
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 594–605

July 9-14, 2023 ©2023 Association for Computational Linguistics

Pruning Pre-trained Language Models Without Fine-Tuning

Ting Jiang1, Deqing Wang13†, Fuzhen Zhuang123, Ruobing Xie4, Feng Xia4

1SKLSDE Lab, School of Computer, Beihang University, Beijing, China
2Institute of Artificial Intelligence, Beihang University, Beijing, China

3 Zhongguancun Laboratory, Beijing, China 4 WeChat, Tencent, Beijing, China
{royokong, dqwang, zhuangfuzhen}@buaa.edu.cn

Abstract

To overcome the overparameterized problem
in Pre-trained Language Models (PLMs), prun-
ing is widely used as a simple and straightfor-
ward compression method by directly remov-
ing unimportant weights. Previous first-order
methods successfully compress PLMs to ex-
tremely high sparsity with little performance
drop. These methods, such as movement prun-
ing, use first-order information to prune PLMs
while fine-tuning the remaining weights. In
this work, we argue fine-tuning is redundant
for first-order pruning, since first-order prun-
ing is sufficient to converge PLMs to down-
stream tasks without fine-tuning. Under this
motivation, we propose Static Model Pruning
(SMP), which only uses first-order pruning to
adapt PLMs to downstream tasks while achiev-
ing the target sparsity level. In addition, we
also design a new masking function and train-
ing objective to further improve SMP. Exten-
sive experiments at various sparsity levels show
SMP has significant improvements over first-
order and zero-order methods.Unlike previous
first-order methods, SMP is also applicable to
low sparsity and outperforms zero-order meth-
ods. Meanwhile, SMP is more parameter ef-
ficient than other methods due to it does not
require fine-tuning. Our code is available at
https://github.com/kongds/SMP.

1 Introduction

Pre-trained Language Models (PLMs) like
BERT (Devlin et al., 2019) have shown powerful
performance in natural language processing
by transferring the knowledge from large-scale
corpus to downstream tasks. These models also
require large-scale parameters to cope with the
large-scale corpus in pretraining. However, these
large-scale parameters are overwhelming for most
downstream tasks (Chen et al., 2020), which

† Corresponding Author.

results in significant overhead for transferring and
storing them.

To compress PLM, pruning is widely used by
removing unimportant weights and setting them to
zeros. By using sparse subnetworks instead of the
original complete network, existing pruning meth-
ods can maintain the original accuracy by remov-
ing most weights. Magnitude pruning (Han et al.,
2015) as a common method uses zeroth-order in-
formation to make pruning decisions based on the
absolute value of weights. However, in the pro-
cess of adapting to downstream tasks, the weight
values in PLMs are already predetermined from
the original values. To overcome this shortcoming,
movement pruning (Sanh et al., 2020) uses first-
order information to select weights based on how
they change in training rather than their absolute
value. To adapt PLMs for downstream tasks, most
methods like movement pruning perform pruning
and fine-tuning together by gradually increasing
the sparsity during training. With the development
of the Lottery Ticket Hypothesis (LTH) (Frankle
and Carbin, 2018) in PLMs, some methods (Chen
et al., 2020; Liang et al., 2021) find certain subnet-
works from the PLM by pruning, and then fine-tune
these subnetworks from pre-trained weights. More-
over, if the fine-tuned subnetwok can match the
performance of the full PLM, this subnetwork is
called winning ticket (Chen et al., 2020).

In this work, we propose a simple but efficient
first-order method. Contrary to the previous prun-
ing method, our method adapts PLMs by only prun-
ing, without fine-tuning. It makes pruning deci-
sions based on the movement trend of weights,
rather than actual movement in movement pruning.
To improve the performance of our method, we
propose a new masking function to better align the
remaining weights according to the architecture of
PLMs. We also avoid fine-tuning weights in the
task-specific head by using our head initialization
method. By keeping the PLM frozen, we can save

594

https://github.com/kongds/SMP


half of the trainable parameters compared to other
first-order methods, and only introduce a binary
mask as the new parameter for each downstream
task at various sparsity levels. Extensive experi-
ments on a wide variety of sparsity demonstrate
our methods strongly outperform state-of-the-art
pruning methods. Contrary to previous first-order
methods (Sanh et al., 2020), which show poor per-
formance at low sparsity, our method is also applied
to low sparsity and achieves better performances
than zero-order methods.

2 Related Work

Compressing PLMs for transfer learning is a popu-
lar area of research. Many compression methods
are proposed to solve overparameterized problem
in PLMs, such as model pruning (Han et al., 2015;
Molchanov et al., 2017; Xia et al., 2022), knowl-
edge distillation (Jiao et al., 2020; Wang et al.,
2020), quantization (Shen et al., 2020; Qin et al.,
2022), and matrix decomposition (Lan et al., 2020).
Among them, pruning methods have been widely
studied as the most intuitive approach.

Pruning methods focus on identifying and re-
moving unimportant weights from the model. Zero-
order methods and first-order methods are widely
used to prune PLMs. For zero-order methods, mag-
nitude pruning (Han et al., 2015) simply prunes
based on absolute value of their weights. For
first-order methods, which are based on first-order
Taylor expansion to make pruning decision, L0

regularization (Louizos et al., 2017) adds the L0

norm regularization to decrease remaining weights
by sampling them with hard-concrete distribution.
Movement pruning (Sanh et al., 2020) uses straight-
through estimator (Bengio et al., 2013) to calculate
first-order informantion.

Based on pruning methods, Frankle and
Carbin (2018) proposes Lottery Ticket Hypothe-
sis (LTH). LTH clarifies the existence of sparse
subnetworks (i.e., winning tickets) that can achieve
almost the same performance as the full model
when trained individually. With the development
of LTH, lots of works that focus on the PLMs have
emerged. Chen et al. (2020) find that BERT con-
tains winning tickets with a sparsity of 40% to 90%,
and the winning ticket in the mask language mod-
eling task can be transferred to other downstream
tasks. Recent works also try to leverage LTH to
improve the performance and efficiency of PLM.
Liang et al. (2021) find generalization performance

of the winning tickets first improves and then de-
teriorates after a certain threshold. By leveraging
this phenomenon, they show LTH can successfully
improve the performance of downstream tasks.

3 Background

Let a = Wx refer to a fully-connected layer in
PLMs, where W ∈ Rn×n is the weight matrix,
x ∈ Rn and a ∈ Rn are the input and output
respectively. The pruning can be represented by
a = (W ⊙ M)x, where M ∈ {0, 1}n×n is the
binary mask.

We first review two common pruning methods in
PLMs: magnitude pruning (Han et al., 2015) and
movement pruning (Sanh et al., 2020). Magnitude
pruning relies on the zeroth-order information to
decide M by keeping the top v percent of weights
according to their absolute value M = Topv(S).
The importance scores S ∈ Rn×n is:

S
(T )
i,j =

∣∣∣W (T )
i,j

∣∣∣

=

∣∣∣∣∣Wi,j − αw

∑

t<T

(
∂L

∂Wi,j

)(t)
∣∣∣∣∣

(1)

where S
(T )
i,j is the importance score corresponding

to W
(T )
i,j after T steps update, L and αw are learn-

ing objective and learning rate of Wi,j . Magnitude
pruning selects weights with high absolute values
during fine-tuning.

For movement pruning, it relies on the first-order
information by learning the importance scores S
with gradient. The gradient of S is approximated
with the staight-through estimator (Bengio et al.,
2013), which directly uses the gradient from M.
According to (Sanh et al., 2020), the importance
scores S is:

S
(T )
i,j = −αs

∑

t<T

(
∂L

∂Wi,j

)(t)

W
(t)
i,j (2)

where αs is the learning rate of S. Compared
to magnitude pruning, movement pruning selects
weights that are increasing their absolute value.

To achieve target sparsity, one common method
is automated gradual pruning (Michael H. Zhu,
2018). The sparsity level v is gradually increased
with a cubic sparsity scheduler starting from the
training step t0: vt = vf + (v0 − vf )

(
1− t−t0

N∆t

)3,
where v0 and vf are the initial and target sparsity,
N is overall pruning steps, and ∆t is the pruning
frequency.

595



During training, these methods update both W
and S to perform pruning and fine-tuning simul-
taneously. Since fine-tuned weights stay close to
their pre-trained values (Sanh et al., 2020), the im-
portance scores of magnitude pruning is influenced
by pre-trained values, which limits its performance
at high sparsity. However, magnitude pruning still
outperforms movement pruning at low sparsity.

4 Static Model Pruning

In this work, we propose a simple first-order prun-
ing method called Static Model Pruning (SMP). It
freezes W to make pruning on PLMs more effi-
cient and transferable. Based on movement prun-
ing (Sanh et al., 2020), our importance scores S is:

S
(T )
i,j = −αsWi,j

∑

t<T

(
∂L

∂W ′
i,j

)(t)

(3)

where W ′
i,j is Wi,jMi,j . Since our method freezes

Wi,j , we also keep the binary masking term Mi,j .
Si,j is increasing when Wi,j

∂L
∂W ′

i,j
< 0. For remain-

ing weight W ′
i,j = Wi,j , it means that movement

trending − ∂L
∂W ′

i,j
increases the absolute value of

Wi,j . For removed weight W ′
i,j = 0, it means that

movement trending encourages 0 to close Wi,j .

4.1 Masking Function

To get masks M based on S, we consider two mask-
ing functions according to the pruning structure:
local and global.

For the local masking function, we simply apply
the Topv function to each matrix: M = Topv(S),
which selects the v% most importance weights ac-
cording to S matrix by matrix.

For the global masking function, ranking all im-
portance scores together (around 85M in BERT
base) is computationally inefficient, which even
harms the final performance in section 6.1. To this
end, we propose a new global masking function that
assigns sparsity levels based on the overall score of
each weight matrix. Considering the architecture of
BERT, which has L transformer layers, each layer
contains a self-attention layer and a feed-forward
layer. In lth self-attention block, Wl

Q, Wl
K , Wl

V ,
and Wl

O are the weight matrices we need to prune.
In the same way, Wl

U and Wl
D are the matrices to

be pruned in the lth feed-forward layer. We first
calculate the sparsity level of each weight matrix
instead of ranking all parameters of the network.

The sparsity level of each weight matrix vl(·) is com-
puted as follows:

vl(·) =
R
(
Sl
(·)

)
L

∑L
l′=1R

(
Sl′
(·)

)v (4)

where R(S) =
∑

i,j σ(Si,j) is the regularization
term of S with sigmoid σ, Sl

(·) is the importance
socres of weight Wl

(·), and (·) can be one of
{Q,K, V,O,U,D}. The sparsity level is deter-
mined by the proportion of important scores to the
same type of matrix in different layers.

4.2 Task-Specific Head

Instead of training the task-specific head from
scratch, we initialize it from BERT token embed-
ding and keep it frozen during training. Inspired
by current prompt tuning methods, we initialize
the task-specific head according to BERT token
embeddings of corresponding label words follow-
ing (Gao et al., 2021). For example, we use token
embeddings of “great” and “terrible” to initialize
classification head in SST2, and the predicted pos-
itive label score is h[CLS]eTgreat, where h[CLS] is
the final hidden state of the special token [CLS]
and egreat is the token embeddings of “great”.

4.3 Training Objective

To prune the model, we use the cubic spar-
sity scheduling (Michael H. Zhu, 2018) without
warmup steps. The sparsity vt at t steps is:

vt =

{
vf − vf

(
1− t

N

)3
t < N

vf o.w.
(5)

we gradually increase sparsity from 0 to target spar-
sity vf in the first N steps. After N steps, we
keep the sparsity vt = vf . During this stage, the
number of remaining weights remains the same,
but these weights can also be replaced with the
removed weights according to important scores.

We evaluate our method with and without knowl-
edge distillation. For the settings without knowl-
edge distillation, we optimize the following loss
function:

L = LCE + λR
vt
vf

R (S) (6)

where LCE is the classification loss correspond-
ing to the task and R (S) is the regularization

596



term with hyperparameter λR. Inspired by soft-
movement (Sanh et al., 2020), it uses a regulariza-
tion term to decrease S to increase sparsity with
the thresholding masking function.We find the reg-
ularization term is also important in our method.
Since λR is large enough in our method, the most
important scores in S are less than zero when the
current sparsity level vt is close to vf . Due to the
gradient ∂R(S)

∂Si,j
=

∂σ(Si,j)
∂Si,j

increases with the in-
crease of Si,j when Si,j < 0, scores corresponding
to the remaining weights will have a larger penalty
than removed weights. It encourages the M to be
changed when vt is almost reached or reached vf .

For the settings with knowledge distillation, we
simply add a distillation loss LKD in L following
(Sanh et al., 2020; Xu et al., 2022):

LKD = DKL (ps∥pt) (7)

where DKL is the KL-divergence. ps and pt

are output distributions of the student model and
teacher model.

5 Experiments

5.1 Datasets
To show the effectiveness of our method, we use
three common benchmarks: nature language infer-
ence (MNLI) (Williams et al., 2018), question simi-
larity (QQP) (Aghaebrahimian, 2017) and question
answering (SQuAD) (Rajpurkar et al., 2016) fol-
lowing Sanh et al. Moreover, we also use GLUE
benchmark (Wang et al., 2019) to validate the per-
formance of our method at low sparsity.

5.2 Experiment Setups
Following previous pruning methods, we use
bert-base-uncased to perform task-specific
pruning and report the ratio of remaining weight in
the encode. For the task-specific head, we initial it
according to the label words of each task following
(Gao et al., 2021). For SQuAD, we use “yes” and
“no” token embeddings as the weights for starting
and ending the classification of answers. We freeze
all weights of BERT including the task-specific
head and only fine-tuning mask. The optimizer is
Adam with a learning rate of 2e-2. The hyperpa-
rameter λR of the regularization term is 400. We
set 12 epochs for MNLI and QQP, and 10 epochs
for SQuAD with bath size 64. For tasks at low
sparsity (more than 70% remaining weights), we
set N in cubic sparsity scheduling to 7 epochs. For
tasks at high sparsity, we set N to 3500 steps.

We also report the performance of
bert-base-uncased and roberta-base
with 80% remaining weights for all tasks on
GLUE with the same batch size and learning rate
as above. For sparsity scheduling, we use the
same scheduling for bert-base-uncased and
a linear scheduling for roberta-base. N in
sparsity scheduling is 3500. For the large tasks:
MNLI, QQP, SST2 and QNLI, we use 12 epochs.
For the small tasks: MRPC, RTE, STS-B and
COLA, we use 60 epochs. Note that the above
epochs have included pruning steps. For example,
we use around 43 epochs to achieve target sparsity
in MRPC. We search the pruning structure from
local and global.

5.3 Baseline
We compare our method with magnitude prun-
ing (Han et al., 2015), L0-regularization (Louizos
et al., 2018), movement pruning (Sanh et al., 2020)
and CAP (Xu et al., 2022). We also compare our
method with directly fine-tuning and super tick-
ets (Liang et al., 2021) on GLUE. For super tick-
ets, it finds that PLMs contain some subnetworks,
which can outperform the full model by fine-tuning
them.

5.4 Experimental Results
Table 1 shows the results of SMP and other prun-
ing methods at high sparsity. We implement SMP
with the local masking function (SMP-L) and our
proposed masking function (SMP-S).

SMP-S and SMP-L consistently achieve better
performance than other pruning methods without
knowledge distillation. Although movement prun-
ing and SMP-L use the same local masking func-
tion, SMP-L can achieve more than 2.0 improve-
ments on all tasks and sparsity levels in Table 1.
Moreover, the gains are more significant at 3%
remaining weights. For soft-movement pruning,
which assigns the remaining weights of matrix non-
uniformly like SMP-S, it even underperforms SMP-
L.

Following previous works, we also report the
results with knowledge distillation in Table 1. The
improvement brought by knowledge distillation is
also evident in SMP-L and SMP-S. For example, it
improves the F1 of SQuAD by 3.3 and 4.1 for SMP-
L and SMP-S. With only 3% remaining weights,
SMP-S even outperforms soft-movement pruning
at 10% in MNLI and QQP. Compared with CAP,
which adds contrastive learning objectives from

597



Methods Remaining New Params Trainable MNLI QQP SQuAD
Weights Per Task Params MACC/MMACC ACC/F1 EM/F1

BERTbase 100% 110M 110M 84.5/84.9 91.4/88.4 80.4/88.1

Without Knowledge Distillation

Movement (Sanh et al., 2020) 10% 8.5M + θM 170M 79.3/79.5 89.1/85.5 71.9/81.7
Soft-Movement (Sanh et al., 2020) 10% 8.5M + θM 170M 80.7/81.1 90.5/87.1 71.3/81.5
SMP-L (Our) 10% θM 85M 82.0/82.3 90.8/87.7 75.0/84.3
SMP-S (Our) 10% θM 85M 82.5/82.3 90.8/87.6 75.1/84.6

Movement (Sanh et al., 2020) 3% 2.6M+θM 170M 76.1/76.7 85.6/81.0 65.2/76.3
Soft-Movement (Sanh et al., 2020) 3% 2.6M+θM 170M 79.0/79.6 89.3/85.6 69.5/79.9
SMP-L (Our) 3% θM 85M 80.6/81.0 90.2/87.0 70.7/81.0
SMP-S (Our) 3% θM 85M 80.9/81.1 90.3/87.1 70.9/81.4

With Knowledge Distillation

Movement (Sanh et al., 2020) 50% 42.5M+θM 170M 82.5/82.9 91.0/87.8 79.8/87.6
CAP (Xu et al., 2022) 50% 42.5M+θM 170M 83.8/84.2 91.6/88.6 80.9/88.2
SMP-L (Our) 50% θM 85M 85.3/85.6 91.6/88.7 82.2/89.4
SMP-S (Our) 50% θM 85M 85.7/85.5 91.7/88.8 82.8/89.8

Magnitude (Han et al., 2015) 10% 8.5M+θM 85M 78.3/79.3 79.8/75.9 70.2/80.1
L0-regularization (Louizos et al., 2018) 10% 8.5M+θM 170M 78.7/79.7 88.1/82.8 72.4/81.9
Movement (Sanh et al., 2020) 10% 8.5M+θM 170M 80.1/80.4 89.7/86.2 75.6/84.3
Soft-Movement (Sanh et al., 2020) 10% 8.5M+θM 170M 81.2/81.8 90.2/86.8 76.6/84.9
CAP (Xu et al., 2022) 10% 8.5M+θM 170M 82.0/82.9 90.7/87.4 77.1/85.6
SMP-L (Our) 10% θM 85M 83.1/83.1 91.0/87.9 78.9/86.9
SMP-S (Our) 10% θM 85M 83.7/83.6 91.0/87.9 79.3/87.2

Movement (Sanh et al., 2020) 3% 2.6M+θM 170M 76.5/77.4 86.1/81.5 67.5/78.0
Soft-Movement (Sanh et al., 2020) 3% 2.6M+θM 170M 79.5/80.1 89.1/85.5 72.7/82.3
CAP (Xu et al., 2022) 3% 2.6M+θM 170M 80.1/81.3 90.2/86.7 73.8/83.0
SMP-L (Our) 3% θM 85M 80.8/81.2 90.1/87.0 74.0/83.4
SMP-S (Our) 3% θM 85M 81.8/82.0 90.5/87.4 75.0/84.1

Table 1: Performance at high sparsity. SMP-L and SMP-S refer to our method with local masking function and
our masking function. θM is the size of binary mask M, which is around 2.7M parameters and can be further
compressed.1Since other pruning methods freeze the embedding modules of BERT (Sanh et al., 2020), the trainable
parameters of first-order methods are the sum of BERT encoder (85M), importance scores S (85M) and task-specific
head (less than 0.01M). For zero-order pruning methods like magnitude pruning, the trainable parameters are 85M,
excluding S. Our results are averaged from five random seeds.

teacher models, our method consistently yields sig-
nificant improvements without auxiliary learning
objectives. For 50% remaining weights, SMP-
S in MNLI achieves 85.7 accuracy compared to
84.5 with full-model fine-tuning, while it keeps all
weights of BERT constant.

Our method is also parameter efficient. Com-
pared with other first-order methods, we can save
half of the trainable parameters by keeping the
whole BERT and task-specific head frozen. For
new parameters of each task, it is also an important
factor affecting the cost of transferring and storing
subnetworks. Our method only introduces a binary
mask θM as new parameters for each task at dif-
ferent sparsity levels, while other methods need to
save both θM and the subnetwork. With remaining
weights of 50%, 10%, and 3%, we can save 42.5M,
8.5M, and 2.6M parameters respectively compared

with other pruning methods.
Figure 1 shows more results from 3% remain-

ing weights to 80% by comparing our method with
first-order methods: movement pruning and soft-
movement pruning, and the zero-order pruning
method: magnitude pruning. We report the results
of our method at 3%, 10%, 30%, 50% and 80%
remaining weights. Previous first-order methods
such as movement pruning underperform magni-
tude pruning at remaining weights of more than
25% in MNLI and SQuAD. Even under high spar-
sity level like 20% remaining weights, magnitude
pruning still strongly outperforms both movement
pruning and soft-movement pruning in Figure 1

1For example at 3% remaining weights, we can reduce
the size of θM to approximately 20% of its original size
through compression. This means that merely around 0.55M
new parameters are introduced at 3% remaining weights.
Additionally, the compressed θM can be found at https:
//github.com/kongds/SMP/releases.

598

https://github.com/kongds/SMP/releases
https://github.com/kongds/SMP/releases


(a) MNLI (b) QQP (c) SQuAD

(d) MNLI + KD (e) QQP + KD (f) SQuAD + KD

Figure 1: Comparison of different pruning methods from 3% remaining weights to 80%. The black dashed line in
the figures indicates the result of fine-tuned BERT. SMvP, MvP and MaP refer to soft-movement pruning, movement
pruning and magnitude pruning, respectively. KD represents the results with knowledge distillation. We report
the results of our method on 3%, 10%, 30%, 50%, 70%, and 80% remaining weights. Our method constantly
outperforms other methods from low sparsity to high.

Remaining New Params MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B
Weights Per Task MACC ACC ACC MCC ACC ACC ACC P Corr Avg.

BERT 100% 110M 84.5 92.9 87.7 58.1 92.0 91.4 71.1 91.2 83.6
SuperT 86.8% 98M + θM 84.5 93.4 86.2 58.8 91.3 91.3 72.5 89.8 83.5
SMP (Our) 80% θM 85.0 92.9 87.0 61.5 91.5 91.4 72.3 89.6 83.9
RoBERTa 100% 125M 87.6 94.8 90.2 63.6 92.8 91.9 78.7 91.2 86.4
SMP (Our) 80% θM 87.6 94.9 89.9 65.4 92.8 91.9 81.5 91.1 86.9

Table 2: Performance on GLUE development. Our results are averaged from five random seeds. The results of
SuperT are from (Liang et al., 2021), and the remaining weights and new parameters per task in SuperT are averaged
over all tasks. Note all results are from the setting without knowledge distillation for a fair comparison.

(c). This shows the limitation of current first-order
methods that performing ideally only at very high
sparsity compared to zero-order pruning methods.
However, SMP-L and SMP-S as first-order meth-
ods can constantly show better performance than
magnitude pruning at low sparsity. For the results
without knowledge distillation, SMP-S and SMP-
L achieve similar performance of soft-movement
pruning with much less remaining weights. Consid-
ering to previous LTH in BERT, we find SMP-S can
outperform full-model fine-tuning at a certain ratio
of remaining weights in Figure 1 (a), (b) and (c),
indicating that BERT contains some subnetworks
that outperform the original performances without
fine-tuning. For the results with knowledge distilla-

tion, SMP-S and SMP-L benefit from knowledge
distillation at all sparsity levels. After removing
even 70% weights from the encoder, our method
still strongly outperforms full-model fine-tuning.

We also validate our method on GLUE and re-
port the results at 80% remaining weights in Ta-
ble 2. Compared to full-model fine-tuning, our
method achieves better performance on two PLMs
by only removing 20% parameters in the encoder
while keeping the remaining parameters unchanged.
Compared to SuperT, which searches 8 different
sparsity levels for each task, our method achieves
better performance by using the same sparsity lev-
els. In addition, our method also saves more than
98M new parameters per task compared to SuperT.

599



Masking MNLI SQuAD

Function 80% 10% 3% 80% 10% 3%

T σ(S(·)
l) > τ N/A N/A N/A N/A N/A N/A

G S(·)
l ≥ Sv 85.0 81.0 80.1 88.2 83.1 79.3

L Topv(S(·)
l) 84.8 82.0 80.6 88.0 84.3 81.0

S Topvl
(·)
(S(·)

l) 85.0 82.5 80.9 88.3 84.6 81.4

Table 3: Influence of different masking functions. We
report the results in MNLI and SQuAD with 80%, 10%
and 3% remaining weights. N/A means that our method
with corresponding masking function fails to converge
in our setting. Masking function is to transform S(·) to
the binary mask Ml

(·) of Wl
(·). T refers to the threshold-

ing masking function following (Sanh et al., 2020), and
τ is the threshold. G and L are global and local masking
functions, and Sv is the smallest value in the top v%
after sorting all S together. S refers to our proposed
masking function, and vl(·) is from Eq. 4.

6 Analysis

6.1 Masking Function
In this section, we discuss the influence of different
masking functions. Table 3 shows the results of
different masking functions on our method with-
out knowledge distillation. Contrary to previous
pruning methods, the thresholding masking func-
tion T fails to converge in our method due to the
difficulty in controlling the sparsity during train-
ing. For global masking function G, we sort all
85M BERT encoder weights and remain Top v%
weights in each training step. Compared to local
masking functions L, G takes more than twice the
training times due to the computational cost of sort-
ing 85M weights. Although it took the longest
to train, it still underperforms L at 10% and 3%
remaining weights. Contrary to G, our proposed
masking function S outperforms L without addi-
tional training time since S directly assigns the
remaining weights of each matrix. More results of
masking functions S and L are also available in
Table 1 and Figure 1.

Figure 2 displays the distribution of remaining
weights in different layers in MNLI with 10% re-
maining weights. We find G assigns too many re-
maining weights for WU and WV , which are four
times larger than other matrices. It causes other
weight matrices such as WQ to be more sparse
than S and L. Following previous studies (Sanh
et al., 2020; Mallya and Lazebnik, 2018), we also
find that overall sparsity tends to increase with the

(a) WQ (b) WK

(c) WV (d) WO

(e) WU (f) WD

(g) Overall

Figure 2: Distribution of remaining weights correspond-
ing to each layer. Overall refers to the overall remaining
weights of each layer. W(·) is the remaining weights
for each weight matrix in BERT encoder. L, G and S in
figures refer to the masking functions following Table 3.

depth of the layer. However, only WU and WV

follow this pattern in all three matrices. Since WU

and WV occupy more than 60% of the weight in
each layer, it causes the overall distribution of each
layer also follows their trend as well.

To understand the behavior of attention heads,
we also display the remaining weights ratio of each
head in Figure 3. Each row represents a matrix
containing 12 heads. Due to space limitation and
the similar distribution between WQ and WK , we
only show WQ and WV . Instead of assigning spar-
sity uniformly to each head, the sparsity of each
head is not uniform in three masking functions,
with most heads having only below 1% or below
remaining weights. Furthermore, three masking

600



Figure 3: Remaining weights ratio per attention head of
WQ and WV in MNLI with 10% remaining weights.
Each cell refers to the remaining weights ratio of the
corresponding attention head. The darker the color, the
higher the ratio of remaining weight. L, G and S in
figures refer to the masking functions following Table 3.

functions show similar patterns even with differ-
ent ways of assigning remaining weights. For our
masking function S, S can assign more remaining
weights to important heads compared to L, and
some heads in WQ achieve more than 60% re-
maining weights at 9th layer. For global masking
function G, due to most of remaining weights being
assigned to WU and WD, the average remaining
weights ratio of WQ and WV in G are only 3.2%
and 2.8%, which causes G to underperform other
masking functions.

6.2 Task-Specific Head

To validate the effectiveness of our task-specific
head initialization method, we compare it with
training from scratch.

MNLI SQuAD

80% 10% 3% 80% 10% 3%

From scratch 84.6 81.7 80.5 87.5 84.2 80.7
Initialization 84.8 82.0 80.6 88.0 84.3 81.0

Table 4: Influence of different task-specific head meth-
ods. “From scratch” refers to training head from scratch
following previous pruning methods. “Initialization”
refers to our initialization method.

Table 4 shows the results of SMP-L in MNLI and
SQuAD with 80%, 10% and 3% remaining weights.
For training from scratch, we randomly initial the
head and fine-tune it with the learning rate of 3e-
5 following previous pruning methods. Results
show our method achieves better performance with
task-specific heads frozen.

6.3 Training Objective
Regularization term in training objective is a key
factor for our method. We find that our method
is hard to converge at high sparsity without regu-
larization term R in Table 5. With the increase of
sparsity, the performance gap between with and
without R sharply increases. SMP-L without R
even fails to converge at 10% and 3% remaining
weights in SQuAD.

MNLI SQuAD

80% 10% 3% 80% 10% 3%

SMP-L 84.8 82.0 80.6 88.0 84.3 81.0
w/o R 84.2 80.1 69.2 86.6 N/A N/A

Table 5: Influence of regularization term. R refers to the
regularization term. N/A refers to unable convergence.

As analyzed in section 4.3, we find the remain-
ing weights in attention heads are more uniform
without R. For example, the standard deviation of
remaining weights in each attention head is 3.75
compared to 12.4 in SMP-L with R in MNLI with
10% remaining weights. In other words, without
R, it cannot assign more remaining weights to im-
portant heads as in Figure 3.

7 Conclusion

In this paper, we propose a simple but effective
task-specific pruning method called Static Model
Pruning (SMP). Considering previous methods,
which perform both pruning and fine-tuning to
adapt PLMs to downstream tasks, we find fine-
tuning can be redundant since first-order pruning al-
ready converges PLMs. Based on this, our method

601



focuses on using first-order pruning to replace fine-
tuning. Without fine-tuning, our method strongly
outperforms other first-order methods. Extensive
experiments also show that our method achieves
state-of-the-art performances at various sparsity.
For the lottery ticket hypothesis in BERT, we find
it contains sparsity subnetworks that achieve origi-
nal performance without training them, and these
subnetworks at 80% remaining weights even out-
perform fine-tuned BERT on GLUE.

8 Limitation

Like all unstructured pruning methods, SMP is hard
to achieve inference speedup compared to struc-
tured pruning methods. Since SMP prunes model
without fine-tuning, this also limits the extension
of SMP to structured pruning methods. However,
we find that most rows of the sparsity matrices
in SMP are completely pruned at high sparsity
level. This allows us to directly compress the size
of matrices, resulting in faster inference. For ex-
ample, the 3% remaining weights model of MNLI
can be compressed to 47.43% of the model actual
size (resulting in around 1.37× inference speedup)
without retraining or performance loss. By remov-
ing rows of matrices that contain less than 10 re-
maining weights, we can further compress it to
25.19% actual size (1.76× inference speedup) with
0.9 accuracy drop. We expect that a carefully de-
signed loss function during training could result in
even smaller actual model size and faster inference
speedup, which we leave it in the future.

9 Acknowledgments

The research work is supported by the National
Key Research and Development Program of China
under Grant No. 2021ZD0113602, the National
Natural Science Foundation of China under Grant
Nos. 62276015, 62176014, the Fundamental Re-
search Funds for the Central Universities.

References
Ahmad Aghaebrahimian. 2017. Quora question answer

dataset. In International Conference on Text, Speech,
and Dialogue, pages 66–73. Springer.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
2013. Estimating or propagating gradients through
stochastic neurons for conditional computation.
arXiv preprint arXiv:1308.3432.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Si-
jia Liu, Yang Zhang, Zhangyang Wang, and

Michael Carbin. 2020. The lottery ticket hypoth-
esis for pre-trained BERT networks. Advances
in Neural Information Processing Systems, 2020-
December(NeurIPS):1–13.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jonathan Frankle and Michael Carbin. 2018. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. ACL-IJCNLP 2021 - 59th Annual Meeting
of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural
Language Processing, Proceedings of the Conference,
pages 3816–3830.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. In Advances in Neural In-
formation Processing Systems (NeurIPS).

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
TinyBERT: Distilling BERT for natural language
understanding. In Findings of the Association for
Computational Linguistics: EMNLP 2020.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Confer-
ence on Learning Representations (ICLR).

Chen Liang, Simiao Zuo, Minshuo Chen, Haoming
Jiang, Xiaodong Liu, Pengcheng He, Tuo Zhao, and
Weizhu Chen. 2021. Super tickets in pre-trained lan-
guage models: From model compression to improv-
ing generalization. ACL-IJCNLP 2021 - 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing, Proceedings of the
Conference, (Figure 1):6524–6538.

Christos Louizos, Max Welling, and Diederik P Kingma.
2017. Learning sparse neural networks through l_0
regularization. arXiv preprint arXiv:1712.01312.

Christos Louizos, Max Welling, and Diederik P. Kingma.
2018. Learning sparse neural networks through l0
regularization. In International Conference on Learn-
ing Representations (ICLR).

Arun Mallya and Svetlana Lazebnik. 2018. Piggyback:
Adding multiple tasks to a single, fixed network by
learning to mask. ArXiv, abs/1801.06519.

602

http://arxiv.org/abs/2007.12223
http://arxiv.org/abs/2007.12223
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.18653/v1/2021.acl-long.510
https://doi.org/10.18653/v1/2021.acl-long.510
https://doi.org/10.18653/v1/2021.acl-long.510
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=H1Y8hhg0b


Suyog Gupta Michael H. Zhu. 2018. To prune, or not to
prune: Exploring the efficacy of pruning for model
compression. In International Conference on Learn-
ing Representations (ICLR).

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo
Aila, and Jan Kautz. 2017. Pruning convolutional
neural networks for resource efficient inference. In
International Conference on Learning Representa-
tions (ICLR).

Haotong Qin, Yifu Ding, Mingyuan Zhang, Qinghua
Yan, Aishan Liu, Qingqing Dang, Ziwei Liu, and
Xianglong Liu. 2022. BiBERT: Accurate Fully Bina-
rized BERT. arXiv preprint arXiv, pages 1–24.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In EMNLP.

Victor Sanh, Thomas Wolf, and Alexander M. Rush.
2020. Movement pruning: Adaptive sparsity by fine-
tuning. Advances in Neural Information Processing
Systems, 2020-Decem(NeurIPS):1–14.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W. Mahoney, and Kurt
Keutzer. 2020. Q-bert: Hessian based ultra low pre-
cision quantization of bert. Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI).

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Inter-
national Conference on Learning Representations
(ICLR).

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. In Advances in Neural
Information Processing Systems (NeurIPS).

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In NAACL.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. 2022.
Structured pruning learns compact and accurate mod-
els. arXiv preprint arXiv:2204.00408.

Runxin Xu, Fuli Luo, Chengyu Wang, Baobao Chang,
Jun Huang, Songfang Huang, and Fei Huang. 2022.
From dense to sparse: Contrastive pruning for bet-
ter pre-trained language model compression. In
Thirty-Sixth AAAI Conference on Artificial Intelli-
gence (AAAI).

A Standard Deviation of Tasks

We also report our standard deviation of tasks from
5 random runs in Table 6 and 7.

with KD without KD

50% 10% 3% 10% 3%
MNLI SMP-L 0.17 0.26 0.19 0.27 0.20

MACC std. SMP-S 0.13 0.24 0.30 0.25 0.28
QQP SMP-L 0.04 0.01 0.08 0.06 0.01

ACC std. SMP-S 0.02 0.03 0.02 0.01 0.02
SQuAD SMP-L 0.17 0.09 0.03 0.36 0.01
F1 std. SMP-S 0.10 0.07 0.02 0.42 0.07

Table 6: Standard deviation of Table 1

SMP(BERT) SMP(RoBERTa)
MNLI 0.15 0.12
QNLI 0.15 0.11
QQP 0.03 0.14
SST2 0.36 0.28

MRPC 1.21 0.44
COLA 0.69 0.65
STSB 0.14 0.16
RTE 1.59 0.74

Table 7: Standard deviation of Table 2

603

https://openreview.net/forum?id=S1lN69AT-
https://openreview.net/forum?id=S1lN69AT-
https://openreview.net/forum?id=S1lN69AT-
http://arxiv.org/abs/2203.06390
http://arxiv.org/abs/2203.06390
http://arxiv.org/abs/2005.07683
http://arxiv.org/abs/2005.07683
https://doi.org/10.1609/aaai.v34i05.6409
https://doi.org/10.1609/aaai.v34i05.6409
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://proceedings.neurips.cc/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Left blank.

� A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Left blank.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �7 Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
No response.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
No response.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C �3 Did you run computational experiments?
Left blank.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Left blank.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

604

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Left blank.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Left blank.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Left blank.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

605


