate is linearly annealed from zero to
the specified asymptotic value.

Hyperparameter Search. We noticed that the
optimal value of the policy and value learning rates
are highly correlated. Hence, we propose a decou-
pled hyperparameter search: we start by finding a
suitable value learning rate by keeping the policy
fixed. We then follow a standard grid search to find
suitable values for the remaining hyperparameters
including the policy learning rate, temperature and
the regularization coefficient α. Specifically, in
our hyperparameter sweep we used temperatures
[0.1, 0.3, 1.0] and α values between 0.1 and 0.8
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Hyperparameter Value
γ 1
GAE λ 0.95
Batch size 32
Temperature 0.3 / 1.0
Regularization α 0.2 / 0.1
LR warmup period 2000
Policy update delay 5000
Policy LR 1e-5
Value LR 1e-5

Table 5: Hyperparameters for the RL fine-tuning pro-
cedure of RLEF. When denoted left/right, left refers
to the hyper parameter used for RLEFL and right for
RLEFH.

with a grid size of 0.1. Thus overall, our main
sweep for the XXL model consisted of 24 runs of
20K iterations.

We list all the hyperparameters used (unless dif-
ferent values are mentioned in the text) in Table 5.
For the learning rate warmup and policy update
delay, note that the number of steps reported cor-
respond to gradient steps of the RL fine-tuning
procedure.

SL Implementation details. For the SL models,
we decode summaries with beam search with a
beam width of 4 and a brevity penalty of 0.6. For
training we use the same optimizer with base learn-
ing rate of 0.001, batch size of 32, and a dropout
rate of 0.1.

Resources. We used TPU-v4 chips to train all
the models mentioned. Each of our T5-XXL based
RLEF experiment ran for approximately 17 hours
on 64 TPU chips. Furthermore, our main hyper
parameters sweep included 24 such experiments,
accounting for 1088 TPU-days.

B Evaluator Demographics, UI and
Instructions

We employed full-time hourly workers to rate the
summary quality. Our raters consist of native En-
glish speakers, nationals from the U.S. and U.K.
that hold graduate (70%) and high-school (30%)
diplomas. We supplied them with 2 pages of in-
structions and additional examples, and conducted
an initial pilot study and training batch before pro-
ceeding to rate the summaries. The UI that we used

is displayed in Figure 5. In what follows we attach
the guidelines presented to the raters in the human
evaluation described in Section 3.6. The guidelines
are loosely based on Rashkin et al. (2021a).

B.1 Guidelines

In this task you will be presented with a news arti-
cle and multiple summaries of the article, and you
are asked to evaluate the summary quality. You will
rate each summary with 4 yes/no questions. These
questions ask if the summary is: Comprehensible
and understandable. Attributable (supported) by
the article - no contradicting or unattested infor-
mation. Captures the main idea(s) behind the arti-
cle. Concise - does not contain additional details
beyond the key information in the article. Read
carefully the text and the summary. The summaries
may appear very fluent and well-formed, but con-
tain slight inaccuracies that are not easy to discern
at first glance.

Q1: Comprehensibility. An incomprehensible
summary is not understandable due to significantly
malformed phrases and sentences that are difficult
to comprehend or make sense of. If there is any
part of the summary that is unclear or hard to un-
derstand or malformed (e.g., partially cut-off or
contains strange characters), select "No, not fully
comprehensible". Summary When you leave it late,
you leave it late is adding interest to your pension
money as a result of the financial crisis. o, not fully
comprehensible

Q2: Attributable (Supported) by the article.
A fully supported summary contains information
that can be found in the source article. No informa-
tion in the summary is unattested when compared
against the source news article. In other words,
if you can say that “According to the news arti-
cle. . . ” with the summary following this phrase,
you should answer, “Yes, it is attributable.” If some
key details in the summary are not supported by
the article (e.g. missing from the article), inaccu-
rately represent the information in the article, or
contradicted by the article, then please mark “No,
not fully attributable.”

Q3: Main Idea. A main idea captures a fact or
theme that is central to the article’s discussion. It
should involve the people, locations, or events that
the article focuses on. If a main idea was removed
from the original article, it would change the mean-
ing, focus, or argument of the article. Note that
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Figure 5: The evaluator user interface that we have used to rate summaries.

this question is NOT asking whether the summary
includes ONLY main ideas.

In Q3, to the best of your ability try to distinguish
between the following cases, some may be more
rare than others:

• The summary is fully supported (yes to Q2)
and captures the main idea (yes to Q3).

• The summary is fully supported (yes to Q2),
but ignores the central point of the document
(No in Q3).

• The summary contradicts the document in mi-
nor details or hallucinates some information
(No to Q2), but the idea behind the document
is mostly captured even if some details are
incorrect (Yes to Q3).

• The summary contradicts the document in key
details (No to Q2) to the level where the main
idea is unrecoverable or largely missed (No to
Q3).

Q4: Conciseness. A summary is concise if it in-
cludes only the necessary details and the important
information in the article. If it includes any details
which are not central to the article, it should be
marked as "No, it is not concise". A summary may
be concise even if some details are contradicting
(i.e. you marked “No, it is not fully attributable” in

Q2) as long as those were part of the main idea of
the article.

In Q4 we are trying to find if the summary con-
tains substantial information that does not belong
to the main idea. If some minor details in the sum-
mary are contradicting, yet they are part of the
main idea, then this summary is still concise, the
system made an error of attribution, but not of over-
generation.

C Fine-Tuning Language Models with
Reinforcement Learning

C.1 Language Generation as a Contextual
Markov Decision Problem

In this appendix, we explain the connection be-
tween arbitrary language generation tasks and
the Markov Decision Process (MDP) frame-
work (Howard, 1960) which is widely used in
RL. We recall that an MDP M is a tuple M =
(S,A, γ, r, P ), where S is a state space, A is
an action space, γ ∈ [0, 1] is a discount factor,
r : S × A → [−rmax, rmax] is a bounded reward
function and P : S×A → ∆S is a transition kernel.
∆χ denotes the standard simplex over χ. We repre-
sent sequential decision-making strategies as poli-
cies π : S → ∆A. At any point in time t, a policy π
interacts in an MDP by observing the current state
st, selecting an action at ∼ π(·|st), and accord-
ingly receiving a reward rt = r(st, at), before ob-
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serving a new state st+1 ∼ P (·|st, at). We define
the return as the discounted sum of rewards in one
episode of interaction: Gt =

∑T
t′=t γ

t′rt′ , where T
is called the horizon and is potentially infinite. We
now introduce Contextual MDPs (CMDPs) (Hal-
lak et al., 2015). They model the fact that a fixed
context is available and determines the nature of
rewards and dynamics. Formally, a CMDP is a
tuple Mc = (C, fM ), where C is a context space
and fM : c ∈ C → M is a function that maps a
context to the corresponding MDP.

Any language generation task can be seen as the
following interactive process: a language model
observes the current state st = y:t−1 and con-
text c = x, that is both the input text x and
the text generated so far y:t−1, and selects a to-
ken at = yt. Thus, we can view any language
generation task as a CMDP Mc = (C, fM ) with
fM (c) = (S,A, γ, r(· ; c), P (· ; c)), with the pol-
icy π being the language model itself. The state
space S is the set of all potential generations (ei-
ther complete or incomplete). We suppose that
the maximum length of generated text T , which
is equivalent to the horizon, and that of the input
text Tc are finite, which is a common assumption in
NLP. Accordingly, if we note V the vocabulary (the
set of all admissible tokens), we have S = ∪Ti=0Vi.
Similarly, we have the context space C = ∪Tcj=0Vj .
The action space A is the set of tokens that the
policy can output at any point in time, that is the
vocabulary, hence A = V. The discount factor γ is
arbitrary and can be set to 1 given that the horizon
is supposedly finite. The reward function r is also
arbitrary, but in the case of interest exposed in the
main text we set it to:

r(st, at; c) =

{
NLI(y:t;x) if yt = [EOS] or t = T,

0 otherwise.

Finally, and most importantly, the transition kernel
is deterministic:

P (st+1|st, at; c) =





1 if [EOS] ∈ st and st+1 = st,

1 if [EOS] /∈ st and st+1 = y:t,

0 otherwise.

Indeed, any state that contains an [EOS] token can be
considered an absorbing state.

C.2 Language Generation From a
Pre-Trained Model as a Regularized
Markov Decision Problem

While the previous formalism applies to all lan-
guage generation tasks, we now describe a formal-

ism that specifically applies to the language genera-
tion task that is explored in the main text: language
generation when a pre-trained model is available.
It models the fact that we want generated text to
be likely according to the pre-trained model, which
we call anchor model in what is next. We note
the corresponding policy πanchor. We consider the
following reward function:

r(st, at) = (1− α)r(st, at) + αrKL(st, at),

with the regularization term:

rKL(st, at) = log πanchor(at|st)− log π(at|st),

where r is the reward function defined previously
and α is a scalar controlling the regularization
strength. We recall that the Kullback-Leibler (KL)
divergence between the current policy and the an-
chor policy has the expression:

KL(π||πanchor)(st) =

− Eat∼π
[

log πanchor(at|st)− log π(at|st)
]
.

Hence, the regularization term is an unbiased es-
timator for the KL divergence between current
and anchor policies. Intuitively, it encourages
the learned policy to keep a distribution that is
close to the distribution over tokens induced by
the anchor policy (the fine-tuned model). Since
the learned policy evolves along training, the re-
ward function we described is non-stationary, that
is the reward for a given state-action pair (s, a)
changes with the policy π. Hence, the modified
MDP is best viewed as a regularized MDP (Geist
et al., 2019). We define the KL regularizer as
Ω(π) = KL(π||πanchor), which is a strongly con-
vex function. We can show that this formalism
is equivalent to the MDP with the non-stationary
reward function described above.

C.3 Defining the Reinforcement Learning
Objective

In this section, we show that the regularized reward
defined in Equation (1) can be used together with
any PG based algorithm. To do that, we show that
for any MDP (see Appendix C.1), the policy gradi-
ent can be easily re-derived for our regularization
scheme when using parameterized policies. This
repeats the derivations in Schulman et al. (2017a);
Geist et al. (2019). We denote trajectories τ =
{s0} ∪ {at, st+1}T−1t=0 . By a slight abuse of nota-
tions we denote the probability of a given trajectory
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under the policy π as π(τ), that we can decompose
as π(τ) = P (s0)

∏T−1
i=0 π(ai|si)P (si+1|si, ai).

We also denote Gt as the return of a trajectory start-
ing from time-step t. Now, denote a parameterized
policy πθ, and define the standard RL objective,

J(θ) = Eτ∼πθ
[ T∑

t=0

r(st, at)
]
,

= Eτ∼πθ [G0].

The goal of RL is to find a parameterization θ∗ that
maximizes the following objective:

θ∗ ∈ arg max
θ

J(θ).

The policy gradient theorem states that

∇θJ(θ) = Eτ∼πθ
[ T∑

t=0

∇θ log πθ(at|st)Gt
]
.

We now place ourselves in the specific regularized
MDP defined in Equation (1) and Appendix C.2,
with the reward regularization scheme, rα(s, a) =

(1 − α)r(s, a) + α log πanchor(a|s)
πθ(a|s) . Define the RL

objective of interest, which adds a regularization
term to the reward function,

J(θ) = Eτ∼πθ
[ T∑

t=0

(1− α)r(st, at)

+ α log
πanchor(at|st)
πθ(at|st)

]
.

For r(st, at), we repeat standard steps to re-
derive the corresponding policy gradient. However,
we need to have a separate treatment for the KL reg-
ularization reward log πanchor(at|st)

πθ(at|st) , as it explicitly

depends on θ. We have:

∇θEτ∼πθ
[ T∑

t=0

log
πanchor(at|st)
πθ(at|st)

]

= −∇θEτ∼πθ
[ T∑

t=0

log
πθ(at|st)

πanchor(at|st)
]

= −∇θ
∑

τ

πθ(τ)

T∑

t=0

log
πθ(at|st)

πanchor(at|st)
,

= −
∑

τ

∇θ
(
πθ(τ)

T∑

t=0

log
πθ(at|st)

πanchor(at|st)
)
,

= −
∑

τ

∇θπθ(τ)

T∑

t=0

log
πθ(at|st)

πanchor(at|st)
︸ ︷︷ ︸

A

−
∑

τ

πθ(τ)∇θ
T∑

t=0

log
πθ(at|st)

πanchor(at|st)
︸ ︷︷ ︸

B

.

We keep A as is and show that B is equal to 0:

B =
∑

τ

πθ(τ)∇θ
T∑

t=0

log
πθ(at|st)

πanchor(at|st)

=
∑

τ

πθ(τ)
T∑

t=0

∇θ log
πθ(at|st)

πanchor(at|st)
,

=
∑

τ

πθ(τ)∇θ
T∑

t=0

log πθ(at|st),

=
∑

τ

πθ(τ)∇θ log πθ(τ),

=
∑

τ

∇θπθ(τ),

= ∇θ
∑

τ

πθ(τ),

= 0.

By putting all the pieces together we get the ex-
pression of the policy gradient for the modified RL
objective:

∇θJ(θ)

= Eτ∼πθ
[ T∑

t=0

∇θ log πθ(at|st)
T∑

t′=t

rα(st, at)
]
,

Denoting Gαt , the return of the trajectory when
using rα, this can be rewritten as,

∇θJ(θ) = Eτ∼πθ
[ T∑

t=0

∇θ log πθ(at|st)Gαt
]
.
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Note that we recovered the standard policy gradient
for the regularized reward rα (and corresponding
return Gα). This means that by treating rα as the
reward we can use any policy gradient method, to
solve the new objective. Because this holds for
any MDP, it holds for the specific MDP defined
in Appendix C.1 for the summarization task. To
see how this is concretely used in our approach
to construct the PG losses, we refer the reader to
Appendix A.
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