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Abstract
Pre-trained language models based on general
text enable huge success in the NLP scenario.
But the intrinsical difference of linguistic pat-
terns between general text and task-oriented
dialogues makes existing pre-trained language
models less useful in practice. Current dia-
logue pre-training methods rely on a contrastive
framework and face the challenges of both se-
lecting true positives and hard negatives. In
this paper, we propose a novel dialogue pre-
training model, FutureTOD, which distills fu-
ture knowledge to the representation of the
previous dialogue context using a self-training
framework. Our intuition is that a good dia-
logue representation both learns local context
information and predicts future information.
Extensive experiments on diverse downstream
dialogue tasks demonstrate the effectiveness
of our model, especially the generalization, ro-
bustness, and learning discriminative dialogue
representations capabilities. 1

1 Introduction

Pre-trained language models (Devlin et al., 2019;
Liu et al., 2019) based on a massive scale of general
text corpora (Zhu et al., 2015) have been commonly
used in many NLP applications. Finetuning models
on these PLMs significantly improves the perfor-
mance of various downstream tasks, especially nat-
ural language understanding. Despite their success,
directly applying them to conversational corpora is
proved to be suboptimal due to the large linguistic
gap between conversations and plain text (Rashkin
et al., 2019; Wolf et al., 2019). Therefore, it’s vital
to explore dialogue-specific pre-trained models for
solving various downstream dialogue tasks.

Early pre-trained dialogue language models use
chit-chat corpora from social media, such as Twit-
ter or Reddit, aiming at retrieval (Henderson et al.,

⇤The first two authors contribute equally. Weiran Xu is
the corresponding author.

1Our code, models and other related resources are publicly
available at https://github.com/Zeng-WH/FutureTOD
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Figure 1: Comparison of different dialogue pre-training
paradigms. The contrastive models learn context repre-
sentations by pulling together positive pairs and pushing
apart negative pairs. In contrast, our FutureTOD em-
ploys a self-training framework to distill future knowl-
edge to context representations and dismiss the require-
ments of contrastive pairs.

2019) and dialogue response generation (Zhang
et al., 2020). These open-domain dialogues are
usually short, noisy, and without specific chatting
goals. Further, a more practical scenario, task-
oriented dialogue (TOD), is attracting more at-
tention. TOD has explicit goals (e.g. restaurant
reservation) and many conversational interactions
like belief states and database information, making
language understanding and policy learning more
complex than those chit-chat scenarios. Each TOD
dataset is usually small because collecting and la-
beling such data are time-consuming. Therefore,
in this paper, we focus on unsupervised dialogue
pre-training for task-oriented dialogues.

Previous TOD pre-training methods usually fol-
low a contrastive learning (CL) framework (Chen
et al., 2020; He et al., 2020) as shown in Figure
1(a). CL aims to pull together semantically sim-
ilar (positive) pairs and push apart semantically
dissimilar (negative) pairs. SimCSE (Gao et al.,
2021) employs Dropout (Srivastava et al., 2014)
augmentation to construct positive pairs by passing
a sentence through the encoder twice, resulting in
superior performance for learning plain text rep-
resentations. However, it performs poorly in the
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Figure 2: Overall architecture of FutureTOD. For brevity, we show only one system response utterance as future.

dialogue domain because of ignoring the intrin-
sic properties of dialogue data (Zhou et al., 2022).
TOD-BERT (Wu et al., 2020) takes the dialogue
context2 and next response as a positive pair thus
achieving promising performance on the response
selection task. However, there is a large discrep-
ancy in both semantics and data statistics between
each response and its context 3, which reduces its
generalization ability to other dialogue tasks. Fur-
ther, DSE (Zhou et al., 2022) learns from dialogues
by taking consecutive utterances of the same dia-
logue as positive pairs. But the assumption that
consecutive utterances represent similar semantics
fails sometimes when answers are general and ubiq-
uitous. Along with the issues of choosing positive
pairs, these models regard other instances in the
same batch as negative samples, which also induces
potential noise to contrastive learning (Arora et al.,
2019), such as false negatives (Huynh et al., 2022;
Chen et al., 2022) and relying on a large batch size
(He et al., 2020). Overall, these contrastive meth-
ods face the challenges of both selecting true posi-
tive pairs and negative pairs that we aim to solve us-
ing a new non-contrastive pre-training framework.

In this paper, we propose a novel dialogue pre-
training model, FutureTOD, which distills future
knowledge to the representation of the previous
dialogue context using future utterances based on a
standard Transformer architecture BERT (Devlin
et al., 2019). We argue that a good dialogue rep-
resentation both learns local context information
and predicts future knowledge. Instead of exist-
ing contrastive works, we employ a self-training
framework and dismiss the requirements of con-

2Throughout this paper, we denote a system turn including
all the system sentences as the response (utterance), and all
the history turns as the dialogue context.

3In the implementation of TOD-BERT, the context is often
the concatenation of 5 to 15 utterances but the response is only
a single utterance.

trastive pairs. As shown in Figure 1(b), we first
use a student model to construct the dialogue rep-
resentation of an input dialogue context. Next, we
concatenate the context and following utterances
and get its full representation using a teacher model.
Our goal is to align the original context representa-
tion with the full representation containing future
knowledge. The weights of the teacher are up-
dated by the student periodically (He et al., 2020;
Baevski et al., 2022; Liu et al., 2022). We evalu-
ate FutureTOD on various task-oriented dialogue
tasks, including intent classification, out-of-domain
detection, dialogue state tracking, dialogue act pre-
diction, and response selection. Experiment results
demonstrate that FutureTOD significantly outper-
forms TOD-BERT, DSE, and other strong baselines
in all the scenarios. We also observe FutureTOD
has stronger capabilities on generalization, robust-
ness and learning discriminative representations.

Our contributions are: (1) We propose a novel
TOD dialogue pre-training model, FutureTOD,
which distills future knowledge to dialogue rep-
resentations. To the best of our knowledge, we
are the first to use a non-contrastive self-training
framework and knowledge distillation for dialogue
pre-training. (2) Our model achieves consistent im-
provements on diverse downstream dialogue tasks
over strong baselines. Extensive analyses prove the
generalization, robustness, and learning discrimi-
native dialogue representations capabilities.

2 Model

2.1 Overall Architecture

The overall architecture of FutureTOD is shown
in Figure 2. We adopt BERT-base-uncased4 as
our backbone following TOD-BERT (Wu et al.,
2020). We first add two special role tokens [USR]

4https://huggingface.co/bert-base-uncased
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or [SYS] to the prefix of each utterance and con-
catenate all the utterances in the same dialogue into
one flat sequence. Then we split each dialogue at
a randomly selected turn t to get the context and
future sequences. We encode the context using
a student model and obtain the output of [CLS]
as the original dialogue representation. Next, we
construct training targets by encoding the context
and future using a teacher model. Both the student
and teacher are the same BERT but the weights of
the teacher are updated by the student periodically.
The learning goal is to align the original context
representation with the full representation contain-
ing future knowledge. We assume a good dialogue
representation can’t only capture local context in-
formation but also predict future knowledge.

2.2 Learning Future Knowledge

Notation We use the collected datasets by TOD-
BERT (Wu et al., 2020) as our pre-training corpus.
For each dialogue, we first transform it into a to-
ken sequence. Following previous work (Wu et al.,
2020; Zhou et al., 2022), we add two special role
tokens [USR] or [SYS] to the prefix of each utter-
ance and concatenate all the utterances into one
flat sequence D = {U1, S1, . . . , Un, Sn}. U1 and
S1 denotes the user utterance and system utterance,
respectively. n is the turn number of the dialogue.

Learning Framework Different from existing
contrastive methods, we employ a self-training
(van Engelen and Hoos, 2019; Grill et al., 2020)
framework to distill future knowledge to the rep-
resentation of the dialogue context using future
utterances. The advantages are two-fold: (1) Our
self-training framework doesn’t require contrastive
pairs thus alleviating the noise of selecting positive
and negative samples. (2) Learning future knowl-
edge encourages the model to align representations
in the same latent space instead of pulling together
representations of context and response belonging
to different distributions. We first split each di-
alogue at a randomly selected turn t, so we get
the context C = {U1, S1, . . . , Ut} and the future
F = {St, Ut+1, St+1, . . . , Un, Sn}. Then we use a
student model to encode the context and a teacher
model to encode the context with the future. We
denote the [CLS] output of the student model as hS

and the teacher as hT . We hope the student model
can capture future information while modeling the
local semantics. So we design a distillation loss
Ldis by minimizing the discrepancy between hS

and hT :

Ldis = khS � hT k2 (1)

To explore different granularity of future infor-
mation, we randomly select a ratio of future ut-
terances from one utterance St to the whole utter-
ances {St, Ut+1, St+1, . . . , Un, Sn}. Besides, we
find performing distillation loss on multiple layers
rather than only the top layer also gives consis-
tent improvements (see Section 4.1). So, the final
distillation loss Ldis is:

Ldis =
LX

l=1

(
���hl

S � hl
T

���
2
) (2)

where l is the l-th layer of BERT-base. We also
try to apply normalization to hS and hT and other
distillation objectives but do not observe significant
change. Along with Ldis, we also keep the tradi-
tional masked language modeling (MLM) (Devlin
et al., 2019) loss Lmlm = �PM

m=1 log P (xm)
following Wu et al. (2020), where M is the total
number of masked tokens and P (xm) is the pre-
dicted probability of the token xm over the vocabu-
lary size. Note that we only perform MLM on the
student model. Therefore, the total loss is:

L = Ldis + Lmlm (3)
We simply sum them up and achieve the best per-

formance in our experiments.
Parameter Updating We employ a simple algo-

rithm to optimize the parameters of the student and
teacher models iteratively. (1) Stage 1: We first
use Eq 3 to perform gradient updating to optimize
the student model and keep the teacher model fixed.
We denote the interval as E epochs.5 (2) Stage 2:
After Stage 1, we directly assign student parame-
ters to the teacher. The process of our method is
summarized in Algorithm 1.

3 Experiment

3.1 Pre-training Setting
Pre-training Corpus We use the corpus collected
by Wu et al. (2020), including 9 publicly avail-
able task-oriented datasets: MetaLWOZ (Lee et al.,
2019), Schema (Rastogi et al., 2020), Taskmaster
(Byrne et al., 2019), MWOZ (Budzianowski et al.,
2018), MSR-E2E (Li et al., 2018), SMD (Eric et al.,
2017), Frames (Asri et al., 2017), WOZ (Mrksic
et al., 2017), CamRest676 (Rojas-Barahona et al.,
2017). We show the full statistics in Appendix A.

5We empirically find E = 10 is the best. Please see a more
detailed analysis in Section 4.1.
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Algorithm 1 FutureTOD
1: Initialization: Teacher T , Student S, Interval

E, Total Epoch M
2: Input: Context C, Future F
3: for m in [1, M] do
4: Using S to get the output hS of C
5: Using T to get the output hT of C + F
6: Calculating the distillation loss Ldis in Equa-

tion 2
7: Calculating the MLM loss Lmlm

8: Using L = Ldis + Lmlm to update S
9: if m % E == 0 then

10: Assigning S parameters to the T
11: end if
12: end for
Output: S

Baselines We compare FutureTOD with other
strong baselines. BERT (Devlin et al., 2019)
and BERT-mlm denotes the original BERT-base-
uncased pre-trained on a large text corpus and con-
tinual pre-trained BERT using MLM on our pre-
training dialogue corpus, respectively. DialoGPT
(Zhang et al., 2020) is a dialogue generation model
via a language modeling target. SimCSE (Gao
et al., 2021) uses Dropout to construct positive
pairs and is further pre-trained on the same TOD
corpus. TOD-BERT (Wu et al., 2020) uses a con-
trastive response selection objective by treating a
response utterance and its dialogue context as posi-
tive pair. DSE (Zhou et al., 2022) takes consecutive
utterances of the same dialogue as positive pairs.6

Note that we focus on the unsupervised TOD pre-
training, so we don’t compare supervised methods
using labeled NLI datasets (Williams et al., 2018)
or dialogue act labels (He et al., 2022b).
Pre-trainging Details We train FutureTOD with
a batch size of 32 and a maximum input length
set of 512, respectively. Both the teacher and stu-
dent models are initialized by BERT-base-uncased.
Adam optimizer and a linear learning rate sched-
uler are employed for optimization with an initial
learning rate of 5e-5 and a dropout ratio of 0.2.
The mask ratio, teacher’s update frequency, and the
number of layers representations are set to 15%,
10 epoch, and 12 respectively. Experiments take
3 days with an early-stopped strategy based on
perplexity scores of a held-out development con-

6We choose the unsupervised version of DSE in the origi-
nal paper as our baseline for fair comparison.

ducted on eight NVIDIA Tesla A100 GPUs. The
average length of context and response are 86.04
and 48.10 tokens respectively. The average number
of utterances in context and response are 5.95 and
3.48 respectively. We use the pre-trained BERT-
MLM and pre-trained TOD-BERT released by the
original paper (Wu et al., 2020), and pre-trained
DSE model released by Zhou et al. (2022) respec-
tively. We use Dropout to construct positive pairs
to re-implement SimCSE (Gao et al., 2021). For
a fair comparison, we augment every single utter-
ance obtained through Dropout on our pre-training
corpora.

3.2 Finetuning Setting

We finetune these pre-trained LMs on the follow-
ing four core downstream tasks in a task-oriented
system: intent recognition, dialogue state track-
ing, dialogue act prediction, and response selection.
Following Wu et al. (2020), we only use the LMs
and avoid adding too many additional components
except a classification head. We use the represen-
tation of the [CLS] token as the utterance repre-
sentation here. Additionally, we provide the per-
formance of the mean pooling in Appendix D. For
fair comparison, we use the same architecture for
all the baselines. Along with the full data setting,
we also randomly sample a few labeled training
examples as the few-shot learning settings. More
hyperparameters details can be seen in Appendix
B.

Intent Recognition is a multi-class classifica-
tion task, where the model predicts one intent label
given an input sentence. We use the [CLS] embed-
dings as the dialogue representation and a softmax
classification head. The model is trained with cross-
entropy loss. We use OOS (Larson et al., 2019)
intent dataset, which covers 151 intent classes over
ten domains, including 150 in-domain intents and
one out-of-domain (OOD) intent. We treat the
OOD intent as an additional class following TOD-
BERT. We report classification accuracy and recall.

Dialogue State Tracking is regarded as a multi-
class classification task based on a pre-defined on-
tology. We use dialogue history as input and predict
slot values for each (domain, slot) pair at each dia-
logue turn. The model is trained with cross-entropy
loss summed over all the pairs. We use a widely-
used TOD dataset MWOZ 2.1 (Budzianowski et al.,
2018) across seven different domains. We report
joint goal accuracy and slot accuracy. The former
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Model Acc
(all)

Acc
(in)

Acc
(out)

Recall
(out)

1-Shot

BERT 29.3% 35.7% 81.3% 0.4%
BERT-mlm 38.9% 47.4% 81.6% 0.5%
SimCSE 29.9% 36.4% 81.7% 0.6%
TOD-BERT 42.5% 52.0% 81.7% 0.1%
DSE 42.3% 51.7% 81.8% 0.4%
FutureTOD 43.1%* 52.2% 81.8% 2.1%*

10-Shot

BERT 75.5% 88.6% 84.7% 16.5%
BERT-mlm 76.6% 90.5% 84.3% 14.0%
SimCSE 74.5% 88.9% 83.5% 9.6%
TOD-BERT 77.3% 91.0% 84.5% 15.3%
DSE 77.8% 90.8% 85.2% 19.1%
FutureTOD 78.1% 90.8% 85.5%* 20.5%*

Full
(100-shot)

BERT 84.9% 95.8% 88.1% 35.6%
DialoGPT 83.9% 95.5% 87.6% 32.1%
BERT-mlm 85.9% 96.1% 89.5% 46.3%
SimCSE 82.3% 94.7% 86.6% 26.6%
TOD-BERT 86.6% 96.2% 89.9% 43.6%
DSE 84.3% 95.8% 87.7% 32.5%
FutureTOD 87.2%* 96.0% 90.0% 47.6%*

Table 1: Intent recognition results on the OOS dataset.
Acc(all), Acc(in), Acc(out) denotes the overall accuracy,
in-domain intent accuracy and out-of-domain intent ac-
curacy. The numbers with * are significant using t-test
with p < 0.01.

considers true if and only if all the predicted values
exactly match its ground truth values at each dia-
logue turn while the latter individually compares
each (domain, slot, value) triplet to its ground truth
label. Joint goal accuracy is the main metric.

Dialogue Act Prediction is a multi-label classi-
fication task where the model takes dialogue his-
tory as input and predicts the system actions. The
model is trained with binary cross-entropy loss
summed over all the actions. For prediction, we set
the threshold to 0.5. We use two datasets MWOZ
(Budzianowski et al., 2018) and DSTC2 (Hender-
son et al., 2014). Following Wu et al. (2020), we
use the same data preprocessing to uniform the orig-
inal dialogue acts to a general format. We report
micro-F1 and macro-F1 scores for the dialogue act
prediction task.

Response Selection is a ranking task where the
model selects the most relevant response from a
candidate pool given an input dialogue history. We
use a shared pre-trained LM to encode the dialogue
and each response respectively and compute its co-
sine similarity score. We randomly sample several
system responses from the corpus as negative sam-
ples. In our experiments, we set batch size equals
to 25 for all the models. We also use MWOZ and
DSTC2 as our evaluation datasets. We use k-to-100
accuracy as the metric. For each history, we com-
bine its ground-truth response with 99 randomly
sampled responses and rank these 100 responses

based on their similarities with the query in the em-
bedding space. The k-to-100 accuracy represents
the ratio of the ground-truth response being ranked
at the top-k.

3.3 Main Results

Intent Recognition We evaluate our FutureTOD
on the intent recognition dataset OOS, including in-
domain (IND) and out-of-domain (OOD) in Table
1. We find FutureTOD outperforms all the base-
lines on 10 of 12 metrics, especially with signifi-
cant improvements in overall accuracy and OOD
metrics. SimCSE (82.3% Acc(all)) is even worse
than the original BERT (84.9% Acc(all)) in the full
setting. Moreover, the 1.5 drop of Acc(out) is more
significant than 1.1 of Acc(in), demonstrating that
SimCSE ignores intrinsic dialogue structures and
fails to model the relations between each utterance
in the same dialogue. We also find TOD-BERT
achieves comparable performance on Acc(in) ex-
cept Recall(out), indicating the robustness of our
method. Surprisingly, a recent strong baseline DSE
performs poorly in the full setting. We argue the as-
sumption that consecutive utterances represent sim-
ilar semantics may fail in practical dialogues. Gen-
erally, FutureTOD achieves comparable or higher
performance on in-domain intent accuracy, but sig-
nificant improvements on out-of-domain accuracy,
which proves the robustness and generalization abil-
ity of our method.

Dialogue State Tracking Table 2 displays the
results of dialogue state tracking on MWOZ 2.1.
Our FutureTOD achieves state-of-the-art results
on 9 of 10 metrics. We find our method obtains
significant improvements on Joint Acc than Slot
Acc, showing the superiority of modeling overall
dialogue context. Although these baselines achieve
fair results on each (domain, slot, value) triplet,
we observe they tend to overfit to the easy slot
value pairs with high accuracy but fail to recognize
hard ones, leading to poor overall joint goal accu-
racy. For example, FutureTOD outperforms DSE
by 0.1% on Slot Acc but 0.5% on Joint Acc. All
the results show the effectiveness of our method.

Dialogue Act Prediction Table 3 shows the re-
sults of dialogue act prediction on MWOZ and
DSTC2. Our FutureTOD achieves state-of-the-art
results on all the metrics. We find our method ob-
tains comparable performance only using 10% data
than the baselines using 100% data, which veri-
fies the superior few-shot learning capability. We
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Model
1% Data 5% Data 10% Data 25% Data Full Data

Joint Acc Slot Acc Joint Acc Slot Acc Joint Acc Slot Acc Joint Acc Slot Acc Joint Acc Slot Acc
BERT 6.4% 84.4% 19.6% 92.0% 32.9% 94.7% 40.8% 95.8% 45.6% 96.6%
BERT-mlm 9.9% 86.6% 28.1% 93.9% 39.5% 95.6% 44.0% 96.4% 47.7% 96.8%
SimCSE 7.4% 84.8% 21.1% 91.6% 35.6% 95.0% 43.8% 96.3% 48.0% 96.8%
TOD-BERT 8.0% 85.3% 28.6% 93.8% 37.0% 95.2% 44.3% 96.3% 48.0% 96.9%
DSE 9.8% 86.3% 23.8% 93.0% 37.8% 95.5% 43.4% 96.3% 49.9% 97.0%
FutureTOD 9.9% 85.5% 29.1%* 94.1%* 40.7%* 95.8% 45.7%* 96.5% 50.4%* 97.1%

Table 2: Dialogue state tracking results on MWOZ 2.1. We report joint goal accuracy (Joint Acc) and slot accuracy
(Slot Acc) for the full data and few-shot settings. The numbers with * are significant using t-test with p < 0.01.

Model MWOZ DSTC2
micro-F1 macro-F1 micro-F1 macro-F1

1% Data

BERT 84.0% 66.7% 77.1% 25.8%
BERT-mlm 87.5% 73.3% 79.6% 26.4%
SimCSE 81.0% 62.1% 78.9% 27.3%
TOD-BERT 86.9% 72.4% 82.9% 28.0%
DSE 82.9% 65.1% 72.4% 21.4%
FutureTOD 87.9%* 75.0%* 83.7%* 31.0%*

10% Data

BERT 89.7% 78.4% 88.2% 34.8%
BERT-mlm 90.1% 78.9% 91.8% 39.4%
SimCSE 89.6% 77.8% 92.3% 40.5%
TOD-BERT 90.2% 79.6% 90.6% 38.8%
DSE 89.9% 79.4% 91.1% 39.0%
FutureTOD 91.0%* 80.5%* 93.6%* 40.9%

Full Data

BERT 91.4% 79.7% 92.3% 40.1%
DialoGPT 91.2% 79.7% 93.8% 42.1%
BERT-mlm 91.7% 79.9% 90.9% 39.9%
SimCSE 91.6% 80.3% 91.5% 39.6%
TOD-BERT 91.7% 80.6% 93.8% 41.3%
DSE 91.7% 81.3% 92.6% 40.2%
FutureTOD 92.0% 81.9%* 94.6%* 44.6%*

Table 3: Dialogue act prediction results on MWOZ and
DSTC2. The numbers with * are significant using t-test
with p < 0.01.

find DSE performs poorly in the 1% data setting
because the original DSE uses one utterance as
the query and lacks the ability of modeling long
context. In contrast, our model achieves consis-
tent performance in all the settings, showing better
generalization ability than previous baselines.

Response Selection Table 4 displays the results
of response selection on MWOZ and DSTC2. Our
FutureTOD achieves state-of-the-art results on all
the metrics. Besides, we find the improvements in
the 1% data setting are more significant than the full
data. Note that TOD-BERT uses the response con-
trastive learning as the pre-training objective on full
MWOZ training data so we don’t report its results
of few-shot learning. However, our method still
significantly outperforms TOD-BERT on DSTC2
without using response selection loss. It proves
FutureTOD learns generalized dialogue representa-
tions by distilling future knowledge to pre-trained
models and performs well on downstream tasks.

Overall, FutureTOD achieves state-of-the-art re-
sults for most of the downstream tasks while ex-
isting dialogue pre-trained models fail in specific

MWOZ DSTC2Model
1-to-100 3-to-100 1-to-100 3-to-100

BERT 7.8% 20.5% 3.7% 9.6%
BERT-mlm 13.0% 34.6% 12.5% 24.9%
SimCSE 17.2% 32.6% 27.6% 46.4%
TOD-BERT - - 37.5% 55.9%
DSE 7.9% 21.2% 2.4% 6.1%

1% Data

FutureTOD 35.8%* 53.5%* 39.5%* 64.0%*
BERT 20.9% 45.4% 8.9% 21.4%
BERT-mlm 22.3% 48.7% 19.0% 33.8%
SimCSE 37.2% 60.6% 42.0% 63.5%
TOD-BERT - - 49.7% 66.6%
DSE 24.8% 49.4% 42.0% 59.7%

10% Data

FutureTOD 50.0%* 72.8%* 51.3%* 70.0%*
BERT 47.5% 75.5% 46.6% 62.1%
DialoGPT 35.7% 64.1% 39.8% 57.1%
BERT-mlm 48.1% 74.3% 50.0% 65.1%
SimCSE 64.2% 85.4% 55.6% 70.5%
TOD-BERT 65.8% 87.0% 56.8% 70.6%
DSE 63.3% 85.3% 58.3% 72.0%

Full Data

FutureTOD 68.5%* 87.9%* 58.4% 72.6%*

Table 4: Response selection evaluation results on
MWOZ and DSTC2 for 1%, 10% and full data setting.
We report 1-to-100 and 3-to-100 accuracy, which repre-
sents the ratio of the ground-truth response being ranked
at the top-1 or top-3 given 100 candidates. The numbers
with * are significant using t-test with p < 0.01.

tasks. The results demonstrate our pre-training
method has strong generalization capability for di-
verse dialogue tasks. The results on out-of-domain
intent recognization also prove its robustness.

4 Qualitative Analysis

4.1 Hyper-parameter Analysis

Effect of Max Future Length We randomly select
a part of future utterances ranging from 1 to the max
future length P . To explore the effect of different
max future lengths, we set the P to 1, 3, 5, and All
respectively. 7 If the P = All, we can randomly se-
lect any length of utterances from the whole future
utterances. For comparison, we also add a baseline
P = Fix which must use the whole future utter-
ances together. For example, if we have 5 future ut-

7If the real length of total future utterances is lower than
the given max limit, we just randomly select from the whole
future.
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(a) MWOZ (b) DSTC2

Figure 3: Ablation study of max future lengths. We
report the results of dialogue act prediction on MWOZ
and response selection on DSTC2. The X-asix and Y-
asix denotes the max future length and performance.

terances F = {St, Ut+1, St+1, Ut+2, St+2}. When
P = 3, we can select any length no longer than 3,
such as {St} or {St, Ut+1, St+1}; When P = All,
we can select any length of future from the 5 utter-
ances, that is {St} or {St, Ut+1, St+1} or F ; When
P = Fix, we can only select F . Figure 3 shows
that FutureTOD generally gets improvements with
increasing P . We argue that more future turns
make the model learn comprehensive knowledge.
We also observe that directly using all the future
utterances like P = Fix can’t bring further im-
provements because diverse future knowledge with
different granularity also makes an effect. An intu-
itive explanation is that too long future utterances
possibly cause bias to a short dialogue context. As-
suming a context only contains a single utterance
but we always use ten, even more, future utterances
to distill knowledge, the representation of the con-
text will overfit to the future. Randomly selecting
future information plays a role similar to Dropout
(Srivastava et al., 2014). We leave more compli-
cated selection strategies to future work, such as
adaptively selecting the future for different lengths
of context. We also conducted experiments using a
teacher model that only encodes the future. How-
ever, the model’s performance is poor. For detailed
analysis, please refer to the Appendix C

Effect of Frequency of Updating Teacher Fu-
tureTOD updates the teacher model using the stu-
dent parameters every E epoch. Figure 4 shows the
effect of updating frequency E. We find E = 10
gets decent performance in general. We assume too
small E makes the teacher tightly close to the stu-
dent and prone to collapse while too large E can’t
produce a high-quality teacher model as learning
signals and make the training slow. We also try

(a) MWOZ (b) DSTC2

Figure 4: Ablation study of the teacher’s update fre-
quency. We conduct dialogue act prediction on MWOZ
and response selection on DSTC2. The X-asix and Y-
asix denotes update frequency and performance.

MWOZ DSTC2Top-K Layer
micro-F1 macro-F1 1-to-100 3-to-100

1 91.63% 80.46% 58.08% 72.11%
3 91.60% 80.49% 58.40% 72.16%
6 91.75% 81.02% 58.20% 72.80%
9 91.72% 80.89% 58.51% 72.79%
12 91.95% 81.92% 58.41% 72.60%

Table 5: Ablation study of using top-K layer representa-
tions for distillation. For example, K = 3 denotes we
use the top 3 layers of BERT-base to compute Eq 2.

other updating strategies such as momenta updat-
ing (He et al., 2020) and non-constant E but don’t
observe improvements. The simple strategy of up-
dating every E epoch is simple and robust.

Effect of Distillation Layers We use the dif-
ferent top layers for the distillation loss Eq 3 in
Table 5. We find adding more layers for distilling
future knowledge can significantly improve perfor-
mance. It indicates that different types of features
extracted at different layers enhance learning differ-
ent granularity of future information and improve
downstream tasks.

4.2 Visualization

Figure 5 shows the visualization of the system re-
sponse representations of TOD-BERT, DSE and Fu-
tureTOD given the same input from the MWOZ test
set. We use a pre-trained model to get [CLS] fea-
tures and perform dimension reduction using the t-
distributed stochastic neighbor embedding (tSNE).
Different colors represent different dialogue act
labels of the responses. We observe that Future-
TOD builds compact and clearly separable dialogue
representations for different clusters, which help
distinguish semantically similar dialogues.
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(a) TOD-BERT (b) DSE (c) FutureTOD

Figure 5: The tSNE visualization of TOD-BERT, DSE and FutureTOD representations of system responses in the
MWOZ test set. Different colors represent different dialogue acts.

(a) MWOZ (b) DSTC2

Figure 6: Distance distribution curves of golden and
random future. The X-axis denotes the MSE distance
of representations between the dialogue history and the
concatenation of history and golden or random response.
The Y-axis denotes the ratio.

4.3 Understanding Future Knowledge

To understand whether our FutureTOD can capture
future knowledge, we perform a qualitative anal-
ysis to exhibit the capability of predicting future
information in Figure 6. For each dialogue history,
we combine its golden response with 99 randomly
sampled responses. Then we compute the mean
square error (MSE) distance between the represen-
tations of the dialogue history and the concatena-
tion of history and response using a pre-trained
FutureTOD model. For these randomly sampled
responses, we report the average distance. Figure 6
displays the distance distribution curves of golden
and random future in the test set. The area under the
shadow represents the ability of the model to pre-
dict the future. We find FutureTOD obtains similar
representations corresponding to the golden future
response. We also compute the average distance of
all the test dialogues. We observe FutureTOD gets
1.449 of golden responses, smaller than 1.503 of
random responses on MWOZ. Similar results are
shown on DSTC2. They prove the effectiveness of
FutureTOD capturing future knowledge.

(a) MWOZ (b) DSTC2

Figure 7: The ratio of the test dialogue history where its
distance between history and (history, golden response)
is smaller than the one between history and (history,
random response). Larger numbers denote better results.

Besides, we compare different pre-trained mod-
els in predicting future information in Figure 7.
For each dialogue history in the test set, we com-
pute the MSE distances between representations
of dialogue history with/without golden or random
responses. We assume the distances of golden re-
sponses are smaller than those of random responses.
Therefore, we display the ratio of the test dialogue
history where its distance of golden response is
smaller than one of random response. As Figure
7 shows, we find FutureTOD obtains the highest
ratio than the others, demonstrating the stronger
capability of capturing future knowledge.

4.4 Learning Process
Figure 8 displays the training and evaluation learn-
ing curves in the pre-training stage. We show
three pre-training objectives: MLM, Distill, and
MLM+Distill(FutureTOD). We find that only Dis-
till loss leads to an unstable learning process and
can’t converge. We argue that adding random
masks to the input sequence of the student model
makes the architecture asymmetric between the
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(a) Training curves (b) Evaluation curves

Figure 8: Training and evaluation curves of different
pre-training objectives. We scale up MLM loss by 50
times to display the three curves in the same figure.

student and teacher models, which is beneficial to
preventing collapse. We also observe that adding
another projection layer to the teacher model (Grill
et al., 2020) or momentum updating (He et al.,
2020) can’t bring further improvements.

5 Related Work

Self-Supervised Learning Self-supervised learn-
ing (SSL) has been a very active area of research in
CV, NLP, and speech. Contrastive methods (Chen
et al., 2020; He et al., 2020) in computer vision
achieve huge success in ImageNet. Further, Wu
et al. (2020); Gao et al. (2021); Zhou et al. (2022)
in NLP introduce contrastive methods to unsuper-
vised sentence or dialogue representation learning.
However, these methods suffer from large batch
size (He et al., 2020), easy negatives (Wang and
Liu, 2021), and false negatives (Huynh et al., 2022).
Besides, carefully designing appropriate augmenta-
tion methods (Fang et al., 2020; Gao et al., 2021) is
also challenging, especially in NLP. Another line of
SSL is masked image/language/speech modeling.
The most prominent model is BERT (Devlin et al.,
2019) which randomly masks some of the input
tokens to recover from the remaining input. Vision
methods follow similar ideas and predict visual to-
kens (Dong et al., 2021) or input pixels (He et al.,
2022a). Grill et al. (2020); Baevski et al. (2022) use
a momentum encoder to bridge the gap between
different augmentation or masked views. Different
from these works, we use future utterances to dis-
till knowledge to the representation of the previous
dialogue context without any augmentation.
Dialogue Pre-trained Language Models Zhang
et al. (2020) adopts the pre-trained GPT-2 model
(Radford et al., 2019) on Reddit data to perform
open-domain dialogue response generation. Gao

et al. (2021); Wu et al. (2020); Zhou et al. (2022)
adopt contrastive learning to learn text or TOD dia-
logue representations. They use Dropout (Srivas-
tava et al., 2014) augmentation, context-response
pair, and consecutive utterances to construct pos-
itive pairs, respectively. Henderson et al. (2020);
Liu et al. (2021) use the similar idea to learn dia-
logue representations mainly for dialogue retrieval
or response selection. Apart from these unsuper-
vised methods, Zhou et al. (2022); He et al. (2022b)
use labeled dialogue data to perform supervised or
semi-supervised pre-training. They usually use dia-
logue acts or dialogue NLI labels (Williams et al.,
2018). Since we focus on unsupervised pre-training
in this paper, we don’t compare these models and
leave it to future work.

6 Conclusion

We propose a novel dialogue pre-training model,
FutureTOD, which distills future knowledge to di-
alogue representations. Instead of existing con-
trastive works, we employ a simple self-training
framework to learn from each other and dismiss the
requirements of contrastive pairs. We perform com-
prehensive experiments on various task-oriented di-
alogue tasks, including intent classification, out-of-
domain detection, dialogue state tracking, dialogue
act prediction, and response selection. FutureTOD
significantly outperforms TOD-BERT, DSE, and
other strong baselines in all the scenarios. Fu-
tureTOD is of excellent performance and easy-to-
deploy without modifying any model architecture.
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Limitations

Although FutureTOD achieves significant improve-
ments over existing baselines, there are some di-
rections to explore for future work: (1) In this pa-
per, FutureTOD doesn’t use any data augmentation
strategies to enhance representations. We believe
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existing augmentation methods will benefit further
improving performance. (2) We design a simple
technique of constructing the teacher. More com-
plicated methods should be considered, such as
multi-teacher and large teacher. (3) FutureTOD in
this paper cares about dialogue understanding tasks
like intent detection, dialogue state tracking, etc.
We hope to extend the similar idea to the genera-
tive dialogue pre-trained models and larger TOD
corpus. Besides, exploiting limited dialogue labels
is also valuable to explore.
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have been checked before use to not include any
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vidual people or offensive content. However, since
the datasets come from the Internet, potential bias
may still be introduced. This paper does not con-
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privacy issues. Our model is pre-trained on GPU,
which may cause an environmental impact. This pa-
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A Pre-training Data statistics

We use the corpus collected by Wu et al. (2020), in-
cluding 9 publicly available task-oriented datasets:
MetaLWOZ (Lee et al., 2019), Schema (Rastogi
et al., 2020), Taskmaster (Byrne et al., 2019),
MWOZ (Budzianowski et al., 2018), MSR-E2E
(Li et al., 2018), SMD (Eric et al., 2017), Frames
(Asri et al., 2017), WOZ (Mrksic et al., 2017), Cam-
Rest676 (Rojas-Barahona et al., 2017). The full
statistics in Table 6. These existing datasets are
open-source and have no ethical concerns.

B Finetuning Details

For BERT-mlm and TOD-BERT, we use the re-
sults reported by TOD-BERT (Wu et al., 2020)
directly. We use the same hyperparameters for all
the downstream tasks except the batch size and
learning rate. We finetune all downstream tasks for
50 epochs with an early-stopped strategy evaluated
on the validation set every 50 steps with patience
set to 10. We respectively set batch size to 8, 25, 16
and 100 for intent recognition, dialogue state track-
ing, dialogue act prediction, and response selection.
We choose the best learning rate from {2e-5, 5e-5,
7e-5, 1e-4, 2e-4} using grid search. We used the
last layer’s hidden states of the pre-trained model
for downstream tasks. We also experimented with
using hidden states from all layers, but find no sig-
nificant change in performance.

C Only the Future

We use a student model to encode the context and
a teacher model to encode both the context and the
future in our method. We also conducted exper-
iments using the teacher model without the con-
text, but only with the future. However, as shown
in Table 7, the latter model did not perform well.
For example, in response selection, the top-1 ac-
curacy decreased from 58.4% to 56.3%, and the
top-3 accuracy decreased from 72.6% to 70.6%.
In dialogue act prediction, the micro-F1 decreased
from 92.0% to 90.9%, and the macro-F1 decreased
from 81.9% to 81.3%. We analyzed that this is due
to the model collapse caused by directly aligning

Name # Dialogue # Utterance Avg. Turn # Domain
MetaLWOZ 37,884 432,036 11.4 47
Schema 22,825 463,284 20.3 17
Taskmaster 13,215 303,066 22.9 6
MWOZ 10,420 71,410 6.9 7
MSR-E2E 10,087 74,686 7.4 3
SMD 3,031 15,928 5.3 3
Frames 1,369 19,986 14.6 3
WOZ 1,200 5,012 4.2 1
CamRest676 676 2,744 4.1 1

Table 6: Data statistics for our pre-training task-oriented
dialogue datasets.

Task Metric Method
C $ F C $ C+F

Dialogue Act
Prediction

micro-F1 90.9% 92.0%
macro-F1 81.3% 81.9%

Response
Selection

1-to-100 56.3% 58.4%
3-to-100 70.6% 72.6%

Table 7: Ablation of the Teacher Input. We report the re-
sults of dialogue act prediction on MWOZ and response
selection on DSTC2. C $ C+F denotes the teacher
model that encodes both the context and the future(our
default setting). C $ F denotes the teacher model that
encodes only the future, without the context.

context and response without negative samples like
TOD-BERT.

D Different Representation Methods

By default, we use the [CLS] token’s representa-
tion as the utterance representation. To explore the
impact of different utterance representation meth-
ods, we compare [CLS] token representations with
the mean pooling of all the token representations.
Table 8 shows that our FutureTOD model achieves
comparable performance using both [CLS] and
mean pooling. Both methods outperform the base-
lines. For instance, the FutureTOD(AVG) model
achieves 87.0% accuracy for the intent recogni-
tion task, while FutureTOD(CLS) achieves 87.2%.
These results surpass the 86.6% accuracy achieved
by TOD-BERT(CLS), demonstrating the robust-
ness of our model across different representation
methods.
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Task Metric Model
TOD-BERT(CLS) FutureTOD(AVG) FutureTOD(CLS)

Intent
Recognition

Acc(all) 86.6% 87.0% 87.2%
Acc(in) 96.2% 95.5% 96.0%
Acc(out) 89.9% 90.2% 90.0%

Recall(out) 43.6% 48.8% 47.6%
Dialogue State

Tracking
Joint Acc 48.0% 50.1% 50.4%
Slot Acc 96.9% 97.1% 97.1%

Dialogue Act
Prediction

micro-F1 93.8% 95.1% 94.6%
macro-F1 41.3% 45.9% 44.6%

Response
Selection

1-to-100 56.8% 57.7% 58.4%
3-to-100 70.6% 72.5% 72.6%

Table 8: Ablation study of different representation methods. We report the results of intent recognition on OOS,
DST on MWOZ, dialogue act prediction on DSTC2, and response selection on DSCT2. TOD-BERT (CLS) and
FutureTOD (CLS) denote using CLS token representation as the utterance representation. FutureTOD (AVG)
denotes using the mean pooling of all tokens within the utterance as the utterance representation.
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number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
In Table 6

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.
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C �3 Did you run computational experiments?
section 3 and 4

� C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
No response.

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Appendices B

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
In section 3 and 4

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
We use huggingface, we mention in Section 2

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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