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Abstract

Semantic matching is a mainstream paradigm
of zero-shot relation extraction, which matches
a given input with a corresponding label
description. The entities in the input should
exactly match their hypernyms in the descrip-
tion, while the irrelevant contexts should be
ignored when matching. However, general
matching methods lack explicit modeling of
the above matching pattern. In this work,
we propose a fine-grained semantic matching
method tailored for zero-shot relation extrac-
tion. Following the above matching pattern, we
decompose the sentence-level similarity score
into entity and context matching scores. Due to
the lack of explicit annotations of the redundant
components, we design a feature distillation
module to adaptively identify the relation-
irrelevant features and reduce their negative
impact on context matching. Experimental
results show that our method achieves higher
matching F1 score and has an inference speed
10 times faster, when compared with the state-
of-the-art methods.

1 Introduction

Relation extraction (RE) is a fundamental task
of natural language processing (NLP), which
aims to extract the relations between entities in
unstructured text. Benefitting from high-quality
labeled data, neural relation extraction has achieved
superior performance (Han et al., 2020; Wu and He,
2019a; Zhao et al., 2021). However, it is expensive
and even impractical to endlessly label data for a
fast-growing number of new relations.

In order to deal with the emerging new relations
that lack labeled data, zero-shot relation extraction
(ZeroRE) has recently attracted more attention.
Levy et al. (2017) frame the ZeroRE as a slot-filling
task solved in a question-answering way. Each
relation is associated with a few question templates.

*Equal Contributions.
†Corresponding authors.
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Figure 1: An example of the matching pattern of
relational data. The input sentence contains a given
entity pair, which should match the corresponding
hypernyms (usually the entity type). The context
describes the relations between entities, containing
relation-irrelevant redundant information, which should
be ignored when matching.

However, the templates are expensive and time-
consuming to build (Chen and Li, 2021). Oba-
muyide and Vlachos (2018) simplify the templates
to readily available relational descriptions and
reformulate ZeroRE as a semantic matching task.
Recently, pretrained model based ZeroRE methods
have achieved great success. Siamese scheme and
full encoding scheme are two mainstream methods
for matching semantics. The siamese scheme
separately encodes the input and description
(Chen and Li, 2021). Therefore, the encoded
representations of descriptions can be both stored
and reused for each input, resulting in a fast
inference. However, insufficient interaction during
encoding also limits the matching performance. By
contrast, the full encoding scheme performs self-
attention over the pair to enrich interaction (Sainz
et al., 2021), although the performance increase
comes with a computational overhead. (For m
inputs and n descriptions, the siamese scheme
requires m + n encodings, while the number is
m × n for full encoding). An approach that
combines the advantages of both can be attractive.

Unlike ordinary sentence pairs, relational data
has a unique matching pattern, which is not
explicitly considered by general matching methods.
As shown in fig. 1, the entities in the input should
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exactly match their hypernyms in the description
(e.g., Apple and organization). Meanwhile, not all
contextual words contribute equally to the relation
semantics. For example, the clause “is a great
company” is only used to modify Apple instead
of expressing the relationship between Apple and
California. Such redundant components should be
ignored when matching. Due to the lack of explicit
annotations to the redundant components, it is non-
trivial for the model to learn to identify them.

In this work, we propose a fine-grained se-
mantic matching method that improves both the
accuracy and speed over the current state-of-the-
art. Specifically, we decouple encoding and
matching into two modules. While the encoding
module follows a siamese scheme for efficiency,
the matching module is responsible for the fine-
grained interaction. Following the matching pattern
of relational data, the sentence-level similarity
score is decomposed into two: entity matching
and context matching scores. To deal with the
redundant components without explicit annotations,
we design a feature distillation module. Context
features that maximize a classification loss are
identified as relation-irrelevant features. Then,
the context representations are projected into
the orthogonal space of the features to improve
context matching. Experimental results show that
this method outperforms state-of-the-art (SOTA)
methods for ZeroRE, in terms of both accuracy and
speed. Our codes are publicly available*.

The main contributions are three-fold: (1) We
propose a fine-grained semantic matching method
for ZeroRE, which explicitly models the matching
pattern of relational data; (2) We propose a
context distillation method, which can reduce
the negative impact of irrelevant components on
context matching; (3) Experimental results show
that our method achieves SOTA matching F1 score
together with an inference speed 10 times faster.

2 Related Works

Text semantic matching aims to predict a matching
score that reflects the semantic similarity between
a given pair of text sequences. The approaches
used to calculate the matching score roughly fall
into one of two groups. The first group uses a
siamese scheme, which separately maps the pair
of text sequences into a common feature space
wherein a dot product, cosine, or parameterized

*https://github.com/zweny/RE-Matching

non-linearity is used to measure the similarity (Bai
et al., 2009; Huang et al., 2013; Zamani et al., 2018;
Wu et al., 2018; Chen and Li, 2021). The second
group adopts a full encoding scheme, in which
the concatenation of the text pair serves as a new
input to a nonlinear matching function. Neural
networks with different inductive biases are used
to instantiate the matching function (Wu et al.,
2017; Yang et al., 2018; Zhang et al., 2018). More
recently, large-scale pretrained language models
such as BERT (Devlin et al., 2019), RoBERTa
(Liu et al., 2019) are introduced to yield richer
interactions between the text pair, to improve
semantic matching.

Unlike the general matching methods, the
proposed method is designed to be specifically
used for relational data. By explicitly modeling
the matching pattern, our method achieves SOTA
performance while decreasing the computational
cost by an order of magnitude compared with a full
encoding scheme (as the more candidate relations
exist, the more cost decreases).

3 Approach

In this work, we propose a fine-grained semantic
matching method tailored for relational data. To
facilitate inference efficiency, we adopt a siamese
scheme to separately encode the input and the
candidate relation descriptions. To explicitly
model the matching pattern of relational data, we
decompose the matching score into entities and
contexts matching scores. In addition, we design a
context distillation module to reduce the negative
impact of irrelevant components in the input on
context matching.

3.1 Task Formulation and Method Overview

Task Formulation: In Zero-shot relation extrac-
tion (ZeroRE), the goal is to learn from the seen
relations Rs = {rs1, rs2, ..., rsn} and generalize to
the unseen relations Ru = {ru1 , ru2 , ..., rum}. Such
two sets are disjoint, i.e., Rs ∩Ru = ∅ and only
the samples of the seen relations Rs are available at
the training phase. Following Chen and Li (2021),
we formulate ZeroRE as a semantic matching
problem. Specifically, given the training set D =
{(xi, ei1, ei2, yi, di)|i = 1, .., N} with N samples,
consisting of input instance xi, target entity pair
ei1 and ei2, relation yi ∈ Rs and its corresponding
relation description di, we optimize a matching
model M(x, e1, e2, d) → s ∈ R, where the score s
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Figure 2: Overview of the proposed RE-Matching method. The input instance and candidate relation descriptions
(left side) are separately encoded for efficiency. To model the matching pattern of relational data, we calculate
similarity by entity and context matching (middle). In addition, we design a distillation module to reduce the impact
of irrelevant components (the gray part in the input) on context matching (right side).

measures the semantic similarity between the input
instance x and the relation description d. When
testing, we transfer the matching model M to
extract unseen relations in Ru. Specifically, given a
sample (xj , ej1, ej2) expressing an unseen relation
in Ru, we make prediction by finding the relation
ŷj whose description has the highest similarity
score with the input sample.

Method Overview: We approach the problem
with a fine-grained semantic matching method
tailored for relational data. As illustrated in fig.
2, we decouple encoding and matching into two
modules, explicitly modeling the matching pattern
of relational data while ensuring efficient inference.

The encoding module is designed to extract both
entity and contextual relational information from
an input instance xi and a candidate description d ∈
{drsi |i = 1, .., n}, which lays the groundwork for
fine-grained matching. To enrich the insufficient
entity information in d, we separate the hypernyms
(i.e. entity types) in d and design several methods
to automatically expand them into a complete head
(tail) entity description dh(dt). We adopt a fixed
Sentence-BERT (Reimers and Gurevych, 2019)
to encode the d, dh, dt to their representations
d, dh, dt ∈ Rn, respectively. For input xi, we
use a trainable BERT (Devlin et al., 2019) to
encode its context and entity representation xi, xh

i ,
xt
i ∈ Rn. Because descriptions and instances are

separately encoded, the computational complexity
is reduced from O(mn) to O(m + n), compared
with the full encoding scheme (m,n represent
the number of candidate descriptions and input
instances, respectively).

The matching module is responsible for the
interaction between input xi and description d.
The score of entity matching is directly calculated

with cosine similarity cos(xh
i ,d

h) and cos(xt
i,d

t).
To reduce the impact of redundant information
in xi, the context representation xi is fed into
the distillation module, where xi is projected
into the orthogonal space of irrelevant features to
obtain the refined representation xp

i . The score of
context matching is cos(xp

i ,d). Finally, the overall
matching score is the sum of entity and context
matching scores.

3.2 Input-Description Encoding Module
The encoding module aims to encode the entity
and context information in the input and label
description into fixed-length representations for
subsequent fine-grained matching.

3.2.1 Relation Description Encoder
Each candidate relation corresponds to a natural
language label description d ∈ {drsi |i = 1, .., n}.
For example, the relation headquartered_in cor-
responds to the description “the headquarters of
an organization is located in a place”, and its en-
coded representation d can be used for contextual
matching. However, how an entity description is
constructed (based on d), is important for a high-
quality entity representation. In this subsection, we
explore different ways to automatically construct
and enrich entity description as follows:
Keyword: The entity hypernym (i.e. entity type)
in d is directly used as the entity description.
Take headquartered_in as an example, dh is
“organization” and dt is “place”.
Synonyms: To further enrich the entity informa-
tion, we use the words that mean exactly or nearly
the same as the original hypernym extracted using
Wikidata† and Thesaurus ‡. Then, dh becomes

†https://www.wikidata.org/
‡https://www.thesaurus.com/
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“organization, institution, company”.
Rule-based Template Filling: Inspired by prompt
learning (Liu et al., 2021), a fluent and complete
entity description may stimulate the pretrained
model to output a high-quality entity representation.
The synonym-extended hypernym sequence is
filled into a template with some slots (i.e. the
head/tail entity types including [S], [S], ...), and
dh becomes “the head entity types including orga-
nization, institution, company”. Empirical results
show that expanding all candidate descriptions with
the above template works well. The customized
template design is not the focus of this paper, so
we leave it to future work.

Following (Chen and Li, 2021), we adopt
a fixed sentence-BERT as the implementation
of the relation description encoder f(·), which
encodes the above descriptions into fixed-length
representations, that is f(d) = d ∈ Rd, f(dh) =
dh ∈ Rd, f(dt) = dt ∈ Rd.

3.2.2 Input Instance Encoder
Given an input instance xi = {w1, w2, ..., wn},
in which four reserved special tokens
[Eh], [\Eh], [Et], [\Et] are inserted to mark
the beginning and end of the head entity ei1
and tail entity ei2 respectively. We obtain entity
representation xh

i and xh
i by MaxPool the

corresponding hidden states of entity tokens.
Following (Baldini Soares et al., 2019), the context
representation xi is obtained by concatenating the
hidden states of special token [Eh], [Et].

h1, ...,hn = BERT(w1, ..., wn) (1)

xh
i = MaxPool(hbh , ...,heh) (2)

xt
i = MaxPool(hbt , ...,het) (3)

xi = ϕ(
〈
h[Eh]|h[Et]

〉
), (4)

where ⟨·|·⟩ denotes the concatenation operator.
bh, eh, bt, et denote the beginning and end position
indexes of the head and tail entities respectively.
h[Eh] and h[Et] represent the hidden states of [Eh]
and [Et] respectively. Their corresponding position
indexes are bh − 1 and bt − 1. ϕ(·) denotes a
linear layer with tanh activation, converting the
dimension of

〈
h[Eh]|h[Et]

〉
from 2n back to n.

3.3 Contextual Relation Feature Distillation

Due to the lack of explicit annotations to the
relation-irrelevant components, it is non-trivial for
the model to learn to identify them. This section

introduces how to reduce the negative impact of
the redundant components on context matching.

3.3.1 Relation-Irrelevant Feature Aggregator
Given the output h1, ...,hn of the input instance
encoder, we aggregate the relation-irrelevant fea-
tures through a trainable query code q ∈ Rd as
follows:

(α1, ..., αn) = Softmax(q · h1, ..., q · hn) (5)

x∗
i =

n∑

j=1

αj · hj , (6)

This leads to a immediate question, how do we
make query code q select relation-irrelevant
features from context? Intuitively, it is impossible
for a relational classifier to discriminate the
relations of input instances based on relation-
irrelevant features. Therefore, we introduce
a Gradient Reverse Layer (GRL) (Ganin and
Lempitsky, 2015) and optimize q by fooling the
relational classifier.

probi = Softmax(GRL(x∗
i ) ·W + b) (7)

Lce,i = CrossEntropy(yi, probi), (8)

where W and b are the weights and biases of the
relation classifier. x∗

i goes through a GRL layer
before being fed into the classifier. GRL does not
affect forward propagation but changes the gradient
sign during backpropagation by multiplying −λ.
That is, as the training proceeds, the classifier
is optimized by gradient descent to reduce Lce,i,
while the query code q is optimized by gradient
ascent to increase Lce,i, until no relational features
are included in x∗

i . The effectiveness of GRL has
been verified in many literatures in the past (Ganin
et al., 2016; Zhang et al., 2019).

3.3.2 Relation Feature Distillation Layer
The distillation module aims to reduce the negative
impact of relation-irrelevant components on its rep-
resentation and thus improving context matching.
Given a context representation xi (refer to eq.4),
as well as relation-irrelevant features x∗

i (refer to
eq.6), we achieve the above goal by projecting xi

to the orthogonal space of x∗
i . Specifically, we first

project xi to the direction of x∗
i to find the relation-

irrelevant features x̂i mixed in xi as follows:

x̂i = Proj(xi,x
∗
i ) (9)

Proj(a, b) =
a · b
|b| · b

|b| , (10)
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where Proj(·, ·) denotes the projection operator and
a, b are the input vectors of Proj. Then, we obtain
the refined context representation xp

i by removing
x̂i from xi as follows:

xp
i = xi − x̂i. (11)

Essentially, eqs. 9-11 project xi in the orthogonal
direction of x∗

i . The above process is illustrated in
the right side of fig. 2.

3.4 Fine-Grained Matching and Training
Following the matching pattern of relational data,
we decompose sentence-level matching into entity
matching and context matching. For an input xi
and a candidate relation description d ∈ {drsi |i =
1, .., n}, the entity and context information are
encoded into fixed-length representations (xh

i , xt
i,

xp
i ), and (dh, dt, d), respectively. The matching

score between xi and d is the sum of entity and
context matching scores as follows:

s(xi, d) =α · cos(xh
i ,d

h) + α · cos(xt
i,d

t)

+ (1− 2 · α) · cos(xp
i ,d), (12)

where α is a hyper-parameter and cos(·, ·) denotes
the cosine operator. In order to optimize the above
matching model and avoid over-fitting, we use
margin loss as the objective function.

δi = s(xi, dyi)−max
j ̸=yi

(s(xi, dj)) (13)

Lm,i = max(0, γ − δi), (14)

where γ > 0 is a hyper-parameter, meaning that
the matching score of a positive pair must be higher
than the closest negative pair. The overall training
objective is as follows:

L =
1

N

N∑

i=1

(Lce,i + Lm,i), (15)

where N is the batch size. When testing, the
learned model is transferred to recognize the
unseen relations in Ru, by a match between the
input and the descriptions of the unseen relations.

4 Experimental Setup

4.1 Datasets
FewRel (Han et al., 2018) is a few-shot relation
classification dataset collected from Wikipedia and
further hand-annotated by crowd workers, which
contains 80 relations and 700 sentences in each

type of relation. Wiki-ZSL (Chen and Li, 2021)
is derived from Wikidata Knowledge Base and
consists of 93,383 sentences on 113 relation types.
Compared with the FewRel dataset, Wiki-ZSL has
more abundant relational information but inevitably
has more noise in raw data since it is generated by
distant supervision.

Following Chia et al. (2022), we randomly select
5 relations for validation set, m ∈ {5, 10, 15}
relations as unseen relations for testing set, and
consider the remaining relations as seen relations
for training set. Meanwhile, we randomly repeat
the class selection process 5 times to ensure the
reliability of the experiment results. We report the
average results across different selections.

4.2 Compared Methods
To evaluate the effectiveness of our method,
we make comparisons with a classic supervised
method and state-of-the-art matching-based Ze-
roRE methods. We also compare a recent
competitive seq2seq-based ZeroRE method.
R-BERT (Wu and He, 2019b). A SOTA supervised
RE method. Following Chen and Li (2021), we
adapt it to zero-shot setting by using the sentence
representation to perform nearest neighbor search
and generate zero-shot prediction.
ESIM (Levy et al., 2017). A classical matching-
based ZeroRE method, which uses Bi-LSTM to
encode the input and label description.
ZS-BERT (Chen and Li, 2021). A SOTA siamese-
based ZeroRE method, which adopts BERT as the
encoder to separately encode the input and relation
description. In addition to classification loss, a
metric-based loss is used to optimize representation
space to improve nearest neighbor search.
PromptMatch (Sainz et al., 2021). A SOTA full
encoding-based ZeroRE method, which adopts
BERT to encode the concatenation of input pairs
and model their fine-grained semantic interaction.
REPrompt (Chia et al., 2022). This baseline is a
competitive seq2seq-based ZeroRE method. It uses
GPT-2 to generate pseudo data of these relations to
finetune the model. We use NoGen to denote the
results without data augmentation.

4.3 Implementation Details
We use Bert-base-uncased as the input instance en-
coder, and we adopt a fixed sentence-Bert(Reimers
and Gurevych, 2019) stsb-bert-base as the relation
description encoder. We set AdamW(Loshchilov
and Hutter, 2017) as the optimizer, and 2e− 6 as
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Unseen Labels Method Wiki-ZSL FewRel
Prec. Rec. F1 Prec. Rec. F1

m = 5

R-BERT (Wu and He, 2019b) 39.22 43.27 41.15 42.19 48.61 45.17
ESIM (Levy et al., 2017) 48.58 47.74 48.16 56.27 58.44 57.33
ZS-BERT (Chen and Li, 2021) 71.54 72.39 71.96 76.96 78.86 77.90
PromptMatch (Sainz et al., 2021) 77.39 75.90 76.63 91.14 90.86 91.00
REPrompt(NoGen) (Chia et al., 2022) 51.78 46.76 48.93 72.36 58.61 64.57
REPrompt (Chia et al., 2022) 70.66 83.75 76.63 90.15 88.50 89.30
RE-Matching 78.19 78.41 78.30 92.82 92.34 92.58

m = 10

R-BERT (Wu and He, 2019b) 26.18 29.69 27.82 25.52 33.02 28.20
ESIM (Levy et al., 2017) 44.12 45.46 44.78 42.89 44.17 43.52
ZS-BERT (Chen and Li, 2021) 60.51 60.98 60.74 56.92 57.59 57.25
PromptMatch (Sainz et al., 2021) 71.86 71.14 71.50 83.05 82.55 82.80
REPrompt(NoGen) (Chia et al., 2022) 54.87 36.52 43.80 66.47 48.28 55.61
REPrompt (Chia et al., 2022) 68.51 74.76 71.50 80.33 79.62 79.96
RE-Matching 74.39 73.54 73.96 83.21 82.64 82.93

m = 15

R-BERT (Wu and He, 2019b) 17.31 18.82 18.03 16.95 19.37 18.08
ESIM (Levy et al., 2017) 27.31 29.62 28.42 29.15 31.59 30.32
ZS-BERT (Chen and Li, 2021) 34.12 34.38 34.25 35.54 38.19 36.82
PromptMatch (Sainz et al., 2021) 62.13 61.76 61.95 72.83 72.10 72.46
REPrompt(NoGen) (Chia et al., 2022) 54.45 29.43 37.45 66.49 40.05 49.38
REPrompt (Chia et al., 2022) 63.69 67.93 65.74 74.33 72.51 73.40
RE-Matching 67.31 67.33 67.32 73.80 73.52 73.66

Table 1: Main results on two relation extraction datasets. We report the average results of five runs and the
improvement is significant (using a Wilcoxon signed-rank test; p < 0.05).

the learning rate. Based on the validation set, we
conduct hyper-parameter selection. α is selected
among {0.2, 0.33, 0.4} and λ is selected among
{0.1, 0.3, 0.5, 0.7}. Finally, we set α = 0.33 and
λ = 0.5 for all datasets. The batch size is set to 128.
All experiments are conducted using an NVIDIA
GeForce RTX 3090.

5 Results and Analysis

5.1 Main Results

The results on Wiki-ZSL and FewRel datasets are
reported in tab. 1, which shows that the proposed
method consistently outperforms previous SOTA
methods when targeting at a different number of
unseen relations. Specifically, simple classification
loss only focuses on the discrimination between
known relations, so the supervised method such
as R-BERT fails on ZeroRE. Although ZS-BERT
is designed for ZeroRE, the siamese scheme
limits the word-level interaction between the input
and relation description, leading to suboptimal
performance. By contrast, our method compen-
sates for the shortcoming by explicit modeling
of fine-grained matching patterns of relational

data, thereby outperforming ZS-BERT by a large
margin. Although full encoding scheme such as
PromptMatch can implicitly model fine-grained
interactions through self-attention, the proposed
method is still able to outperform it. One possible
reason is that the relational matching pattern, as
an inductive bias, alleviates the over-fitting to seen
relations in the training set and thus our model has
better generalization. Compared with REPrompt,
which is a seq2seq-based method, our method
achieves better results without using pseudo data
of new relations to fine-tune the model, showing
the superiority of the method.

5.2 Ablation Study

To study the contribution of each component in the
proposed method, we conduct ablation experiments
on the two datasets and display the results in tab.
2. The results show that the matching performance
is declined if the context distillation module is
removed (i.e., w/o Proj), indicating that the relation-
irrelevant information in the context disturbs the
match of relational data, and projection in the
distillation module is effective for reducing this
impact. It is worth noting that entity information
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Dataset Method Prec. Rec. F1

Wiki-ZSL

w/o Proj. 66.13 67.18 66.65
w/o Ent. 41.81 40.46 41.12
w/o both 36.34 36.12 36.23
Ours 67.31 67.33 67.32

FewRel

w/o Proj. 72.35 71.24 71.79
w/o Ent. 49.16 41.51 45.01
w/o both 37.20 32.43 34.65
Ours 73.80 73.52 73.66

Table 2: Ablation study of our method (m = 15).
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Figure 3: Comparison in terms of time consumption
(Bars) and matching F1 (Dotted lines). The fine-grained
matching (pink) improves F1 while maintaining the
efficiency of the siamese scheme (i.e., ZS-BERT).

plays an important role in relational data (see w/o
Ent). Explicitly modeling the matching between
entities and their hypernyms significantly improves
the performance of the model. As two vital
components, when both context distillation and
entity matching are removed (i.e., w/o both), the
matching degenerates into sentence-level matching
and the performance will be seriously hurt.

5.3 Efficiency Advantage

Fig. 3 shows the time consumption and matching
F1 scores on Wiki-ZSL and FewRel datasets. Take
FewRel as an example, each relation contains 700
testing inputs. The siamese scheme (ZS-Bert and
our RE-Matching) separately encodes input and
descriptions and the encoding is run (700 ·m+m)
times. By contrast, the full encoding scheme
(PromptMatch) requires the concatenation of the
text pair to be fed and the encoding is run (700·m2)
times. Clearly, as the number of new relations m
increases, ZS-Bert and our RE-Matching have a
significant efficiency advantage over PromptMatch
that adopts a full encoding scheme. When m = 15,
the inference time can be reduced by more than 10
times. Although our method takes slightly more
time than ZS-BERT, the fine-grained matching
brings a significant F1 improvement. As shown

Model Wiki-ZSL FewRel
FullEncoding→Ours (change) FullEncoding→Ours (change)

BERT 61.95 → 67.32(5.37 ↑) 72.46 → 73.66(1.20 ↑)
RoBERTa 62.58 → 72.86(10.28 ↑) 73.79 → 73.82(0.03 ↑)
DistilBERT 57.05 → 67.41(10.36 ↑) 66.34 → 69.35(3.01 ↑)
DistilRoBERTa 57.46 → 68.14(10.68 ↑) 68.13 → 70.73(2.60 ↑)

Table 3: F1 scores on two datasets. We compare the
fine-grained matching with a full encoding scheme by
varying the backbone to show consistency. Numbers in
bold indicate whether the change is significant (using a
Wilcoxon signed-rank test; p < 0.05).

in tab. 1, when m = 15, our method improves the
F1 score by 33.07% and 36.84% on two datasets
respectively, compared with ZS-BERT.

5.4 Consistency over Various Encoders

In this section, we evaluate the effectiveness of
our method by varying the selection of encoders.
Tab. 3 shows the comparison results between ours
and the full encoding scheme (i.e., PromptMatch)
when m = 15. It can be observed that our method
achieves consistent improvement. PromptMatch
is able to learn the word-level interaction by self-
attention on the input-description pair. However,
the data-driven optimization paradigm usually
learns spurious correlations in data pairs, especially
in noisy data. By contrast, the matching pattern
can be seen as a reasonable inductive bias. Mod-
eling the pattern can reduce the overfitting risk.
Therefore, our method consistently outperforms
PromptMatch, especially on the noisy Wiki-ZSL
(A distantly supervised dataset. See sec. 4.1).

5.5 Error Analysis

What errors of baselines our method is able
to correct? (1) Our method reduces the negative
impact of irrelevant components on context match-
ing by projection. To intuitively show this, we
use the attribution technique (Feng et al., 2018)
to find words that are highly influential to the
context matching score. A visualization case is
shown in fig. 4. When using the projection,
the model pays more attention to entities and
relational phrases instead of irrelevant components
(e.g., held, first, a) to make the prediction. (2)
The entity matching score can provide more
information to distinguish confusing relations.
Taking P59:constellation_of_celestial_sphere as
an example, its F1 is only 0.123 without entity
matching score. In this example, 79.71% of the
incorrect cases are recognized as P361:part_of, due
to the fact that the descriptions of P361 and P59
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Proj

w/o Proj

The FIFA confederations cup is won by brazil and is held in south africa ( for the
first time a FIFA tournament for senior national teams is held in africa ) .

The FIFA confederations cup is won by brazil and is held in south africa ( for the
first time a FIFA tournament for senior national teams is held in africa ) .

Figure 4: Visualization of the impact of words on context matching score. Darker colors indicate greater impact.
The upper/lower sub-figure shows the results with/without projection respectively. The yellow and red boxes identify
the head and tail entities respectively, while the blue box identifies the relational phrases [Relation: Winner].
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Figure 5: Model performance with different γ

are similar (a constellation is described as part of
a celestial sphere). With entity matching, the type
of head and tail entities is constrained and the F1

is improved from 0.123 to 0.950.
What errors need to be addressed in fur-
ther studies? Taking P937:place_of_work and
P19:place_of_birth as examples, the entity pair
type of both relations are person-location. There-
fore, explicitly modeling entity matching does
not lead to further improvement, when compared
with the baselines. In addition, some abstract
relations are difficult to accurately recognize. Take
P460:said_to_be_the_same as an example. Such
abstract relations do not have explicit entity types,
and it is difficult to give a high-quality relation
description. Therefore, the F1 score of P460 is
only 0.03.

5.6 Hyper-parameter Analysis
γ is an important hyper-parameter in our optimiza-
tion objective. It means that the matching score of
the positive pair should be at least γ higher than that
of the negative pairs. In this subsection, we conduct
experiments on two datasets (single class selection
process) to study the influence of the value γ on
matching performance. From fig. 5 we can obtain
the following observation. First, as γ increases
from 0, the model learns the difference between
positive and negative pairs, thus assigning higher
matching scores to input and correct description.
When γ increases to a critical value (i.e., 0.06),
the performance begins to decline gradually. This
indicates that a too-large value makes the model
overfit to known relation in training set, and then

Dataset Method Prec. Rec. F1

Wiki-ZSL
Keyword 62.03 59.12 60.54
Synonyms 65.28 63.53 64.39
Template 67.31 67.33 67.32

FewRel
Keyword 72.01 71.89 71.91
Synonyms 72.24 71.68 71.96
Template 73.80 73.52 73.66

Table 4: Comparison of different construction methods
of entity descriptions (m=15).

lose generalization. Finally, even if γ is increased
to a very large value, the matching does not crash.
This shows that our method has good robustness.

5.7 The Influence of Entity Description

In a description, there are usually only one or two
words that identify the entity type. As shown in
tab. 4, we explore how to build a high-quality
entity representation based on the words for entity
matching. A simple way is to directly encode
the words as entity representation. However,
insufficient entity information limits matching
performance. We further use synonyms to enrich
entity information and improve the F1 score by
3.85% in Wiki-ZSL. In order to further construct
a complete and fluent entity description, we fill
the synonym-extended word sequence into the
template slot. Compared with the original keyword
method, the two operations improve F1 score by
6.78% and 1.75% on the two datasets respectively.

6 Conclusions

In this work, we propose a fine-grained semantic
matching method for ZeroRE. This method ex-
plicitly models the matching pattern of relational
data, by decomposing the similarity score into
entity and context matching scores. We explore
various ways to enrich entity description and thus
facilitating high-quality entity representation. The
context distillation module effectively reduces
the negative impact of irrelevant components on
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context matching. Experimental results show that
our method achieves higher matching F1 score
and has an inference speed 10 times faster when
compared with SOTA methods.

Limitations

Elaborated relation descriptions are the foundation
of the matching-based methods to achieve superior
performance. Although we have proposed some
ways to enrich the entity information in the
descriptions, it is still a promising direction to
explore more diversified and effective ways to
enrich relation description (e.g. ensemble of
multiple descriptions). We leave this as our future
work.
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