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Abstract

Real-world data often have an open long-tailed
distribution, and building a unified QA model
supporting various tasks is vital for practical
QA applications. However, it is non-trivial to
extend previous QA approaches since they ei-
ther require access to seen tasks of adequate
samples or do not explicitly model samples
from unseen tasks. In this paper, we define
Open Long-Tailed QA (OLTQA) as learning
from long-tailed distributed data and optimiz-
ing performance over seen and unseen QA
tasks. We propose an OLTQA model that en-
courages knowledge sharing between head, tail
and unseen tasks, and explicitly mines knowl-
edge from a large pre-trained language model
(LM). Specifically, we organize our model
through a pool of fine-grained components
and dynamically combine these components
for an input to facilitate knowledge sharing.
A retrieve-then-rerank frame is further intro-
duced to select in-context examples, which
guild the LM to generate text that express
knowledge for QA tasks. Moreover, a two-
stage training approach is introduced to pre-
train the framework by knowledge distillation
(KD) from the LM and then jointly train the
frame and a QA model through an adaptive
mutual KD method. On a large-scale OLTQA
dataset we curate from 43 existing QA datasets,
our model consistently outperforms the state-
of-the-art. We release the code and data
at https://github.com/AlibabaResearch/
DAMO-ConvAI/tree/main/oltqa.

1 Introduction

Real-world data often have a long-tailed and open-
ended distribution (Liu et al., 2019b). As a cor-
nerstone for AI applications (Yang et al., 2019),
Question Answering (QA) is widely investigated to
tackle various QA tasks involving diverse formats
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and domains (Khashabi et al., 2020b; Zhong et al.,
2022a). The frequency distribution of QA tasks
in our daily life is long-tailed (Reed, 2001), with
a few head tasks of adequate samples and many
more tail tasks of limited samples, and we continu-
ously encounter new tasks that are not seen during
training in an open world.

We formally study Open Long-Tailed QA
(OLTQA) emerging in natural data settings. A
practical QA system shall learn from long-tailed
distributed data, i.e., a few head tasks and many
tail tasks, and it is expected to perform well over
a balanced test set which include head, tail, and
unseen tasks.

OLTQA must handle not only few-shot learning
for tail tasks in the closed world (Shu et al., 2017),
but also zero-shot learning for unseen tasks in an
open world (Scheirer et al., 2012) with one unified
model. A major challenge for OLTQA is the lack of
knowledge required for the language understanding
and reasoning abilities of QA tasks, especially un-
der such low resource conditions (Yan et al., 2020).
Therefore, it is important for an OLTQA model to
share knowledge between head, tail, and unseen
QA tasks (Zaremoodi et al., 2018), and mine knowl-
edge from external resources (Liu et al., 2022b).

However, it is non-trivial to directly extend previ-
ous methods to the OLTQA setting. Specifically, an
effective implementation of knowledge sharing is
the multi-task learning (MTL) approach (Liu et al.,
2019a; Raffel et al., 2020), in which task-specific
components are maintained to preserve learned
knowledge (Aghajanyan et al., 2021; Karimi Ma-
habadi et al., 2021). As we constantly encounter
new tasks in practice, it is challenging to directly
apply MTL methods since they do not explicitly
model samples from unseen tasks.

Another challenge is the absence of samples
from unseen tasks in the training process, which
leads to poor prior knowledge about unseen tasks.
Fortunately, a large pre-trained language model
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(LM) embeds broad-coverage knowledge that can
help a variety of tasks (Rubin et al., 2022). One
key ingredient in LM knowledge mining is to select
demonstrative in-context examples, which guild
the LM to generate text that express knowledge
for downstream tasks (Liu et al., 2022a). However,
few studies have explored selecting in-context ex-
amples to directly optimize QA performance in the
OLTQA setting.

In this study, we propose an OLTQA model to ad-
dress challenges mentioned above for the OLTQA
setting. Specifically, to encourage knowledge shar-
ing between head and tail tasks while acknowledg-
ing the emergence of unseen tasks, we organize
our model at the instance-level and use a dynamic
architecture for each input (Wiwatcharakoses and
Berrar, 2020), i.e., a pool of fine-grained compo-
nents are maintained and dynamically combined in
each forward pass based on the input (Wang et al.,
2021). This scheme tackles unseen tasks, since
the learned knowledge is distributed into different
model components (Trauble et al., 2022).

We further mine knowledge from a large pre-
trained LM. Concretely, we employ a retrieve-then-
rerank frame (Ren et al., 2021) to select demonstra-
tive in-context examples for a test instance, which
guide the LM to decode the output (Brown et al.,
2020). The LM outputs are viewed as hints for
QA tasks (Zhang and Wan, 2022) and leveraged
for improving QA performance. The retrieve-then-
rerank frame consists of an efficient retriever and
an effective re-ranker (Zamani et al., 2022), which
is optimized by a two-stage training approach. The
first stage pre-trains the retrieve-then-rerank frame-
work by knowledge distillation from a pre-trained
LM (Izacard et al., 2022). The second stage jointly
train the above framework and an encoder-decoder
QA model through adaptive mutual knowledge dis-
tillation (Xie and Du, 2022) to allow information
exchange between each other. Our key contribu-
tions are summarized as follows:

• We formally define the OLTQA task, which
learns from natural long-tail distributed data
and optimizes the performance over seen and
unseen tasks. We curate a large OLTQA
dataset according to a long-tail distribution
from 43 existing representative QA datasets.

• We propose an OLTQA model, consisting of
knowledge sharing and knowledge mining
components to address challenges of OLTQA.

An instance-level knowledge sharing mecha-
nism is introduced, and a retrieve-then-rerank
frame is employed to mine knowledge from
a large pre-trained LM through a novel two-
stage knowledge distillation training process.

• Our extensive experimentation on the OLTQA
dataset demonstrates that our model consis-
tently outperforms the state-of-the-art.

2 Related Work

Question Answering (QA) is important for ad-
vanced AI applications (Yang et al., 2019). Re-
cent approaches try to build unified QA models by
casting different QA tasks into a unified text-to-
text format (McCann et al., 2019; Khashabi et al.,
2020b; Zhong et al., 2022a). Some works try to
improve QA performance under the low-resource
conditions (Yan et al., 2020; Van et al., 2021; Bai
et al., 2022). Some approaches also attempt to
solve the open-domain QA problem, aiming at an-
swering general domain questions through an ex-
tensive collection of documents (Voorhees et al.,
1999; Chen et al., 2017; Singh et al., 2021; Cheng
et al., 2021). These approaches do not learn from
natural long-tail distributed data.

Long-Tailed Learning focuses on long-tail
distributed data (Liu et al., 2019b). Recent
approaches for long-tailed learning include re-
balancing (Zhang et al., 2021), information aug-
mentation (He et al., 2021), and module improve-
ment (Cui et al., 2021). In this study, we attempt
to build a QA model from long-tail distributed data
by knowledge sharing and knowledge mining.

Knowledge Mining from external resources is
essential for building robust QA models (Pan et al.,
2019). Wikipedia and knowledge bases are used to
improve QA performance (Bi et al., 2019; Baner-
jee et al., 2019). Large pre-trained LMs store rich
knowledge, which is used to solve various tasks
via conditioned generation (Petroni et al., 2019).
Recent approaches build prompt retrievers to select
in-context examples from a training set to optimize
LM generation performance (Rubin et al., 2022).
However, these approaches cannot directly opti-
mize our OLTQA model. In this study, we jointly
train a retrieve-then-rerank framework and a QA
model to enhance QA performance.

Knowledge distillation (KD) is often employed
to learn a student model using the knowledge dis-
tilled from a teacher model by enforcing the agree-
ment of outputs between the two models (Hin-
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ton et al., 2015). Mutual KD helps a group of
models mutually generate knowledge to train each
other (Zhao and Han, 2021). Our OLTQA model
jointly trains the retrieve-then-rerank frame and the
QA model through adaptive mutual KD, encourag-
ing them to collaborate with each other (Xie and
Du, 2022).

3 Method

3.1 Problem Setup

In this study, we aim to learn from n QA tasks
{T1, · · · , Tn}, in which training sets follow a long-
tailed Zipf distribution with power value α, i.e.,
a few head tasks of adequate samples and many
tail tasks of limited samples. Each sample of Ti

is a tuple of a context c, a question q, and an
answer a: ⟨c, q,a⟩. Our QA model F is built
to predict a based on c and q. We also con-
sider a more challenging setting in an open world,
i.e., model F needs to predict answers for unseen
tasks. Therefore, we collect another ñ unseen tasks
{Tn+1, · · · , Tn+ñ} that are only used for testing.

3.2 Overview

Our model tackles the open long-tailed QA
problem by training a prompt-enhanced encoder-
decoder QA model F on long-tailed distributed
data. There are mainly two challenges to be ad-
dressed: (1) How to alleviate the low-resource prob-
lem and share knowledge between head, tail, and
unseen tasks; (2) How to mine knowledge from ex-
ternal resources. These two issues are tackled with
two key ingredients in our model (see Figure 1): 1.
An instance-level knowledge sharing method (Sec-
tion 3.3); 2. A knowledge mining method from a
pre-trained language model (Section 3.4).

We follow previous approaches to serialize
the context c, question q, and answer a into text
sequences (Khashabi et al., 2020b; Zhong et al.,
2022b). For each training sample ⟨c, q,a⟩, we first
construct a prompt P based on c and q, and then
the encoder takes in the concatenation of P , c, and
q and the decoder predicts a, i.e., p(a|[P; c; q]),
where [; ] denotes the sequence concatenation
operation. Specifically, P is a concatenation of
two kinds of prompts, i.e., a meta prompt Pm and
a knowledge prompt Pk. To capture fine-grained
knowledge distributed in each input sample, we
maintain s meta prompts {P i

m}si=1 and dynami-
cally combine these prompts based on c and q to
obtain Pm (Wang et al., 2021). We associate a key

vector ki
m for each meta prompt P i

m, respectively.
A fixed query function h is built to map c and q
to a query vector x = h(c, q). h is initialized by a
fixed pre-trained LM and not tuned in the training
phase. Pm can be determined by retrieving the
most similar key vectors ki

m using x. Note that Pm

is a soft prompt, i.e., a sequence of trainable em-
beddings that is randomly initialized and optimized
when training QA model F (Liu et al., 2021).

We also mine knowledge from a large pre-trained
LM g to construct knowledge prompt Pk. Liu
et al. (2022a) showed that the efficacy of output
generated by an LM could vary widely depend-
ing on the choice of in-context examples. In this
study, we introduce a retrieve-then-rerank frame-
work ⟨R1, R2⟩ (Ren et al., 2021) to select in-
context examples from a training set Dtr, consist-
ing of a retriever R1 and a re-ranker R2 (Zamani
et al., 2022). The retriever R1 is implemented as an
efficient dual-encoder (Xiong et al., 2021). The
re-ranker R2 is built as a more effective cross-
encoder (Luan et al., 2021). For a test instance
⟨c, q⟩, we mine knowledge following three steps:
1. R1 retrieves a subset of l candidate examples
{ei = ⟨ci, qi,ai⟩}li=1 from training set Dtr; 2.
LM g produces a text hi for each example ei by
conditional generation pg(hi|[ei; c; q]), which can
serve as a hint for the test instance; 3. R2 further
select top l̃ hints {hi}l̃i=1 to obtain the knowledge
prompt Pk (l̃ ≪ l), in which the scoring function
measures the similarity between ⟨c, q⟩ and ⟨ei,hi⟩.
Note that Pk is a hard prompt (Jiang et al., 2020),
which is a concatenation of texts in {hi}l̃i=1.

3.3 Instance-level Knowledge Sharing

To facilitate knowledge sharing between head, tail,
and unseen tasks at the instance level, we main-
tain a pool of prompts and optimize key vectors
assigned to these prompts. Specifically, for each in-
put ⟨c, q⟩, we select s̃ prompt keys that are closest
to the query vector x = h(c, q) and concatenate
these s̃ associated meta prompts to obtain Pm. In-
tuitively, the knowledge associated with the input
sample is distributed in these s̃ meta prompts.

When learning meta prompt keys, we assume
the distribution of these keys should balance di-
versity and locality. Concretely, meta prompts are
expected to distribute to the whole vector space so
that every meta prompt can be involved in the train-
ing process, while similar prompt keys are grouped
into clusters so that the knowledge of each sample
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Figure 1: Two key ingredients introduced in our model:(a) Knowledge sharing between head, tail, and unseen tasks
at the instance level by maintaining a pool of prompts {Pi

m}si=1; (b) Knowledge mining from a pre-trained LM g
using a retrieve-then-rerank framework.

can be better shared. We propose the following loss
to enforce the above two properties:

Lm = E
⟨c,q,a⟩∈Dtr

(
∑

i∈S(x)
max(0, ||ki

m,x|| − η)

+
∑

i,j∈S(x)
max(0, γ − ||ki

m,kj
m||)/s̃2),

(1)
where the operator ||·, ·|| determines the distance
between two input vectors (here we use cosine dis-
tance), Dtr is the training set of all seen tasks,
S(x) is the index set of s̃ selected meta prompt
keys that are closest to x, η and γ are scalar hyper-
parameters to control the distance margin. Specif-
ically, the first term in the above equation pulls
these selected meta prompt keys around the query
vector. The second term pushes these keys away
from each other to occupy the whole vector space.

3.4 Pre-trained LM Knowledge Mining

To further enhance QA performance, we also mine
knowledge from a large pre-trained LM g. We
employ a retrieve-then-rerank framework ⟨R1, R2⟩
to retrieve in-context examples from a training set
Dtr and further select hints for the test instance that
are generated by LM g. We propose a two-stage
knowledge distillation method to jointly train the
framework ⟨R1, R2⟩ and QA model F .

Stage I. We pre-train R1 and R2 by knowledge
distillation from a pre-trained LM g, inspired by

Rubin et al. (2022). We first construct a set of c
candidate examples {ei = ⟨ci, qi,ai⟩}ci=1 for a
traning instance ⟨c, q,a⟩ with BM25 (Robertson
et al., 2009) . Then, we score each candidate ex-
ample ei and calculate a distribution of candidate
examples by applying the Softmax operator over
the resulting scores, based on scoring functions of
LM g, R1, and R2, respectively. Specifically, the
distribution for the LM g scoring function is:

plm(ek) =
exp(log(pg(a|[ek; c; q])))∑c
i=1 exp(log(pg(a|[ei; c; q])))

,

where pg(a|[ek; c; q]) is the score for candidate
ek, which is the probability under LM g of output
sequence conditioned on the candidate example
and the training instance. In a similar manner, we
calculate distributions pr1 and pr2 based on scoring
functions of R1 and R2, respectively. We optimize
R1 and R2 by minimizing KL-divergence of plm
from pr1 and pr2 (Izacard et al., 2022):

Llm = E
⟨c,q,a⟩∈Dtr

(KL(⊣ [plm]∥pr1)

+ KL(⊣ [plm]∥pr2)),
(2)

where ⊣ [·] is a stopgrad operator that sets the
gradient of its operand to zero.

Stage II. We jointly train ⟨R1, R2⟩ and the QA
model F . For each training sample ⟨c, q,a⟩, we
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first construct prompt Pm and Pk, and then opti-
mize the encoder-decoder QA model F together
with Pm using the following loss:

Lf = E
⟨c,q,a⟩∈Dtr

(− log pF (a|[Pm;Pk; c; q])).

(3)
To allow information exchange and encourage

agreement between ⟨R1, R2⟩ and QA model F ,
mutual knowledge distillation is introduced to re-
fine R1, R2, and F by knowledge distillation from
each other (Zhao and Han, 2021). However, in this
case, a worse-performing model is allowed to gen-
erate knowledge to train a better-performing model,
which may lead to collective failures (Xie and Du,
2022). Therefore, we propose an adaptive mutual
knowledge distillation method to allow a model
to generate knowledge for training another model
only if it performs better.

Therefore, we evaluate the performance of R1,
R2, and F on a validation set Dval before mu-
tual knowledge distillation. Specifically, we se-
lect top l̃ hints {hi}l̃i=1 from the c candidate ex-
amples {ei}ci=1 of a validation instance ⟨c, q,a⟩
based on scoring functions of R1, R2, F , and then
obtain knowledge prompt Pr1

k , Pr2
k and Pf

k , re-
spectively. The scoring function of QA model F is
pF (a|[Pm;hi; c; q]), where hi is a hint for exam-
ple ei and acts as a pseudo knowledge prompt. We
evaluate R1, R2, and F as follows:

vi = E
⟨c,q,a⟩∈Dval

log pF (a|[Pm;P i
k; c; q]), (4)

where i ∈ {r1, r2, f} denotes a specific model.
Lastly, we optimize the adaptive mutual knowledge
distillation loss as follows:

Lmkd = E
⟨c,q,a⟩∈Dtr

∑

i,j∈{r1,r2,f}
KL(⊣ [pi]∥pj) · I(vi > vj),

(5)

where pf is the distribution of candidate examples
based on the scoring function of QA model F .

The whole training process of our model is sum-
marized in Algorithm 1.

4 Experiments

4.1 Datasets
We curate an open long-tailed question answer-
ing benchmark from 43 existing representative QA
datasets (Khashabi et al., 2022) covering four QA
formats (Extractive QA, Abstractive QA, Multiple-
choice QA, and Yes/No QA). See Appendix A for

Algorithm 1: The training process
Input: Training data Dtr, validation data

Dval.
Output: QA model F , meta prompts

{P i
m}si=1, prompt keys {ki

m}si=1,
framework ⟨R1, R2⟩.

// Stage I
1 Train R1 and R2 using Llm (Eq. 2).
// Stage II

2 Train {ki
m}si=1 using Lm (Eq. 1).

3 Train F and {P i
m}si=1 using Lf (Eq. 3).

4 Evaluate R1, R2 and F (Eq. 4).
5 Train R1, R2, F , {P i

m}si=1 using Lmkd (Eq.
5).
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Figure 2: Training dataset statistics of long-tailed QA
tasks. Blue bars represent the original dataset sizes of
21 seen tasks and orange bars denote down-sampled
dataset sizes.

more details of the datasets. We regard each dataset
as an individual QA task and reserve ñ = 22 as
unseen tasks. Our model is trained on the rest of
n = 21 seen tasks while tested on all 43 tasks.
We down-sample the training sets of all seen tasks
following a Zipf distribution with power value
α = 2.0 to construct the training data for our model.
Figure 2 shows the training data statistics.

4.2 Metrics

The evaluation metric of each above task fol-
lows Khashabi et al. (2022) (see more details in Ap-
pendix A). We calculate the average performances
over 21 seen tasks (Aseen) and 22 unseen tasks
(Aunseen) to evaluate the QA performance. We also
calculate the average scores over a subset of seen
tasks with m largest training sets (Head@m) and
n smallest training sets (Tail@n) to evaluate the
performance of head and tail tasks, respectively.
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Methods SQuAD 2 NatQA RACE ARC-easy MCTest ARC-hard MultiRC Head@3 Tail@4 Aseen

UnifiedQA 77.80 40.25 56.97 36.84 77.19 31.77 80.45 58.34 56.56 55.21
ProQA 79.84 39.01 59.55 44.21 80.00 38.13 77.56 59.47 59.98 53.23
Muppet 79.41 40.83 57.13 38.07 79.06 31.34 85.57 59.12 58.51 56.13
Hyperformer++ 79.52 40.24 58.24 40.18 76.88 31.10 86.86 59.33 58.76 56.81
EPR 44.14 39.50 38.82 51.81 55.00 39.80 56.41 40.82 50.76 47.97

Ours (w/o Pm) 77.72 42.10 58.13 56.49 83.02 39.46 85.58 59.32 66.14 59.60
Ours (w/o Pk) 78.89 40.20 59.34 39.82 76.25 33.11 85.90 59.48 58.77 56.51
Ours 79.99 42.68 59.65 58.95 83.75 40.43 87.82 60.77 67.74 61.48

Table 1: Comparison with competitive baselines and ablations on main components of our model in seven seen
tasks (3 head tasks + 4 tail tasks). Bold numbers are superior results.

Methods AdversarialQA RACE-C MMMLU OneStopQA MCScript DREAM PubmedQA AunseendRoberta Advanced

UnifiedQA 18.16 49.86 28.77 54.01 67.97 59.56 50.53 46.70
ProQA 14.21 54.91 25.96 61.11 71.23 64.41 58.00 48.27
Muppet 17.33 50.00 30.42 54.79 70.91 58.61 56.73 46.98
Hyperformer++ 16.99 52.11 25.26 59.88 71.51 59.31 53.00 47.21
EPR 27.74 35.39 28.77 60.49 65.56 53.92 59.67 46.57

Ours (w/o Pm) 25.16 53.51 33.68 61.11 77.46 68.28 62.07 52.09
Ours (w/o Pk) 17.12 53.23 31.23 56.70 70.80 60.29 56.27 48.37
Ours 28.05 56.88 36.14 64.31 79.16 69.51 64.40 54.42

Table 2: Comparison with competitive baselines and ablations on main components of our model in seven unseen
tasks (randomly selected). Bold numbers are superior results.

4.3 Implementation Details

We use T5-base (Raffel et al., 2020) to initialize the
QA model F . For knowledge sharing, we maintain
totally s = 30 meta prompts, and set the length of
each meta prompt to 10. We adopt a fixed T5-base
encoder with an average pooling layer to gener-
ate the query vector. For each instance, we se-
lect s̃ = 5 meta prompts to construct Pm. We
set η = 0.15 and γ = 0.3 in Eq. 1. For knowl-
edge mining, we use a dual-encoder as retriever,
and a cross-encoder as re-ranker. Encoders in the
retriever and the re-ranker are all initialized with
Bert-base-uncased (Devlin et al., 2019). We use
GLM-10B (Du et al., 2022) with 10B parameters as
pre-trained LM g. For each instance, the retriever
first selects l = 64 examples from the training
dataset, and the re-ranker selects l̃ = 4 examples
to construct Pk. All hyper-parameters are tuned
according to the average score on the validation
set. All results reported in our paper are averages
of 3 runs with different random seeds. We use
the AdamW (Loshchilov and Hutter, 2017) opti-
mizer with a learning rate of 1e-4 and batch size
of 32. Our model is trained for five epochs. All
experiments are performed on 8 A100 GPUs. See
Appendix D for more implementation details.

4.4 Baselines

We use the following competitive baselines: 1. Uni-
fiedQA: (Khashabi et al., 2020b) casts different QA
tasks into a unified text-to-text format and builds a
single model for all QA tasks; 2. ProQA: (Zhong
et al., 2022a) uses structural prompts to train a uni-
fied QA model with a QA-centric pre-training; 3.
Muppet: (Aghajanyan et al., 2021) maintains task-
specific heads and learns QA tasks through multi-
task learning; 4. Hyperformer++: (Karimi Ma-
habadi et al., 2021) uses a hyper-network to gener-
ate task-specific adapters for multi-task learning;
5. EPR: (Rubin et al., 2022) propose an efficient
method to retrieve in-context examples for a test
instance and use a pre-trained LM to directly de-
code the output based on the examples. Note that
“Muppet” and “Hyperformer++” have no specific
modules for unseen tasks. Thus, we select a task
with the lowest perplexity across all seen tasks for
an input from unseen tasks in the testing phase,
following Madotto et al. (2021).

4.5 Main Results

Table 1 shows the result on seen tasks. Our model
outperforms all competitive baselines in terms of
Head@3, Tail@4, Aseen, and achieves SOTA re-
sults on all head and tail tasks. We can observe
that: 1. Our model achieves an even larger per-
formance improvement for tail tasks, i.e., abso-
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lute improvement is 1.44 in Head@3 and 8.98 in
Tail@4, compared to the best-performing baseline
Hyperformer++. The performance gain precisely
demonstrates the advantages of knowledge sharing
between head and tail tasks and knowledge mining
from external resources. 2. Our model also outper-
forms the in-context learning baseline EPR without
any parameter update of the pre-trained LM. This
shows that leveraging knowledge mined from a pre-
trained LM and directly optimizing QA tasks can
lead to better QA performance. See Appendix B
for more evaluation details of all 21 seen tasks.

Table 2 shows the result on unseen tasks. Our
model yields the best performances on all metrics.
We can also observe that: 1. Our model that shares
knowledge through fine-grained components (i.e., a
pool of meta prompts) and mines knowledge from
an LM generally obtain higher performance. 2.
EPR is on par with the other baselines trained on
seen tasks. It shows that a pre-trained LM embeds
a large amount of knowledge, which can help QA
tasks potentially.

4.6 Ablation Studies

Model Main Components: Ablation studies are
carried out to validate the effectiveness of each
main component in our model. Specifically, the
following variants are investigated: 1. w/o Pm

removes the knowledge sharing component, i.e.,
meta prompt Pm is not used. 2. w/o Pk removes
the knowledge mining component, i.e., knowledge
prompt Pk is not used. Results in Table 1 and
Table 2 indicate that our model outperforms all ab-
lation variants. Specifically, we can also observe
that: 1. Both knowledge sharing (see w/o Pm)
and knowledge mining (see w/o Pk) components
help to improve the QA performance. 2. Knowl-
edge mining brings larger improvement compared
to knowledge sharing component on both tail and
unseen tasks. This further proves the importance of
leveraging knowledge embedded in the pre-trained
LM for the OLTQA setting. We provide examples
where our model is correct and the variant with-
out knowledge mining (i.e., w/o Pk) is incorrect,
together with 4 top hints selected by the retrieve-
then-rerank framework in Appendix C.

Knowledge Mining Components: To evaluate
design choices of retrieve-then-rerank framework
⟨R1, R2⟩ and two-stage knowledge distillation
(KD) in knowledge mining, we perform ablation
on alternatives: 1. BM25 Retriever uses the unsu-

Categories Variants Aseen Aunseen

Retriever BM25 Retriever 58.06 51.44
EPR Retriever 59.24 52.14

Re-ranker w/o Re-ranker 58.41 51.01

Knowledge
Distillation

w/o MKD 59.82 50.90
Static MKD 60.09 51.88
Back KD 60.21 52.35

Ours 61.48 54.42

Table 3: Ablation on knowledge mining components.

Data Methods Tail@16 Aunseen

w/o head
tasks

w/o Pm 59.00 50.55
Ours 59.54 (+0.54) 51.05(+0.50)

w/ head
tasks

w/o Pm 59.56 52.09
Ours 61.32 (+1.76) 54.42(+2.33)

Table 4: Effect of Pm in different data distributions.

pervised retriever BM25 (Robertson et al., 2009)
to replace retriever R1. 2. EPR Retriever trains
R1 by using a pre-trained LM as the scoring func-
tion (Rubin et al., 2022). 3. w/o Re-ranker re-
moves the re-ranker R2, and directly uses R1 to
select examples and generate hints. 4. w/o MKD
removes the adaptive mutual KD loss Lmkd. 5.
Static MKD removes Lmkd, and performs mutual
KD based on the performance of R1, R2, and F
evaluated at the very beginning of training stage
two. 6. Back KD removes Lmkd, and train R1

and R2 using knowledge distilled from F (Izacard
et al., 2022).

Results in Table 3 show that the knowledge min-
ing approach used in our model performs better
than all other variants. We can further observe that:
1. Retrieving in-context examples using other ap-
proaches (i.e., BM25 Retriever and EPR Retriever)
degenerates the model performance by a large mar-
gin. This shows the effectiveness of the two-stage
training of R1 in our model. 2. Re-ranking hints
generated by an LM help to improve the QA perfor-
mance (see w/o Re-ranker). 3. Removing the adap-
tive mutual KD loss (i.e., w/o MKD) degenerates
the QA performance. This proves the effectiveness
of information exchange between the two branches
of our model. 4. Variants of Lmkd lead to limited
QA performance (see Static MKD and Back KD).
This shows the importance of performance-aware
for mutual knowledge distillation.
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Figure 3: Visualization of Pm selection mechanism.

4.7 Further Analysis
Effect of Pm in Different Data Distributions
We also validate the effectiveness of meta prompt
Pm for knowledge sharing in different data dis-
tributions. Specifically, we construct a variant of
the training set (and denote it as “w/o head”) by
discarding samples from head tasks, which consist
of samples from 16 tail tasks. We also denote the
original training set as “w/ head”. The performance
of our model on these two datasets is tested with
and without Pm.

Results in Table 4 show that our model benefits
more from Pm with samples from head tasks. This
further validates our claim that meta prompt Pm

helps to facilitate knowledge sharing between head,
tail, and unseen tasks.

Analysis on Pm Selection Mechanism We plot
the heat map of meta prompt Pm selection fre-
quency for each task in Figure 3. We can observe
that: 1. Some hot meta prompts are shared by most
tasks, which probably encode common knowledge
for question answering. 2. Other meta prompts
are shared by a few tasks, which might contain
task-specific knowledge.

Analysis on Adaptive Mutual KD We visualize
the performance of R1, R2, and QA model F on
the validation set Dval which are evaluated (Eq. 4)
at the beginning of each epoch during training stage
two in Figure 4. We can observe that: 1. Initially,
R1 and R2 are allowed to generate knowledge for
training F because they are pre-trained in training
stage one. After epoch one, F performs better than
R1 and R2, and starts to teach student model R1

and R2 as a teacher model. 2. During training, R2

gradually outperforms R1. Overall, the relative per-
formance of R1, R2, and QA model F compared
to each other is not stable during training. Thus,
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Figure 4: Performance of retriever, re-ranker and the
QA model in training stage two.
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Figure 5: The influence of (a) dataset longtail-ness and
(b) proportion of unseen tasks over all 43 tasks.

to avoid collective failures, being aware of indi-
vidual performance is essential to perform mutual
knowledge distillation.

Influence of Dataset Longtail-ness The longtail-
ness of the dataset (i.e., the degree of imbalance
of task distribution in training) could have an im-
pact on the model performance. Figure 5(a) shows
that as the dataset becomes more imbalanced (i.e.,
α of Zipf distribution increases), our model only
undergoes a moderate performance drop compared
to UnifiedQA. Here, the performance is evaluated
on a test set from all 43 tasks.
Influence of Proportion of Unseen Tasks The per-
formance change w.r.t. proportion of unseen tasks
is shown in Figure 5(b). Compared to UnifiedQA,
the performance of our model changes steadily as
the proportion of unseen tasks rises. The knowl-
edge sharing and knowledge mining components
of our model enhance robustness to unseen tasks.

5 Conclusion

We introduce the open long-tailed QA (OLTQA)
task that learns from natural long-tail distributed
data and optimizes the performance over seen and
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unseen tasks. We propose an OLTQA model to ad-
dress the challenges of OLTQA. An instance-level
knowledge sharing mechanism is introduced, and
a retrieve-then-rerank frame is employed to mine
knowledge from a large pre-trained LM through a
two-stage knowledge distillation training process.
We validate our model on a curated OLTQA bench-
mark. Our publicly available data would enable
future research that is directly transferable to real-
world applications.

Limitations

We identify the major limitation of this work is its
input modality. Specifically, our model only con-
siders textual inputs, ignoring question answering
tasks in vision and audio. A multi-modal ques-
tion answering model under realistic open long-
tailed scenario is worth further exploration. For-
tunately, through multi-modal pre-training mod-
els (Xu et al., 2021; Huo et al., 2021) and ques-
tion answering methods (Kim et al., 2020), we can
equip our model with multi-modal question answer-
ing ability. For future work, learning multi-modal
question answering in an open (including out of
distribution data (Lang et al., 2022, 2023a,b)) long-
tailed scenario still remains a challenge, and we
will continue to work on it.

Ethics Statement

This work does not raise any direct ethical is-
sues. In the proposed work, we seek to develop
a method for long-tailed question answering in an
open world, and we believe this work can benefit
the field of question answering, with the potential
to benefit other fields involving open long-tailed
problem. All experiments are conducted on open
datasets.
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rativeQA/NarQA (Kočiský et al., 2018), the
open-domain version of NaturalQuestions/-
NatQA (Kwiatkowski et al., 2019), QA-
Conv (Wu et al., 2022), TweetQA (Xiong
et al., 2019),

• Multiple-choice: HeadQA (Vilares and
Gómez-Rodríguez, 2019), RACE-C (Liang
et al., 2019), MCTest (Richardson et al.,
2013), RACE (Lai et al., 2017), Open-
BookQA (Mihaylov et al., 2018) ARC (Clark
et al., 2018, 2016), QASC (Khot et al.,
2020), CommonsenseQA/CQA (Talmor et al.,
2019), Winogrande (Sakaguchi et al., 2020),
MMMLU (Hendrycks et al., 2021), Re-
Clor (Yu et al., 2020), Quail (Rogers et al.,
2020), OneStopQA (Berzak et al., 2020),

6375

https://doi.org/10.18653/v1/P19-1496
https://doi.org/10.18653/v1/P19-1496
https://doi.org/10.18653/v1/2021.acl-long.201
https://doi.org/10.18653/v1/2021.acl-long.201
https://doi.org/10.18653/v1/2020.acl-main.654
https://doi.org/10.18653/v1/2020.acl-main.654
https://doi.org/10.18653/v1/N19-4013
https://doi.org/10.18653/v1/N19-4013
https://openreview.net/forum?id=HJgJtT4tvB
https://openreview.net/forum?id=HJgJtT4tvB
https://dl.acm.org/doi/abs/10.1145/3539813.3545141
https://dl.acm.org/doi/abs/10.1145/3539813.3545141
https://doi.org/10.18653/v1/P18-2104
https://doi.org/10.18653/v1/P18-2104
https://doi.org/10.18653/v1/P18-2104
https://arxiv.org/abs/1810.12885
https://arxiv.org/abs/1810.12885
https://openaccess.thecvf.com/content/ICCV2021/html/Zhang_VideoLT_Large-Scale_Long-Tailed_Video_Recognition_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Zhang_VideoLT_Large-Scale_Long-Tailed_Video_Recognition_ICCV_2021_paper.html
https://ojs.aaai.org/index.php/AAAI/article/view/21430
https://ojs.aaai.org/index.php/AAAI/article/view/21430
https://ojs.aaai.org/index.php/AAAI/article/view/21430
https://proceedings.neurips.cc/paper/2021/hash/c203d8a151612acf12457e4d67635a95-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/c203d8a151612acf12457e4d67635a95-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/c203d8a151612acf12457e4d67635a95-Abstract.html
https://doi.org/10.18653/v1/2022.naacl-main.313
https://doi.org/10.18653/v1/2022.naacl-main.313
http://arxiv.org/abs/2205.04040
http://arxiv.org/abs/2205.04040


MCScript (Ostermann et al., 2018), MC-
Script 2.0 (Ostermann et al., 2019), Cos-
mosQA (Huang et al., 2019), Process-
Bank (Berant et al., 2014), DREAM (Sun
et al., 2019), PROST (Aroca-Ouellette et al.,
2021), PhysicalIQA/PIQA (Bisk et al., 2020),
SocialIQA/SIQA (Sap et al., 2019)

• Yes/no: BoolQ (Clark et al., 2019), BoolQ-
NP (Khashabi et al., 2020a) the binary
(yes/no) subset of MultiRC (Khashabi et al.,
2018), StrategyQA (Geva et al., 2021), Pub-
medQA (Jin et al., 2019).

The statistics of these datasets are summarized
in Table 8. Note that we follow the pre-process
scheme released by Khashabi et al. (2020b) to
tackle these datasets. As 22 tasks are unseen in
the training phase, we only use the training and
validation sets of the other 21 tasks to build our
framework.
Metrics. The evaluation for each task fol-
lows Khashabi et al. (2022). Specifically, for
Multiple-choice tasks, we use accuracy. For Extrac-
tive tasks, we use the F1 token overlap between the
answer text and golden truth. For Abstractive tasks,
we use ROUGE-L for NarrativeQA, BLEU for
TweetQA, and F1 for the other tasks. For Yes/no
questions, we also use the F1 token overlap.

B Overall Results

We compare our OLTQA model with competitive
baselines and ablation variants on each component.
The full results of our model, baselines and ablation
variants under 21 seen tasks are shown in Table 5,
while the results under 22 unseen tasks are shown
in Table 6. Bold numbers are superior results.

C Case Study

We provide examples from tail and unseen tasks,
where our model is correct and the variant with-
out knowledge mining (i.e., w/o Pk) is incorrect,
together with top hints selected by the retrieve-then-
rerank framework. Table 7 demonstrates that hints
yielded by our model are related to the ground truth
which effectively corrects the predicted answer.

D More Implementation Details

We use T5-base (Raffel et al., 2020) to initialize
our encoder-decoder QA model (12 layers, 768-
dimensional hidden size, and 12 attention heads).

In knowledge sharing, we maintain totally s =
30 meta prompts, and set the length of each meta
prompt to 10. We adopt a fixed T5-base encoder
with an average pooling layer to generate the query
vector. For each instance ⟨c, q,a⟩, we select s̃ = 5
meta prompts to construct Pm. For meta prompt
key training, we set η = 0.15 and γ = 0.3 in Eq. 1.

In knowledge mining, we adopt GLM-10B (Du
et al., 2022) with 10B parameters as a large pre-
trained LM. For retrieve-then-rerank example se-
lection, R1 first retrieves l = 64 examples from
all training examples, and R2 selects l̃ = 4 ex-
amples among retrieval results. The retriever
R1 is implemented with two separate dense en-
coders EX(·) and ED(·) to map ⟨c, q⟩ and ei into
vectors. The score for ei is then computed as
EX([c; q])T · ED(ei), which is the dot product
of two vectors. The re-ranker R2 is a dense en-
coder EC combined with a linear layer fc. Con-
cretely, EC transforms the concatenation of exam-
ple ei, hint hi and input ⟨c, q⟩ into a representa-
tion, which is fed into fc to get the score, denoted
as fc(EC([ei;hi; c; q])). EC ,ED and EX are all
initialized with BERT base uncased (Devlin et al.,
2019). In two-stage training, we leverage BM25 to
select c = 512 example candidates.

All experiments are performed on 8 A100 GPUs
(80GB). The batch size is set to 32. We use the
AdamW (Loshchilov and Hutter, 2017) optimizer
with a learning rate of 1e-4 and batch size of
32. The dataset is trained for five epochs. All
hyper-parameters are tuned according to the av-
erage score on the validation set. In our experi-
ments, We perform 3 runs by setting the random
seed to {42, 43, 44} respectively. In this way, we
report the average score of each method. Note
that we only use the random seed 42 for tuning
hyper-parameters. Our model has 551.59M tunable
parameters.

To obtain the ROUGE-L score, we use the NLTK
package for sentence tokenization, and python
rouge-score package for evaluation. To obtain the
BLEU score, we use the NLTK package for evalua-
tion.

E Results under Different Random Seeds

We use random seed 42 and 43 to construct another
two sets of head, tail, and unseen tasks, and com-
pare our method with the baseline UnifiedQA. As
shown in Table 9, our method is robust when using
different tasks as head, tail or unseen tasks.
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Methods SQuAD 2 NatQA RACE SQuAD 1.1 DROP NarQA Winogrande SIQA

UnifiedQA 77.80 40.25 56.97 85.32 32.50 44.69 54.93 50.15
ProQA 79.84 39.01 59.55 84.33 31.66 34.20 54.62 54.50
Muppet 79.41 40.83 57.13 85.64 32.62 45.30 55.49 52.63
Hyperformer++ 79.52 40.24 58.24 87.13 32.17 51.88 54.93 52.46
EPR 44.14 39.50 38.82 87.12 29.22 46.02 51.70 45.96

Ours (w/o Pm) 77.72 42.10 58.13 85.98 35.53 56.89 54.85 49.64
Ours (w/o Pk) 78.89 40.20 59.34 86.02 32.80 44.56 54.78 51.76
Ours (w/o MKD) 78.81 42.13 58.95 87.39 35.59 55.86 54.62 49.85
Ours (BM25 Retriever) 78.49 41.82 58.22 84.96 34.62 56.63 49.64 50.41
Ours (EPR Retriever) 77.51 42.13 59.36 87.09 35.01 56.87 54.54 51.23
Ours (w/o Re-ranker) 77.94 41.50 57.64 86.73 34.54 56.04 55.56 50.67
Ours (Static MKD) 78.73 42.67 59.55 87.72 35.81 57.34 55.33 51.48
Ours (Back KD) 78.16 42.07 58.17 86.66 35.61 54.68 54.06 50.72
Ours 79.99 42.68 59.65 87.88 36.42 57.59 55.64 52.51

Methods Quoref ROPES CQA BoolQ-NP BoolQ QASC OBQA PIQA

UnifiedQA 56.28 57.90 51.92 67.69 73.28 34.88 36.73 54.35
ProQA 35.75 30.10 51.52 69.67 72.51 31.10 43.40 56.31
Muppet 57.66 55.42 53.79 68.84 74.27 32.62 39.47 55.47
Hyperformer++ 60.80 57.04 53.24 67.66 73.58 33.15 41.00 55.60
EPR 48.54 47.96 45.30 59.43 70.70 38.09 38.07 55.55

Ours (w/o Pm) 67.20 54.00 56.91 71.76 75.64 43.09 43.53 54.46
Ours (w/o Pk) 56.32 57.96 52.50 70.64 74.62 36.83 39.53 55.98
Ours (w/o MKD) 69.00 52.66 55.61 71.77 76.18 46.00 43.80 55.22
Ours (BM25 Retriever) 68.09 54.10 52.66 71.07 72.84 42.76 39.00 56.43
Ours (EPR Retriever) 68.73 54.21 54.95 71.22 76.24 43.63 39.33 54.68
Ours (w/o Re-ranker) 65.38 53.28 52.83 72.18 73.17 39.52 39.67 53.70
Ours (Static MKD) 69.12 54.67 56.10 70.88 77.03 48.92 40.47 55.73
Ours (Back KD) 69.18 55.51 56.73 71.36 76.21 51.08 42.40 55.84
Ours 69.42 58.64 57.08 73.41 78.78 50.65 44.27 56.09

Methods NewsQA ARC-easy MCTest ARC-hard MultiRC Head@5 Tail@16 Aseen

UnifiedQA 57.48 36.84 77.19 31.77 80.45 58.57 54.16 55.21
ProQA 49.93 44.21 80.00 38.13 77.56 58.88 51.47 53.23
Muppet 58.11 38.07 79.06 31.34 85.57 59.13 55.19 56.13
Hyperformer++ 59.45 40.18 76.88 31.10 86.86 59.46 55.99 56.81
EPR 18.26 51.81 55.00 39.80 56.41 47.76 48.04 47.97

Ours (w/o Pm) 59.70 56.49 83.02 39.46 85.58 59.89 59.51 59.60
Ours (w/o Pk) 58.87 39.82 76.25 33.11 85.90 59.45 55.59 56.51
Ours (w/o MKD) 58.88 57.37 82.19 39.46 84.94 60.57 59.59 59.82
Ours (BM25 Retriever) 59.20 53.16 81.56 34.78 78.85 59.62 57.57 58.06
Ours (EPR Retriever) 58.99 56.49 81.98 36.12 83.65 60.22 58.93 59.24
Ours (w/o Re-ranker) 59.49 51.58 80.94 37.15 87.18 59.67 58.02 58.41
Ours (Static MKD) 58.83 57.54 81.87 39.46 82.54 60.90 59.83 60.09
Ours (Back KD) 58.87 57.89 85.63 40.22 83.18 60.13 60.24 60.21
Ours 59.41 58.95 83.75 40.43 87.82 61.32 61.53 61.48

Table 5: Comparison with competitive baselines and all ablations of our model in 21 seen tasks. Bold numbers are
superior results.
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Methods AdversarialQA AdversarialQA AdversarialQA ReCoRD RACE-C HeadQA MMMLU ReClordBERT dBiDAF dRoberta

UnifiedQA 24.39 44.24 18.16 19.62 49.86 29.14 28.77 35.73
ProQA 24.13 41.67 14.21 13.42 54.91 29.84 25.96 37.60
Muppet 22.10 43.35 17.33 16.71 50.00 29.04 30.42 33.53
Hyperformer++ 20.09 45.30 16.99 17.74 52.11 28.62 25.26 35.47
EPR 37.00 53.76 27.74 8.98 35.39 32.21 28.77 25.07

Ours (w/o Pm) 34.51 51.42 25.16 13.76 53.51 34.55 33.68 33.73
Ours (w/o Pk) 24.29 43.71 17.12 19.03 53.23 29.36 31.23 32.60
Ours (w/o MKD) 32.94 52.86 24.54 13.72 49.30 35.14 32.63 35.40
Ours (BM25 Retriever) 35.10 53.57 25.96 11.15 50.14 32.87 32.98 32.67
Ours (EPR Retriever) 37.26 54.58 26.80 14.11 53.65 34.00 32.72 34.73
Ours (w/o Re-ranker) 36.93 53.99 27.33 15.55 53.65 32.77 31.93 35.80
Ours (Static MKD) 32.47 53.13 24.89 13.80 54.21 35.07 34.39 32.93
Ours (Back KD) 31.66 53.91 24.91 15.64 53.14 35.00 32.63 34.89
Ours 39.51 55.12 28.05 17.97 56.88 34.48 36.14 36.67

Methods Quail OneStopQA OneStopQA OneStopQA MCScript MCScript CosmosQA DREAMelementary intermediate advanced 2.0

UnifiedQA 53.31 53.09 55.25 54.01 67.97 77.38 37.42 59.56
ProQA 54.16 62.35 62.65 61.11 71.23 76.44 39.23 64.41
Muppet 52.86 54.33 56.17 54.79 70.91 76.97 35.75 58.61
Hyperformer++ 54.09 54.63 55.86 59.88 71.51 76.62 37.35 59.31
EPR 41.29 63.58 58.95 60.49 65.56 63.56 38.66 53.92

Ours (w/o Pm) 56.17 60.19 62.96 61.11 77.46 76.88 45.09 68.28
Ours (w/o Pk) 52.94 56.67 57.72 56.70 70.80 77.57 39.87 60.29
Ours (w/o MKD) 55.43 54.32 57.41 54.32 75.69 78.22 45.46 67.35
Ours (BM25 Retriever) 55.06 58.64 58.02 58.95 78.03 79.65 45.36 68.71
Ours (EPR Retriever) 55.20 60.80 60.49 60.19 76.97 76.98 45.96 69.17
Ours (w/o Re-ranker) 52.98 59.57 55.25 57.10 74.49 77.48 45.03 64.75
Ours (Static MKD) 55.29 61.73 60.49 59.26 74.63 77.97 43.92 68.82
Ours (Back KD) 57.98 61.16 59.88 60.60 77.18 79.85 45.78 69.40
Ours 56.96 65.12 65.74 64.31 79.16 78.27 46.16 69.51

Methods ProcessBank PROST StrategyQA PubmedQA QAConv TweetQA Aunseen

UnifiedQA 70.75 31.73 40.50 50.53 61.43 64.52 46.70
ProQA 69.39 31.30 49.96 58.00 59.73 63.83 48.27
Muppet 73.47 28.99 43.62 56.73 61.82 66.02 46.98
Hyperformer++ 72.79 32.34 49.52 53.00 58.93 61.44 47.22
EPR 70.07 30.33 42.08 59.67 60.72 66.65 46.57

Ours (w/o Pm) 77.55 31.82 49.38 62.07 62.36 74.27 52.09
Ours (w/o Pk) 75.51 32.80 49.39 56.27 60.99 66.02 48.37
Ours (w/o MKD) 74.83 31.66 51.44 61.60 62.18 73.33 50.90
Ours (BM25 Retriever) 75.28 31.43 51.35 58.93 61.39 76.44 51.44
Ours (EPR Retriever) 75.06 32.60 49.24 60.53 61.80 74.14 52.14
Ours (w/o Re-ranker) 73.02 29.80 51.31 61.60 62.26 69.53 51.01
Ours (Static MKD) 74.15 32.09 49.18 63.87 63.46 75.60 51.88
Ours (Back KD) 74.68 30.81 51.40 62.73 63.39 75.18 52.35
Ours 78.91 33.68 50.70 64.40 62.28 77.17 54.42

Table 6: Comparison with competitive baselines and all ablations of our model in 22 unseen tasks. Bold numbers
are superior results.
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Task Ours (w/o Pk) Ours

NarQA

Input:The play begins with three...WHAT SENTENCE DID CYNTHIA GIVE TO THE SYMBOLIC VICES?
Ground Truth:Make reperations and purify themselves.

Output:To make reparation and purify themselves by
bathing in the spring.

Hints: To make reparation and to purify yourselves;
Make reparation and to purify themselves by bathing in
the spring at Mount Helicon.; Make reparation and purify
yourselves.; Make reparation and purge yourselves
Output:Make reparation and purify themselves

ARC-hard

Input:A daphnia population... To which factor is the daphnia population most likely responding? (A) the pH of...
Ground Truth:the temperature of the water

Output:the pressure of the water
Hints: light intensity; temperature; the temperature;
the temperature of the water.
Output:the temperature of the water

NewsQA

Input:RIO DE JANEIRO, Brazil (CNN) – A Brazilian supreme court judge...When did the mother die?
Ground Truth:September

Output:June 2004
Hints:in September; September.; during childbirth;
to David Goldman.
Output:September

MultiRC

Input:German art collector...Was the Gurlitt art collection returned after confiscation?
Ground Truth:yes

Output:no
Hints: the surviving paintings were all returned; part
of the collection was returned; part of it was; recently
Output:yes

ReCoRD

Input:Lionel Messi is unattainable...Ariedo braida (pictured) says that it would be a mistake for _ to change teams..
Ground Truth:Lionel Messi

Output:it would be a mistake for _ to change teams

Hints: Barcelona; Lionel Messi is unattainable for
most football clubs; change teams; Messi is an icon of
world football
Output:Lionel Messi

TweetQA

Input:The way they run to each other... what does the tweeter imply?
Ground Truth:they like each other

Output:No Answer>

Hints: I had great time with my kids; they really like
each other; They want to know each other.; they are
attracted to each other.
Output:they are attracted to each other.

StrategyQA

Input:(Gulf of Finland) The bottom of...Would the Titanic be well preserved at the bottom of the Gulf of Finland?
Ground Truth:yes

Output:ships are relatively well preserved
Hints: yes; yes, it would be well preserved; Yes,
it would.; well preserved
Output:yes

RACE_C

Input:Many post-80s...Many post-80s couples can’t go to the movies, shop or attend parties because _.? (A) they ...
Ground Truth:they have to look after their kids

Output:they have to look after their parents
Hints: their kids are born; their kids were born;
kids were born; they have to look after their kids
Output:they have to look after their kids

Table 7: Case study from tail and unseen tasks where our model is correct and the variant without knowledge mining
(i.e., w/o Pk) is incorrect along with the top 4 hints selected by the retrieve-then-rerank framework.
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Format Dataset Train set size Val set size Test set size

Extractive

SQuAD1.1 7978 886 10570
SQuAD2 127319 3000 11873
NewsQA 436 54 4341
Quoref 1539 192 2768
ROPES 1242 155 1688

AdversarialQA(dBERT) - - 1000
AdversarialQA(dBiDAF) - - 1000
AdversarialQA(dRoberta) - - 1000

ReCorD - - 9999

Abstractive

NarQA 3487 435 6922
NQOpen 31843 3980 10693

Drop 5095 636 9536
QAConv - - 3414
TweetQA - - 1086

Multiple-choice

RACE 14205 1775 4887
OBQA 566 70 500
MCTest 335 41 320

ARC-easy 386 48 570
ARC-hard 309 38 299

CQA 1011 126 1221
QASC 638 79 926
PIQA 482 60 1838
SIQA 2031 253 1954

Winogrande 2573 321 1267
RACE-C - - 712
HeadQA - - 1366
MMMLU - - 285

ReClor - - 500
QuAIL - - 2163

OneStopQA elementary - - 324
OneStopQA intermediate - - 324

OneStopQA advanced - - 324
MCScript - - 1411

MCScript 2.0 - - 2020
CosmosQA - - 2985
ProcessBank - - 147

DREAM - - 2040
PROST - - 18736

Yes/no

BoolQ 748 93 3270
MultiRC 284 28 312

BoolQ-NP 899 112 7596
StrategyQA - - 2290
PubmedQA - - 500

Table 8: Dataset Statistics.

Seed Method Head@3 Tail@4 Aseen Aunseen

42 UnifiedQA 49.68 56.54 47.74 40.19
Ours 53.10 66.29 56.03 49.76

43 UnifiedQA 56.71 50.05 50.65 42.67
Ours 62.08 66.68 59.98 51.05

Table 9: Results on different random seeds.
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