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Abstract

Instead of simply matching a query to pre-
existing passages, generative retrieval gener-
ates identifier strings of passages as the re-
trieval target. At a cost, the identifier must
be distinctive enough to represent a passage.
Current approaches use either a numeric ID or
a text piece (such as a title or substrings) as
the identifier. However, these identifiers cannot
cover a passage’s content well. As such, we are
motivated to propose a new type of identifier,
synthetic identifiers, that are generated based
on the content of a passage and could integrate
contextualized information that text pieces lack.
Furthermore, we simultaneously consider mul-
tiview identifiers, including synthetic identi-
fiers, titles, and substrings. These views of iden-
tifiers complement each other and facilitate the
holistic ranking of passages from multiple per-
spectives. We conduct a series of experiments
on three public datasets, and the results indicate
that our proposed approach performs the best
in generative retrieval, demonstrating its effec-
tiveness and robustness. The code is released at
https://github.com/liyongqi67/MINDER.

1 Introduction

Text retrieval is a fundamental task in informa-
tion retrieval and plays a vital role in various lan-
guage systems, including search ranking (Nogueira
and Cho, 2019) and open-domain question answer-
ing (Chen et al., 2017). In recent years, the dual-
encoder approach (Lee et al., 2019; Karpukhin
et al., 2020), which encodes queries/passages into
vectors and matches them via the dot-product oper-
ation, has been the de-facto implementation. How-
ever, this approach is limited by the embedding
space bottleneck (Lee et al., 2022a) and missing
fine-grained interaction (Wang et al., 2022b).

An emerging alternative to the dual-encoder ap-
proach is generative retrieval (De Cao et al., 2020;
Tay et al., 2022; Bevilacqua et al., 2022). Gen-
erative retrieval utilizes autoregressive language

Query: Who is the singer of does he love you?

Passage (https://en.wikipedia.org/wiki/Does_He_Love_You)
"Does He Love You" is a song written by Sandy Knox and
Billy Stritch, and recorded as a duet by American country
music artists Reba McEntire and Linda Davis. It was released
in August 1993 as the first single from Reba's album
"Greatest Hits Volume Two". It is one of country music's
several songs about a love triangle. "Does He Love You" was
written in 1982 by Billy Stritch. ......
Multiview Identifiers
Title: Does He Love You
Substrings: "Does He Love You" is a song ..., recorded as a
duet by American country music artists Reba McEntire and
Linda Davis, ...
Pseudo-queries: 
Who wrote the song does he love you? 
Who sings does he love you? 
When was does he love you released by reba? 
What is the first song in the album "Greatest Hits Volume
Two" about?

Relevant

Figure 1: An example of multiview identifiers for a
passage. Corresponding to the query “Who is the singer
of does he love you?”, the semantic-related identifiers
are highlighted in red.

models to generate identifier strings of passages,
such as titles of Wikipedia pages, as an intermedi-
ate target for retrieval. The predicted identifiers are
then mapped as ranked passages in a one-to-one
correspondence. Employing identifiers, rather than
generating passages directly, could reduce useless
information in a passage and makes it easier for
the model to memorize and learn. At a cost, the
identifier must be distinctive enough to represent
a passage. Therefore, high-quality identifiers have
been the secret to effective generative retrieval.

Previous studies have explored several types of
identifiers, such as titles of documents (De Cao
et al., 2020), numeric IDs (Tay et al., 2022), and dis-
tinctive substrings (Bevilacqua et al., 2022). How-
ever, these identifiers are still limited: numeric
IDs require extra memory steps and are ineffec-
tive in the large-scale corpus, while titles and sub-
strings are only pieces of passages and thus lack
contextualized information. More importantly, a
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passage should answer potential queries from dif-
ferent views, but one type of identifier only repre-
sents a passage from one perspective.

In this work, we argue that generative retrieval
could be improved in the following ways:

(1) Synthetic identifiers. To address the limita-
tions of titles and substrings in providing contex-
tual information, we propose to create synthetic
identifiers that are generated based on a passage’s
content. In practice, we find the pseudo-queries,
that are generated upon multiple segments of a pas-
sage, could serve as effective synthetic identifiers.
For example, as shown in Figure 1, the pseudo-
query "What is the first song in the album Greatest
Hits Volume Two about?" spans multiple sentences
in the passage. Once a query could be rephrased
into a potentially-asked pseudo-query, the target
passage could be effectively retrieved.

(2) Multiview identifiers. We believe that a sin-
gle type of identifier is not sufficient to effectively
represent a passage. Using multiple types of identi-
fiers, such as titles, substrings, and synthetic identi-
fiers, can provide complementary information from
different views. (i) One type of identifier, like the
title, may be unavailable in some scenarios. In
this case, synthetic identifiers could alternatively
work. (ii) Different views of identifiers are better
suited for different types of queries. Titles could
respond to general queries, while substrings are
more effective for detailed ones. And the synthetic
identifiers could cover some complex and difficult
queries that require multiple segments. (iii) For
one specific query, passages could be scored and
ranked holistically from different views.

Based on the above insights, we propose the Mul-
tiview Identifiers eNhanceD gEnerative Retrieval
approach, MINDER, as illustrated in Figure 2. To
represent a passage, we assign three views of iden-
tifiers: the title, substring, and synthetic identifiers
(pseudo-queries). MINDER takes a query text and
an identifier prefix indicating the type of identifier
to be generated as input, and produces the corre-
sponding identifier text as output. Passages are
ranked based on their coverage with the predicted
three views of identifiers. We evaluate MINDER
on three public datasets, and the experimental re-
sults show MINDER achieves the best performance
among the current generative retrieval methods.

The key contributions are summarized:

• We are the first to propose synthetic identifiers
(generated based on the passage’s content) to

integrate contextualized information. In prac-
tice, we find pseudo-queries could serve as
effective synthetic identifiers.

• This is the first work that considers multiple
views of identifiers simultaneously. Passages
could be ranked holistically from different per-
spectives.

• Our approach achieves state-of-the-art perfor-
mance in generative retrieval on three widely-
used datasets.

2 Related Work

2.1 Generative Retrieval

Recently, we have witnessed an explosive develop-
ment in autoregressive language models, such as
the GPT-3/3.5 series (Brown et al., 2020; Ouyang
et al., 2022). This motivates the generative ap-
proach to retrieve passages. In some retrieval sce-
narios, like entity retrieval and sentence retrieval,
the entire items could be regarded as identifiers.
De Cao et al. (2020) proposed GENRE (Genera-
tive ENtity REtrieval), which retrieves an entity
by generating the entity text itself. GENRE also
could be applied in page-level retrieval, where each
document contains a unique title as the identifier.
Lee et al. (2022b) introduced generative retrieval
to the multi-hop setting, and the retrieved items
are short sentences. In 2022, Tay et al. (2022)
proposed the DSI (Differentiable Search Index)
method, which takes numeric IDs as identifiers for
documents. Wang et al. (2022b) later improved the
DSI by generating more queries as extra training
data. However, the numeric Ids-based methods usu-
ally were evaluated on the small NQ320K datasets,
partially because they suffer from the large scal-
ing problem. Bevilacqua et al. (2022) proposed
SEAL, which takes substrings as identifiers. The
retrieval process is effectively completed upon the
FM-Index structure. In this work, we mainly im-
prove the SEAL method via synthetic identifiers
and multiview identifiers. This is the first work that
takes pseudo-queries as identifiers and considers
multiple kinds of identifiers.

2.2 Query Generation in Text Retrieval

Query generation is originally introduced to the IR
community to improve the traditional term-based
methods. Nogueira et al. (2019) showed that ap-
pending the T5-generated queries to the document

6637



Who sings does he  
love you?

Query Text: Who is the singer  
of does he love you?

Identifier Prefix:  
{title, substring, pseudo-query}

+ Autoregressive 
Model

Does He Love You

FM-index

recorded as a duet
by American country

music artists

Passage 1
Title: Does He Love You
Body: recored as ...
Pseudo-queries: Who
sings does he love you 

Passage rank list

Predicted Identifiers

title
  

view

substring 
view

pseudo-query view

Multiview identifiersCorpus

Passage 2
Title: Does He Love You
Body: ...
Pseudo-queries: ... 

Title: ... 
Substrings: ...
Pseudo-queries:

Figure 2: Illustration of our proposed MINDER method. MINDER adopts multiview identifiers: the title, substrings,
and pseudo-queries. For a query with different identifier prefixes, MINDER generates corresponding identifiers in
different views. Passages are ranked holistically according to the coverage with these generated identifiers.

before building the inverted index can bring sub-
stantial improvements over BM25. More recently,
Mallia et al. (2021) used generated queries as term
expansion to learn better sparse representations for
documents. In the context of dense retrieval, the
generated pseudo-queries were used as extra data
to improve the training process of dense retrieval.
For example, Ma et al. (2020) aimed to generate
synthetic queries on the target domain for model
training. Dai et al. (2022) achieved excellent perfor-
mance in few-shot retrieval with prompt enhanced
query generation. In generative retrieval, Wang
et al. (2022b) also explored the use of pseudo-
queries as extra data to train DSI. In this paper,
we are the first to use pseudo-queries as one view
of identifiers for generative retrieval.

2.3 Dense Retrieval

In recent years, text retrieval has witnessed a
paradigm shift from traditional BM25-based in-
verted index retrieval to neural dense retrieval (Lee
et al., 2019; Karpukhin et al., 2020; Li et al., 2022).
Dense retrieval is further developed via hard nega-
tive sample mining (Xiong et al., 2020; Qu et al.,
2021) and better pre-training design (Chang et al.,
2019; Wang et al., 2022a), and has achieved excel-
lent performance. Zhang et al. (2022) argued that
a single vector representation of a document is hard
to match with multi-view queries and proposed the
multi-view document representation vectors. This
is similar to our work, but we focus on using multi-
view identifiers to improve generative retrieval.

Compared to dense retrieval that relies on the
dual-encoder architecture, generative retrieval is
promising to overcome the missing fine-grained
interaction problem via the encoder-decoder
paradigm. However, as a recently proposed tech-
nique route, generative retrieval still lags behind the

state-of-the-art dense retrieval method and leaves
much scope to investigate.

3 Method

Given a query text q, the retrieval system is required
to retrieve a list of passages p1, p2, . . . , pn, from a
corpus C. Both queries and passages are a sequence
of text tokens. Besides, there are k relevant query-
passage pairs {qi, pi}k for training, where pi ∈ C.

3.1 Multiview Identifiers

For all passages in the corpus C, we assign them
multiview identifiers, including the titles, sub-
strings, and pseudo-queries. These different types
of identifiers could represent a passage from differ-
ent perspectives.

Title. A title is usually a very short string that
indicates the subject of a passage. Titles have
been verified as effective identifiers in page-level
retrieval. We denote a title as t for a passage p and
select it as one view of identifiers in our work.

Substrings. For a query, some substrings in the
relevant passage are also semantically related. For
example, for the query “Who is the singer of does
he love you?” in Figure 1, the substring “recorded
as a duet by” is corresponding to the “Who is the
singer of” in the query. For implementation, we
directly store the whole content of the passage,
denoted as S, and sample substrings from S for
model training.

Pseudo-queries. In this work, we generate
pseudo-queries for a passage as synthetic identi-
fiers to augment the title and substrings. Since
pseudo-queries are generated based on the content
of the passages, these synthetic identifiers could
integrate multiple segments and contextualized in-
formation. For example, as shown in Figure 1, the
pseudo-query "What is the first song in the album
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Greatest Hits Volume Two about?" covers multiple
sentences in the passage.

We first use the labeled query-passage pairs
{qi, pi}k to train a query generation model QG.
And then we generate a set of queries with top-k
sampling strategy to encourage the query genera-
tion diversity. For each passage p in corpus C, we
generate pseudo-queries Q as follows,

Q = QG(p). (1)

As such, for each passage in C, we have obtained
three views of identifiers {t,S,Q}. These identi-
fiers could well represent a passage’s content from
different views.

3.2 Model Training
We train an autoregressive language model (de-
noted as AM) like BART (Lewis et al., 2020) or
T5 (Raffel et al., 2020) to generate corresponding
identifiers using the standard sequence-to-sequence
loss. The input is the query text along with an iden-
tifier prefix, and the target is the corresponding
identifier of the relevant passage, formulated as:

identifier = AM(prefix; q). (2)

The prefix text is “title”, “substring”, and
“pseudo-query”, for the three different views, re-
spectively. For the title view, the target text is the
title t of the relevant passage. For the substring
view, we randomly select a substring s from S
as the target text. And to guarantee the seman-
tic relevance between the input and the target, we
only keep those substrings with a high character
overlap with the query. As for the query view, we
randomly select a pseudo-query pq from Q as the
target. Since both the user query q and the pseudo-
query pq are conditioned on the same passage, they
are usually about the same subject and even are
different forms of the same question. The three
different training samples are randomly shuffled to
train the autoregressive model.

3.3 Model Inference
In this section, we detail how to retrieve passages
using the trained autoregressive model, AM.

FM-index. MINDER requires a data structure
that can support generating valid identifiers. Fol-
lowing the work (Bevilacqua et al., 2022), we use
the FM-index (Ferragina and Manzini, 2000) to
store all types of identifiers. For easy understand-
ing, FM-index could be regarded as a special prefix

tree that supports search from any position. Specif-
ically, we flatten multiview identifiers into a se-
quence of tokens with special split tokens. For
example, the identifiers of the passage in Figure 1
are flattened into “<TS> Does He Love You <TE>
Does He Love You is a song written by Sandy Knox
and Billy Stritch, and recorded as ..., <QS> Who
wrote the song does he love you? <QE> <QS>
Who sings does he love you? ...”, where “<TS>,
<TE>, <QS>, <QE>” are special tokens indicat-
ing the start and end of different types of identi-
fiers. Given a start token or a string, FM-index
could provide the list of possible token successors
in O(V log(V )), where V is the vocabulary size.
Therefore, we could force the AM model to gener-
ate valid identifiers.

Constrained generation. Upon the FM-index,
MINDER could generate valid identifiers via con-
strained generation. For the title view, we input the
prefix text “title” and query text into the AM model,
and force it to generate from the token “<TS>”. As
such, MINDER could generate a set of valid titles
via beam search, denoted as Tg. For the substring
view, the AM model receives the prefix “substring”
and query as input, and generates substrings Sg via
constrained beam search. Similarly, the AM model
could generate valid pseudo-queries Qg with the
start token “<QS>” and end token “<QE>”. We
also save the language model scores for each gener-
ated text and utilize them in the following passage
ranking stage. Notably, the language model score
for a string is influenced by its length, which makes
long strings, like pseudo-queries, have lower scores.
Therefore, we add a biased score for the pseudo-
query view to offset the influence.

Passage ranking. Previous generative retrieval
methods (Tay et al., 2022; De Cao et al., 2020)
could rank items directly using the constrained
beam search, since their identifiers could map to
passages one-to-one. Differently, MINDER consid-
ers multiview identifiers to rank passages compre-
hensively. To address this issue, we propose a novel
scoring formulation that aggregates the contribu-
tions of multiview identifiers. Each passage’s score
is holistically computed according to its coverage
with the predicted identifiers, Tg, Sg, and Qg.

We follow the work (Bevilacqua et al., 2022) to
rank passages with the generated identifiers. For a
passage p, we select a subset Ip from the predicted
identifiers. One identifier ip ∈ {Tg, Sg, and Qg}
is selected if ip occurs at least once in the identi-
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fiers of passage p. To avoid repeated scoring of
substrings, we only consider once for substrings
that overlapped with others. Finally, the rank score
of the passage p corresponding to the query q is
formulated as the sum of the scores of its covered
identifiers,

s(q, p) =
∑

ip∈Ip
sip , (3)

where sip is the language model score of the identi-
fier ip.

According to the rank score s(q, p), we could
obtain a rank list of passages from the corpus C.
In practice, we could use the FM-index to con-
veniently find those passages that contain at least
one predicted identifier rather than score all of the
passages in the corpus.

4 Experiments

4.1 Datasets
We conducted experiments on widely-used
NQ (Kwiatkowski et al., 2019) and TriviaQA (Joshi
et al., 2017) datasets with the DPR (Karpukhin
et al., 2020) setting. NQ and TriviaQA are open-
domain QA datasets, where the queries are natu-
ral language questions and the passages are from
Wikipedia. Each page in Wikipedia is chun-
ked into several passages with no more than 100
words. Therefore, several passages may share the
same Wikipedia title. Besides, we also evaluated
generative retrieval methods on the MSMARCO
dataset (Nguyen et al., 2016). MSMARCO is
sourced from the Web search scenario, where
queries are web search queries and passages are
from Web pages.

4.2 Baselines
We compared MINDER with the generative re-
trieval methods, DSI (Tay et al., 2022) and
SEAL (Bevilacqua et al., 2022). GENRE (De Cao
et al., 2020) was excluded because it relies on
unique titles of documents and thus cannot perform
passage-level retrieval. Besides, we also included
the term-based method, BM25, DPR (Karpukhin
et al., 2020), and GAR (Mao et al., 2021) for com-
parison. Most of the results of baselines are from
their paper, and the rest are reproduced by using
publicly released code.

4.3 Implementation Details
For a fair comparison with previous work (Bevilac-
qua et al., 2022), we utilized the BART-large as

the backbone. We finetuned the model using train-
ing samples, title, substrings, and pseudo-queries,
with the portion of 3:10:5. Inspired by SEAL that
exposes the model to more possible pieces of evi-
dence, we also add some “unsupervised” examples
to the training set. In each of these examples, the
model takes as input a random pseudo-query and
generates the corresponding passage’s identifiers.
We discuss its influence in Section 4.7. Lewis
et al. have generated pseudo-queries for half of
the passages on Wikipedia. Therefore, we gen-
erate queries for another half of the passages on
Wikipedia. And for the MSMARCO corpus, we
take the pseudo-queries from the work (Nogueira
et al., 2019).

We trained MINDER with the fairseq1 frame-
work. We adopted the Adam optimizer with a
learning rate of 3e-5, warming up for 500 updates,
and training for 800k total updates. Detailed train-
ing hyperparameters are illustrated in Appendix A
for better reproduction. The experiments are con-
ducted on 8×32GB NVIDIA V100 GPUs.

4.4 Retrieval Results on QA

The retrieval performance on NQ and TriviaQA is
summarized in Table 1. By jointly analyzing the
results, we gained the following findings.

(1) Among the generative retrieval methods,
MINDER achieves the best performance. We found
that SEAL which takes natural identifiers surpasses
DSI based on numeric identifiers. This is because
numeric identifiers lack semantic information and
DSI requires the model to memorize the mapping
from passages to their numeric IDs. As such, it
becomes more challenging for DSI on the NQ and
TriviaQA datasets with more than 20 million pas-
sages. Despite the superiority of SEAL, MINDER
still outperforms it. Specifically, the improvements
in terms of hits@5 are 4.5% and 1.6% on NQ and
TriviaQA, respectively. This verifies the effective-
ness of our proposed multiview identifiers, which
could rank passages from different perspectives.

(2) On NQ, MINDER achieves the best perfor-
mance in terms of hits@100 and the second-best
results in terms of hits@5, 20. However, generative
retrieval methods, including MINDER, perform
worse than dual-encoder approaches on TriviaQA.
Generative retrieval methods rely on the identifiers
to represent passages, and cannot “see” the con-
tent of the passage. Although the QG module in

1https://github.com/facebookresearch/fairseq.
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Methods
Natural Questions TriviaQA

@5 @20 @100 @5 @20 @100

BM25 43.6 62.9 78.1 67.7 77.3 83.9
DPR(Karpukhin et al., 2020) 68.3 80.1 86.1 72.7 80.2 84.8

GAR(Mao et al., 2021) 59.3 73.9 85.0 73.1 80.4 85.7
DSI-BART(Tay et al., 2022) 28.3 47.3 65.5 - - -

SEAL-LM(Bevilacqua et al., 2022) 40.5 60.2 73.1 39.6 57.5 80.1
SEAL-LM+FM(Bevilacqua et al., 2022) 43.9 65.8 81.1 38.4 56.6 80.1

SEAL(Bevilacqua et al., 2022) 61.3 76.2 86.3 66.8 77.6 84.6
MINDER 65.8† 78.3† 86.7† 68.4† 78.1† 84.8†

Table 1: Retrieval performance on NQ and TriviaQA. We use hits@5, @20, and @100, to evaluate the retrieval
performance. Inapplicable results are marked by “-”. The best results in each group are marked in Bold, while the
second-best ones are underlined. † denotes the best result in generative retrieval.

Methods
MSMARCO

R@5 R@20 R@100 M@10

BM25 28.6 47.5 66.2 18.4
SEAL 19.8 35.3 57.2 12.7

MINDER 29.5 53.5 78.7 18.6
only pseudo-query 24.9 48.9 72.5 15.5

only substring 18.7 38.7 64.9 11.5
only title 9.8 19.3 30.1 5.5

Table 2: Retrieval performance on the MSMARCO
dataset. R and M denote Recall and MRR, respectively.
SEAL and MINDER are trained only with labeled query-
passage pairs.

our work generates pseudo-queries based on a pas-
sage’s content, the autoregressive language model
AM still cannot directly “see” the original content
of the passage. Besides, autoregressive generation
has the error accumulation problem. These are
the disadvantages of generative retrieval and why
it may not perform as well as dense retrievers in
some scenarios.

4.5 Retrieval Results on Web Search

Previous generative retrieval works (Tay et al.,
2022; Bevilacqua et al., 2022) only verified the
effectiveness on open-domain QA datasets, like
NQ320k and NQ, but did not evaluate under the
Web search scenario. To deeply analyze genera-
tive retrieval, we conducted experiments on the
MSMARCO dataset and reported the results in
Table 2. Notably, we tried to implement DSI on
MSMARCO but achieved poor performance. This
may be due to the large-scaling problem of DSI,
which requires a huge amount of GPU resources to
work on a large-scale corpus.

By analyzing the results in Table 2, we found:
1) Different from the results on the QA datasets,

Methods
Natural Questions

@5 @20 @100

only query 59.0 72.5 80.9
only substring 60.2 74.3 84.5

only title 60.4 74.9 84.1

w/o pseudo-query 63.4 77.2 86.1
w/o substring 63.1 77.0 85.0

w/o title 63.9 76.6 85.3

MINDER 65.8 78.3 86.7

Table 3: Ablation study on different views of identifiers.
We use “w/o query”, “w/o substrings”, and “w/o title” to
respectively denote new models without considering the
query flow, substrings, and title as identifiers. We also
evaluate MINDER with only one view of the identifier.

SEAL performs worse than BM25 under the Web
search scenario. Queries in Web search may only
contain several keywords, which makes it hard for
SEAL to learn the semantic correlation between
queries and the substrings of passages. 2) MIN-
DER surpasses SEAL and achieves a bigger perfor-
mance improvement compared with the results on
the QA datasets. This benefits from the multiview
identifiers, which improve MINDER’s robustness
under various scenarios. 3) MINDER outperforms
BM25, particularly in terms of Recall@100. MIN-
DER could recall passages from three different
views, and thus achieves a better performance in
Recall@100 than Recall@5.

4.6 Ablation Study

MINDER considers multiple types of identifiers:
titles, substrings, and pseudo-queries. 1) Do the
three views of identifiers all contribute to MIN-
DER? 2) how much help does MINDER gain from

6641



NQ MSMARCO

40

60

80
h
it
s@
1
0
0

 pseudo-query

 substring

 titlesubstring > title > pseudo-query

pseudo-query > substring > title

Figure 3: Illustrating the roles of various identifier views
in different search scenarios.

Methods
Unsupervised

data
Natural Questions

@5 @20 @100

SEAL % 58.9 74.8 85.4
SEAL span as queries 61.3 76.2 86.3
SEAL pseudo-queries 61.2 76.8 85.7

MINDER % 64.6 76.8 86.4
MINDER span as queries 65.9 78.3 86.7
MINDER pseudo-queries 65.8 78.3 86.7

Table 4: Retrieval performance with different unsu-
pervised data. “span as queries” and “pseudo-queries”
means taking a span from the passage or a pseudo-query
as the input, respectively.

Methods
Natural Questions

@5 @20 @100

MINDER+ID view 64.6 77.1 86.1
MINDER 64.6 76.8 86.4

Table 5: Evaluation of numeric identifiers as one view
identifier in MINDER. Both two variants are trained
only with labeled query-passage pairs.

the three different identifiers? 3) Is there any dif-
ference among different datasets? To answer these
questions, we conducted experiments by eliminat-
ing one type of identifier each time. The results
are illustrated in Table 2 and Table 3. To better
demonstrate the functions of different views on dif-
ferent datasets, we kept only one view identifier
and reported results in Figure 3.

From the results, we gained the following in-
sights. (1) No matter which view of identifiers
is removed from MINDER, the performance sig-
nificantly declines. In terms of hits@5, the de-
cline is 2.4%, 2.7%, and 1.9%, while eliminating
the pseudo-query view, substring view, and title
view, respectively. This clearly reveals that all three
views of identifiers contribute to the system’s per-
formance, and verifies the necessity to adopt multi-
view identifiers simultaneously. (2) Besides, com-

BS @5 @20 @100

TriviaQA

5 66.9 77.1 83.8
10 67.8 77.9 84.6
15 68.4 78.1 84.8
20 68.4 78.4 84.8

MS
MARCO

5 29.4 52.9 78.4
10 29.4 53.9 79.3
15 29.1 53.7 79.6
20 27.8 52.8 79.8

Table 6: Retrieval performance of MINDER with beam
size values in {5, 10, 15, 20}.

paring the three types of identifiers, we found that
eliminating the substring view degrades the most
on NQ. This may be due to the fact that the sub-
strings could cover the most content of a passage.
Although the “only title” and “only pseudo-query”
variants perform worse than the substring view,
they could complement each other and significantly
improve the overall performance. 3) Comparing the
results on NQ and MSMARCO, we found different
views played different roles in different search sce-
narios. As illustrated in Figure 3, the substring view
is vital on NQ while the pseudo-view contributes
the most on MSMARCO. This is determined by the
different natures between the QA and Web search
scenarios. And it verifies the necessity to adopt
multiview identifiers again.

4.7 In-depth Analysis
Unsupervised Data. Besides the labeled query-
passage pairs, we also trained MINDER using
pseudo-queries. SEAL conducted unsupervised
data by randomly selecting a span from a passage
as the input. (1) Are the unsupervised data useful
for the training? (2) Which kinds of unsupervised
data contribute most? We conducted experiments
by using different kinds of unsupervised data, and
the results are illustrated in Table 4. We found
that both kinds of unsupervised data improve upon
purely supervised training. Specifically, the per-
formance gets improved by 2.3 and 1.2 points in
terms of hits@5 for SEAL and MINDER respec-
tively. There is no significant gap between the two
kinds of unsupervised data. We think the unsu-
pervised training mainly exposes passages to the
model, and both two ways could meet this goal.

Numeric Identifiers. MINDER adopts multi-
view identifiers, including titles, substrings, and
pseudo-queries, which are all semantic text. We
excluded numeric identifiers in MINDER, because
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Query Predicted Identifiers Relevant Passages

Question on NQ: 
Who got the first nobel
prize in physics? 

Title view 
1. Alfred Nobel 
2. Ernest Rutherford
3. Alfred Marshall

Title: Nobel Prize in Physics
Body: Nobel Prize in Physics  is a yearly award given by the Royal Swedish Academy
of Sciences for those who have made the most outstanding contributions for mankind in
the field of physics. It is one of the five Nobel Prizes established by the will of Alfred
Nobel in 1895 and awarded since 1901; the others being the Nobel Prize in Chemistry,
Nobel Prize in Literature, Nobel Peace Prize, and Nobel Prize in Physiology or
Medicine. The first Nobel Prize in Physics was awarded to physicist Wilhelm Conrad
Rntgen in recognition of the extraordinary services he  
Pseudo-queries: || who founded the nobel peace prize  || who founded the nobel peace
prize in 1901 || how many nobel prizes are there || who won the first nobel prize for
physics || in which year was the nobel prize for physics established || in which year was
the first nobel prize for physics awarded || what is the name of the nobel prize for
physics || who won the first nobel prize in physics || who founded the nobel prize for
physics || when was the nobel prize for physics established || when was the first nobel
prize for physics awarded || in which year was the nobel prize for physics ......

Substring view 
1. first Nobel Prize in Phys  
2. first Nobel Prize in Physiology  
3. first Nobel Prize in Physiology or 

Pseudo-query view 
1. who won the first nobel prize for
physics 2. who won the first nobel prize
in physics 3.when was the first nobel
prize for physics awarded

Query on
MSMARCO:  
Androgen receptor
define

Title view 
1. Androgen receptor 2. Definitions
&Translations 3. difference between a
gene and an allele?

Title: Androgen receptor 
Body: The androgen receptor (AR), also known as NR3C4 (nuclear receptor subfamily
3, group C, member 4), is a type of nuclear receptor that is activated by binding either of
the androgenic hormones, testosterone, or dihydrotestosterone in the cytoplasm and then
translocating into the nucleus.n some cell types, testosterone interacts directly with
androgen receptors, whereas, in others, testosterone is converted by 5-alpha-reductase
to dihydrotestosterone, an even more potent agonist for androgen receptor activation.  
Pseudo-queries: || what kind of androgen does a receptor || androgen receptors
definition || what is ar receptor || what is androgen receptor || where is nr3c4 receptor || is
testosterone a nuclear receptor || what types of receptors do a nr3c4 receptor have || what
is ar receptor || what is the function of androgen receptors || what kind of receptor for
testosterone|| what is androgen receptor || what type of androgen receptors activate
testosterone || what is the name of the androgen receptor  ......

Substring view 
1. androgen receptor   2. androgen
receptors 3. androgen receptor (AR 

Pseudo-query view 
1. androgen receptor definition 
2. what is the function of androgen
receptors 3. what is the function of
androgen receptor

Figure 4: Case study. Two cases from NQ and MSMARCO. For the predicted identifiers from MINDER, we show
three top-scored predictions for the title view, body view, and pseudo-query view, respectively. The predicted
identifiers that occur in relevant passages are colored in red.

IDs are numbers and lack semantic information.
As such, numeric identifiers require extra steps to
memorize the mapping from passages to IDs. For
exploration, we also added the ID view in MIN-
DER and reported the results in Table 5. It is
observed that there is no big difference in perfor-
mance after including numeric identifiers. On the
one hand, numeric identifiers are weak at large-
scale corpus. Therefore, the ID view cannot con-
tribute to MINDER on the NQ dataset. On the other
hand, numeric identifiers fail to provide extra infor-
mation to complement the three views identifiers
in MINDER.

Beam Size. MINDER relies on beam search
to predict a set of identifiers, and then these pre-
dicted identifiers are mapped as ranked passages.
To evaluate the influence of beam size, we con-
ducted experiments and reported results in Table 6.
The results suggest that a bigger beam size, like 15
or 20, could achieve a better performance in terms
of hits@100 on both two datasets. As for the top-
ranked evaluation, TriviaQA prefers a bigger beam
size, but MSMARCO requires a smaller one. One
possible reason is that there are too many similar
passages on MSMARCO and a bigger beam size
introduces more noise.

Inference speed. On our equipment, MINDER
takes about 135 minutes to complete the inference

process on the NQ test set, while SEAL takes about
115 minutes. Both of them apply the same beam
size of 15. MINDER requires 1.2 times more infer-
ence time than SEAL on our equipment, due to the
increased identifier views.

4.8 Case Study

To qualitatively illustrate why MINDER works,
we analyzed the prediction results on NQ and MS-
MARCO in Figure 4. (1) It is observed that pseudo-
queries are sufficient and could cover almost poten-
tial queries. In the first example, given the question
“Who got the first nobel prize in physics?”, MIN-
DER generates either the same meaning question
“who won the first nobel prize for physics” or an-
other question about the same subject “when was
the first novel prize for physics award”. These
predicted queries accurately locate the relevant pas-
sage. (2) As for the substring view, MINDER tends
to generate almost the same ones. These substrings
are not much distinctive and could be found in
several passages of the corpus. This may be the
reason why the substring view cannot work well
on MSMARCO.

5 Conclusion and Future Work

In this work, we present MINDER, a novel retrieval
system that combines an autoregressive language
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model with multiview identifiers. We find pseudo-
queries are admirable identifiers that could work
on different search scenarios. More importantly,
MINDER simultaneously utilizes multiple types of
identifiers, including titles, substrings, and pseudo-
queries. These different views of identifiers could
complement each other, which makes MINDER
effective and robust in different search scenarios.
The experiments on three widely-used datasets il-
lustrate MINDER achieves the best performance in
generative retrieval.

In the future, we aim to improve MINDER from
the following aspects.MINDER adopts a heuris-
tic function to aggregate predicted identifiers and
rank passages. The heuristic rank function relies
on manual hyper-parameters to balance different
views of identifiers, which may not be suitable for
all samples. As such, we are motivated to integrate
the rank process into an auto-learned neural net-
work. Besides, we plan to apply MINDER on more
search domains, like the few-shot retrieval setting.
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A Training Hyperparameters

Name Value

arch bart_large
task translation

criterion label_smoothed_cross_entropy
weight-decay 0.01

optimizer adam
lr-scheduler polynomial_decay

lr 3e-05
total-num-update 800000

patience 5

Table 7: Hyperparameters to train MINDER using the
fairseq.

For better reproduction, we detail the training
hyperparameters in Table 7. We train our model
for serval runs with the fairseq, and the results of
the different runs are reported in Table 8.

# Run
Natural Questions

@5 @20 @100

1 66.2 78.6 86.9
2 66.2 78.6 86.9
3 65.8 78.3 86.7
4 64.8 78.6 86.7

Table 8: Results of MINDER on NQ for different runs.
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