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Abstract

Grammatical error correction (GEC) can be
divided into sequence-to-edit (Seq2Edit) and
sequence-to-sequence (Seq2Seq) frameworks,
both of which have their pros and cons. To
utilize the strengths and make up for the short-
comings of these frameworks, this paper pro-
poses a novel method, TemplateGEC, which
capitalizes on the capabilities of both Seq2Edit
and Seq2Seq frameworks in error detection and
correction respectively. TemplateGEC utilizes
the detection labels from a Seq2Edit model, to
construct the template as the input. A Seq2Seq
model is employed to enforce consistency be-
tween the predictions of different templates
by utilizing consistency learning. Experimen-
tal results on the Chinese NLPCC18, English
BEA19 and CoNLL14 benchmarks show the
effectiveness and robustness of TemplateGEC.
Further analysis reveals the potential of our
method in performing human-in-the-loop GEC.
Source code and scripts are available at https:
//github.com/li-aolong/TemplateGEC.

1 Introduction

Grammatical error correction (GEC) is a fundamen-
tal task in natural language processing that focuses
on identifying and correcting grammatical errors
in written text (Ng et al., 2013, 2014). The uti-
lization of GEC is wide-ranging, including but not
limited to, improving the quality of machine trans-
lation (Popović, 2018), increasing the readability
of text (Liao et al., 2020), and assisting non-native
speakers in language proficiency (Knill et al., 2019).
There has been a significant amount of research in
the field of GEC (Yuan and Briscoe, 2016; Bryant
et al., 2017a; Ren et al., 2018; Zhou et al., 2018;
Awasthi et al., 2019; Lai et al., 2022; Gong et al.,
2022; Zhang et al., 2022b), which can be broadly
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Figure 1: TemplateGEC takes the best of both worlds by
utilizing the detection ability of the Seq2Edit framework
and the correction ability of the Seq2Seq framework.

classified into two categories: Sequence-to-Edit
(Seq2Edit) and Sequence-to-Sequence (Seq2Seq).

Seq2Edit GEC typically involves converting a
source sentence into a sequence of editing opera-
tions (Stahlberg and Kumar, 2020; Omelianchuk
et al., 2020). Despite certain limitations, such as
the manual selection of edits and the use of a dic-
tionary (Awasthi et al., 2019; Malmi et al., 2019),
Seq2Edit GEC have specific advantages for gram-
matical error detection due to its high understand-
ing ability (Omelianchuk et al., 2020). Seq2Seq
GEC, on the other hand, which approaches GEC
as a monolingual translation problem (Ge et al.,
2018; Sun et al., 2021), has the advantage of better
generation ability of the corrected sentence. How-
ever, Seq2Seq GEC still encounters the challenge
of over-correction (Park et al., 2020).

In this paper, we propose a novel approach,
named TemplateGEC, to merge both frameworks
and leverage their respective strengths for gram-
matical error detection and correction. The pro-
posed approach, as illustrated in Figure 1, utilizes
a source template to introduce the detection label
from Seq2Edit GEC to Seq2Seq GEC. This enables
the Seq2Seq GEC model to make more accurate
predictions with the assistance of the detection la-
bel. However, the predicted labels from Seq2Edit
models may not always be accurate and may con-
tain errors. To enhance the robustness of the model
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to these inaccurately predicted labels, we propose
incorporating gold labels through consistency learn-
ing. Experimental results on widely-used English
and Chinese GEC benchmarks show the effective-
ness and robustness of TemplateGEC. Additional
analysis reveals its high potential for human-in-the-
loop GEC through the proposed detection template.
Our main contributions are as follows:

• We explore the integration of Seq2Edit and
Seq2Seq GEC, by leveraging their respective
strengths of understanding and generation.

• We propose a detection template to introduce
detection information from Seq2Edit GEC to
Seq2Seq GEC, which allows the model to
make more accurate predictions.

• We introduce a gold label-assisted consistency
learning method to enhance the robustness of
the model to inaccurately predicted labels.

• Our proposed method shows high upper
bounds of utilizing gold labels, which has the
potential to inspire new research in the area of
human-in-the-loop GEC.

2 Related Work

2.1 Sequence-to-Edit GEC

Seq2Edit GEC generally predicts the operation for
each token in a sentence, such as insertion, dele-
tion, etc. LaserTagger (Malmi et al., 2019) trans-
forms a source text into a sequence of token-level
edit operations, which consist of keeping, delet-
ing, adding and swapping. PIE (Awasthi et al.,
2019) reduces the local sequence editing problem
to a sequence labeling setup and utilizes BERT to
non-autoregressively label input tokens with edits.
Stahlberg and Kumar (2020) propose a sequence
editing model named Seq2Edits, in which the pre-
diction target is a sequence of edit operations ap-
plied to the source. GECToR (Omelianchuk et al.,
2020) introduces custom g-transformations in ad-
dition to the conventional edit operations, such
as capitalization change, merging of two tokens,
changing word suffixes and so on. A limitation of
Seq2Edit is that it heavily relies on the manual con-
struction of editing operations. This dependence
on manual curation renders the model less transfer-
able and results in a lower degree of fluency in the
output (Li et al., 2022b). Conversely, its strength
is demonstrated in its ability to effectively perform

error detection (Yuan et al., 2021), which is fa-
cilitated by the accurate prediction of each input
category, as opposed to a focus on text fluency.

2.2 Sequence-to-Sequence GEC

Seq2Seq GEC encodes the erroneous sentence
through the encoder and uses the decoder to gen-
erate each error-free token, which has been well
explored (Liu et al., 2021; Wang et al., 2021; Li
et al., 2022a; Fang et al., 2023a). The seq2Seq
model is more suitable to generate fluent sentences
while the decoding speed of it is slower. Zhao et al.
(2019) employ a copy-augmented framework and
copy unchanged tokens from the sentence pair to
the target sentence. Kaneko et al. (2020) explore
how to effectively incorporate pre-trained knowl-
edge into the encoder-decoder framework. Qorib
et al. (2022) propose a simple logistic regression
method to combine GEC models much more effec-
tively. It is noted that constructing pseudo datasets
is most useful on GEC task, as noise can be eas-
ily injected into error-free sentences automatically,
and receive large pseudo sentence pairs which can
be used to pre-train GEC models (Zhao et al., 2019;
Zhou et al., 2020; Lichtarge et al., 2019; Kiyono
et al., 2020; Yasunaga et al., 2021; Sun et al., 2022;
Fang et al., 2023b).

Previous works have preliminary attempted to
incorporate detection label knowledge into GEC
models in order to improve correction results. Chen
et al. (2020) use error spans and source sentences
as input and output correct spans. Yuan et al. (2021)
take detection labels as auxiliary input and using
for re-ranking. In our work, we propose a simple
and effective way to exploit detection information,
providing a nice alternative for this line of research.

3 TemplateGEC

This section introduces the proposed method as
illustrated in Figure 2. TemplateGEC integrates de-
tection information generated by a Seq2Edit model
and fuses the information into a Seq2Seq model for
model enhancement.

3.1 Definition of Error Detection Label

To incorporate the detection information, we first
acquire the error label for a given input sentence.
This label is then utilized to identify the specific
words or phrases in the sentence that contain gram-
matical errors. Given the source input sentence
x = x1, x2, ..., xN , the error detection label of the
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Figure 2: The overall framework of TemplateGEC.

sentence can be formulated as:

l = l1, l2, ..., lN , ln ∈ {C, I}, (1)

where C denotes correct and I denotes incorrect.
As shown in the left part of Figure 2, the source
sentence is transformed into two detection labels:
a predicted label lp and a gold label lg.

Predicted Label The predicted label represents
the predicted error positions in a sentence obtained
from a detection model. Due to its improved un-
derstanding capabilities, the Seq2Edit architecture
is used to train a language model with a fully-
connected layer as the output layer, which classifies
the source tokens as correct or incorrect. We utilize
the detection component of the Seq2Edit model to
get the predicted label lp, which might contain er-
rors. As shown in Figure 2, there are two detection
errors marked as red in the predicted label lp.

Gold Label The gold label, which will be uti-
lized by our model, indicates the true location of
errors in a sentence. Based on the parallel source
and target pairs, we use ERRANT (Bryant et al.,
2017b) to extract the edits, from which we can
obtain the gold label lg of the source sentence.

3.2 Detection Template Construction
We introduce the detection template which incor-
porates detection information by transforming the
input sentence in a specific manner. This template
is constructed by concatenating a detection prefix
with a modified version of the input sentence, uti-
lizing a specialized token <sep> as a delimiter. The
detection template t can be formulated as:

t = d <sep> x′, (2)

where d and x′ represent the detection prefix and
modified source, respectively. The detection tem-

plate t is utilized as input for the Seq2Seq model,
instead of the original source, as shown in Figure 2.

Detection Prefix The detection prefix is made up
by concatenating the error parts and correspond-
ing ordered special tokens. Error parts represent
the continuous tokens that are labeled as I. A
source sentence may contain multiple error parts,
each comprising a varying number of words. As
shown in Figure 2, there are two error parts anno-
tated by the predicted label that are “answer” and
“the”, while there is only one error part “answer
at” annotated by the gold label, due to the con-
tinuous label of I. We extract all the error parts
E = E1, E2, ..., EI of the source sentence accord-
ing to the detection labels, then we use d to repre-
sent the detection prefix, which can be given by:

d = S1E1S2E2...SIEI , (3)

where Si is the i-th ordered special token. As
shown in Figure 2, the detection prefix dp is made
up of two error parts and their corresponding spe-
cial tokens <S1> and <S2> and so dg is.

Detection Template All the error parts E with
the number of I can divide the source sentence x
into I + 1 correct parts, which can be given by:

x = X0E1X1...XI−1EIXI , (4)

where Xi denotes the i-th correct part of x. Taking
the predicted error parts Ep illustrated in Figure 2
for example, two error parts (“answer” and “the”)
divide the source sentence three parts (“It is dif-
ficult”, “at” and “question”). Then the predicted
modified source sentence x′

p is obtained by replac-
ing the error parts, present in the source sentence,
with corresponding ordered special tokens (“<S1>”
and “<S2>”). The modified source sentence is:

x′ = X0S1X1...XI−1SIXI . (5)

6880



System NLPCC18-Test (ZH) BEA-Dev (EN) CoNLL14-Test 1 (EN) CoNLL14-Test 2 (EN)

P R F0.5 P R F0.5 P R F0.5 P R F0.5

ELECTRA(Yuan et al., 2021) - - - 72.8 46.9 65.6 55.2 39.8 51.2 76.4 40.1 64.7
GECToR (Omelianchuk et al., 2020) - - - 75.4 52.6 69.4 55.8 38.9 51.3 77.4 38.8 64.6
ELECTRA (Our Reproduced) 70.1 37.5 59.7 73.7 41.4 63.8 57.1 36.4 51.3 75.9 34.8 61.4

Table 1: Comparison of detection results for different systems. CoNLL14-Test 1 and 2 refer to different annotations.

Once x′
p is obtained, the predicted template tp is

constructed by concatenating the detection prefix
dp and modified source sentence x′

p. So does tg.

3.3 Gold Label-Assisted Consistency learning

Motivation The proposed template incorporates
detection information in the hope that the model
can more accurately correct errors at the corre-
sponding positions. However, when the detec-
tion information is incorrect, the model may make
wrong modifications to correct words, resulting in a
decrease of model performance. To overcome this
problem and make the model more robust to the
predicted error detection information, we propose
using gold label-assisted consistency learning to
help the model increase consistency in the output of
the predicted detection template and gold detection
template, thus improving the model performance.

Training Objective We adopt a Seq2Seq model
based on the Transformer (Vaswani et al., 2017)
architecture as the backbone of our method. As out-
lined in Section 3.1, we are able to obtain both pre-
dicted and gold detection labels for a given source
sentence. The templates constructed by these types
of labels, represented by tp and tg respectively, are
then fed into the Seq2Seq model as shown in Figure
2. The two losses can be defined as:

Lp = − logP (y|tp;θ);
Lg = − logP (y|tg;θ),

(6)

where θ is the set of parameters to optimize, y is
the target sequence.

Consistency Learning Following Liang et al.
(2021); Wang et al. (2022a), we introduce the con-
sistency loss to our model, which maximizes the
similarity of the output distributions with predicted
and gold detection information. KL divergence is a
measure of the difference between two probability
distributions, which is a non-symmetric measure.
We set KL divergence as our consistency loss to
maximize the consistency between the distributions
of the predictions for tp and tg, thus the consistency

loss Lc is defined as:

Lc =
1

2
[KL(P (y|tp;θ)||P (y|tg;θ))
+KL(P (y|tg;θ)||P (y|tp;θ))].

(7)

This final training loss is:

L =
1

2
(Lp + Lg) + βLc, (8)

where β is a hyper-parameter representing the co-
efficient of consistency loss.

Discussion The two cross-entropy loss items en-
courage the model to generate the corresponding
targets for the templates tp and tg, which make the
model learn how to construct the distributions of
predicted and gold detection templates. Based on
the two distributions, the consistency loss reduces
the distance between the two distributions (Wang
et al., 2022b; Li et al., 2022c; Liu et al., 2023).
By enforcing consistency between predicted and
gold labels, the model can learn more robust and
reliable representations of the dataset, which can
lead to improved performance for the GEC task. In
the inference stage, only predicted detection labels
are used to generate the template tp which is fed
into the model, since the gold detection label is not
available that is suitable for practical application.

4 Experiments

4.1 Error Label Detection
Setup For the English, to obtain the predicted
labels, we train a Seq2Edit model based on ELEC-
TRA (Clark et al., 2020) using the same configu-
rations following Yuan et al. (2021). Additionally,
for the comparison of detection performance, we
treat GECToR (Omelianchuk et al., 2020) as the
detection model. We use the available best-trained
RoBERTa model of GECToR1 to infer the BEA19-
Dev set and CoNLL14-Test set for English, and
NLPCC18-Test for Chinese. We use ERRANT to
extract the predicted labels according to the hy-
potheses of GECToR. For Chinese, as there are

1https://github.com/grammarly/gector
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Configuration English Chinese

Architecture Transformer-large BART-large T5-large Transformer-large BART-large
Epochs 30 20 5 30 10
Max Tokens 16384 4096 2048 8192 2048
Learning Rate 5×10−4 1×10−5 1×10−3 5×10−4 3×10−5

Optimizer Adam (Kingma and Ba, 2015)
(β1 = 0.9, β2 = 0.98, ϵ = 1× 10−6)

Adafactor
(Shazeer and Stern, 2018)

Adam (Kingma and Ba, 2015)
(β1 = 0.9, β2 = 0.98, ϵ = 1× 10−6)

Warmup 4000 8000 4000 2000 2000
Loss Function label smoothed cross entropy (label-smoothing=0.1) (Szegedy et al., 2016)
Dropout 0.1 0.3 0.3 0.1 0.3
Beam Size 5 5 5 12 12

Table 2: Hyper-parameters of English and Chinese GEC Experiments.

Language Corpus Train Dev Test

English cLang-8 2,372,119 - -
English WI, LOCNESS - 4,384 4,477
English CoNLL-14 - - 1,312
Chinese NLPCC18 1,377,172 - 2,000
Chinese MuCGEC - 2,467 -

Table 3: Statistics of the used datasets for GEC.

no public detection results for NLPCC18-Test, we
train the same Chinese Seq2Edit model as the En-
glish experiment to obtain the predicted labels. Be-
sides, ERRANT is used to extract the gold detec-
tion labels from all the training data.

Comparasion Results As shown in Table 1, the
results of ELECTRA we reproduced are lower than
the other two models for English datasets. Based
on the superior performance of the GECToR model
on the BEA-Dev set and CoNLL14-Test 1 set, as
well as its proximity to the best results of another
dataset, we select GECToR as the detection model
for obtaining the detection labels.

Error Label Preparation Based on the results,
we use the open-sourced GECToR model to detect
all the English data and our reproduced ELECTRA
model to produce predicted labels for Chinese data.
Gold labels are extracted by ERRANT.

4.2 Grammatical Error Correction
Dataset For the English, we use cLang-8 (Rothe
et al., 2021) as training data, which is a clean
version of the original Lang-8 corpus (Mizumoto
et al., 2011; Tajiri et al., 2012). Following Yuan
et al. (2021), we use BEA-Dev (Bryant et al.,
2019) and BEA-Test as the development and test
datasets, both of which consist of W&I (Yan-
nakoudakis et al., 2018) and LOCNESS (Granger,
2014). Additionally, we include the CoNLL14-
Test set (Ng et al., 2014) in the test dataset. For the

Chinese, following Zhang et al. (2022b), we use
NLPCC18-Train (Zhao et al., 2018) as the training
set, MuCGEC-Dev (Zhang et al., 2022a) as the de-
velopment set and NLPCC18-Test as the test set.
Table 3 shows the statistics of the used datasets.

Model The models we use are based on Trans-
former (Vaswani et al., 2017) architecture. For
English, Transformer-large, BART-large (Lewis
et al., 2020) and T5-large (Raffel et al., 2020) are
first used as our baseline models, which are fine-
tuned with the original format of training data. For
Chinese, Transformer-large and Chinese BART-
large (Shao et al., 2021) models are used as the
baseline in the same way. Due to the absence of a
Chinese version of the T5 model, the experiments
conducted in Chinese do not incorporate the use
of the T5 model. Then we train the models men-
tioned above with only the predicted template for
comparison rather than the original sources. At
last, the proposed TemplateGEC is trained with
the predicted and gold template described in 3.2,
and consistency loss is applied in the training stage.
The hyper-parameter β is set to 1 and other main
hyper-parameters used in English and Chinese ex-
periments are shown in Table 2. All experiments
are run on a GeForce RTX 3090 GPU.

Evaluation Metrics For English experiments,
following Yuan et al. (2021), we use ERRANT and
M2 (Dahlmeier and Ng, 2012) to evaluate GEC
models on BEA-Test set and CoNLL14-Test set,
respectively. For Chinese experiments, following
Zhang et al. (2022b), we use M2 as the metric on
the NLPCC18-Test set. Precision, recall, and F0.5

values are reported for all the experiments.

Comparison with Previous Works Table 4
shows the main results for English and Chinese
GEC tasks, which are compared with previous sin-
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System Proposed Methods Detection Label NLPCC18-Test (ZH) BEA-Test (EN) CoNLL14-Test (EN)

Template Consistency Train Test P R F0.5 P R F0.5 P R F0.5

GECToR ✕ ✕ - - - - - 79.2 53.9 72.4 77.5 40.1 65.3
Multi-encoder ✕ ✕ - - - - - 73.3 61.5 70.6 71.3 44.3 63.5
T5-large ✕ ✕ - - - - - - - 72.1 - - 66.1
Type-Driven ✕ ✕ - - - - - 81.3 51.6 72.9 78.2 42.7 67.0
SynGEC ✕ ✕ - - 50.0 33.0 45.3 75.1 65.5 72.9 74.7 49.0 67.6

Transformer
✕ ✕ - - 36.1 19.9 31.0 56.2 51.5 55.2 59.3 39.9 54.0
✓ ✕ Pred Pred 37.2 23.9 33.5 60.0 51.7 58.1 61.1 40.0 55.3
✓ ✓ Gold+Pred Pred 42.0 22.2 35.6 67.8 50.7 63.5 64.7 38.9 57.1

BART
✕ ✕ - - 48.8 33.5 44.7 70.4 60.0 68.0 67.1 47.1 61.9
✓ ✕ Pred Pred 52.2 27.9 44.5 71.7 61.5 69.4 67.6 48.5 62.6
✓ ✓ Gold+Pred Pred 54.5 27.4 45.5 74.8 61.0 71.6 69.7 46.7 63.5

T5
✕ ✕ - - - - - 74.2 66.5 72.5 71.8 50.8 66.3
✓ ✕ Pred Pred - - - 74.6 64.4 72.3 72.4 50.7 66.7
✓ ✓ Gold+Pred Pred - - - 76.8 64.8 74.1 74.8 50.0 68.1

Table 4: Results on Chinese (ZH) NLPCC18-Test, Enlgish (EN) BEA-Test and CoNLL14-Test sets.“Template”
denotes only using our template for the GEC task, and “Consistency” denotes the proposed gold label-assisted
consistency learning. The items “Pred” and “Gold” denote the predicted and gold label, respectively.

gle models. GECToR (Omelianchuk et al., 2020)
treats GEC as a sequence labeling task and assigns
the proposed operation labels to each token in the
source sentence. Multi-encoder (Yuan et al., 2021)
additionally employs an encoder to handle the de-
tection input and uses a re-ranking strategy based
on the detection outputs to improve the GEC per-
formance. T5-large (Rothe et al., 2021) directly
takes the original source sentence as input and gen-
erates the prediction outputs with T5-large. Type-
Driven (Lai et al., 2022) proposes a TypeDriven
Multi-Turn Corrections approach for GEC, which
trains the model to exploit interdependence be-
tween different types of errors. SynGEC (Zhang
et al., 2022b) adapts the dependency syntax into
GEC models to improve performance.

Main Results As shown in Table 4, utilizing pre-
trained models results in a marked improvement
in performance across all datasets, in comparison
to models that are not pre-trained. Compared to
the baseline, when the detection template is intro-
duced, the performance of the majority of the mod-
els improves, particularly in models that are not
pre-trained, while the improvement in pre-trained
models is less significant. The results with weak
or declining performance may be attributed to the
possibility that the model is not effectively address-
ing errors present in the template. The proposed
method TemplateGEC, utilizing both the template
and consistency learning, achieves the best F0.5

values on all the datasets when compared to other
methods. This indicates that the incorporation of

consistency learning allows the model to make
more accurate corrections with the help of error
labels provided in the template. The improvement
of the proposed methods is primarily driven by an
increase in precision, with some recall values expe-
riencing a decline. This phenomenon is encouraged
in GEC tasks since ignoring an error is not as bad
as proposing a wrong correction (Ng et al., 2014).

5 Analysis

5.1 Potential of Human-in-the-loop GEC

Upper Bound Results In order to determine the
performance upper bound of TemplateGEC, we
initially evaluate its performance using gold detec-
tion labels during the testing stage. Subsequently,
we conduct additional experiments where the gold
labels are utilized both in the training and test-
ing stages. As shown in Tabel 5, in contrast to
the benchmark models and the label-based Tem-
plateGEC utilizing predicted labels, utilizing gold
labels in the TemplateGEC results in a marked im-
provement in performance, especially when pre-
trained knowledge is not fully introduced (i.e., the
results of Transformer). This serves as evidence
that the proposed template plays a significant role
in impacting the performance of the GEC system.
The upper bound results of both BART and T5
models exhibit a significant improvement and are
relatively comparable. This suggests that by train-
ing and testing TemplateGEC with the correct error
distribution, it is possible to achieve superior perfor-
mance compared to the predicted error distribution.

6883



System Proposed Methods Detection Label NLPCC18-Test (ZH) BEA-Dev (EN) CoNLL14-Test (EN)

Template Consistency Train Test P R F0.5 P R F0.5 P R F0.5

Transformer

✕ ✕ - - 36.1 19.9 31.0 45.5 31.7 41.8 59.3 39.9 54.0
✓ ✓ Gold+Pred Pred 42.0 22.2 35.7 52.8 29.5 45.6 64.7 38.9 57.1
✓ ✓ Gold+Pred Gold 47.5 27.3 41.4 55.3 35.2 49.6 63.9 42.2 57.9
✓ ✕ Gold Gold 48.3 48.5 48.4 51.0 51.8 51.1 59.4 56.7 58.8

BART

✕ ✕ - - 52.2 27.9 44.5 57.3 38.5 52.2 67.1 47.1 61.8
✓ ✓ Gold+Pred Pred 54.5 27.4 45.5 60.7 39.0 54.6 69.7 46.7 63.5
✓ ✓ Gold+Pred Gold 56.7 30.2 48.2 64.0 46.0 59.4 70.5 50.9 65.5
✓ ✕ Gold Gold 59.7 55.4 58.8 68.9 62.4 67.5 69.4 63.6 68.2

T5

✕ ✕ - - - - - 58.9 43.1 54.8 71.8 50.8 66.3
✓ ✓ Gold+Pred Pred - - - 61.0 41.0 55.6 74.8 50.0 68.0
✓ ✓ Gold+Pred Gold - - - 63.7 45.9 59.1 76.3 51.9 69.7
✓ ✕ Gold Gold - - - 68.8 64.6 68.0 72.8 62.7 70.5

Table 5: Results on NLPCC18-Test, BEA-Dev and CoNLL14-Test sets inferred by the templates with gold detection
labels for different training methods. We use BEA-Dev here since we cannot access the gold labels of BEA-Test.

Setup BEA-Dev BEA-Test

P R F0.5 P R F0.5

TemplateGEC 61.0 41.0 55.6 76.8 64.8 74.1

GED Model (Default: GECToR)
ELECTRA 60.6 40.4 55.1 76.3 64.1 73.5

Detection Class (Default: 2-class)
4-class 60.1 41.0 55.0 74.4 64.0 72.1

Detection Template (Default: t)
ts 60.7 41.2 55.5 76.3 64.9 73.7

Loss Type (Default: KL)
MSE 58.9 42.3 54.6 72.8 66.5 71.4

Coefficient of Consistency Loss (Default: β = 1)
β = 2 62.2 38.9 55.5 77.1 62.1 73.5
β = 3 62.6 36.6 54.8 78.4 60.1 73.9

Table 6: Comparison results of different setups.

Potential Direction In addition to the proposed
TemplateGEC, we contend that our method has the
potential for application in the development of a
human-in-the-loop GEC system. We envision a sce-
nario where a user inputs a sentence in need of cor-
rection or refinement, and our GEC model supports
the identification of specific spans within the sen-
tence that the user has identified as being in error or
uncertain. Given this scenario, the TemplateGEC
system can convert the identified error spans to the
template format outlined in Section 3.2, resulting
in the GEC model placing increased emphasis on
these specific areas during the correction. The in-
corporation of user interaction in the TemplateGEC
system allows for the utilization of user-annotated
spans as the gold standard for error detection labels,
resulting in improved error correction capabilities
and increased efficiency as the need for a separate
detection model is eliminated.

5.2 Ablation Study
In order to evaluate the effectiveness of the various
components in TemplateGEC, we conduct multiple
experimental evaluations using a variety of model
configurations, testing them on both the BEA-Dev
and BEA-Test datasets. In each experimental set-
ting, we conduct evaluations, varying only one com-
ponent while keeping the remaining constant.

Effect of Detection Model Given that the pro-
posed template method incorporates the use of
detection label knowledge, the performance of
the TemplateGEC may be impacted by the per-
formance of various detection models. In order to
investigate the relationship between TemplateGEC
and the detection model, we replace the GECToR
model with the ELECTRA-based detection model
described in Section 4.1. The results show that
both detection models can produce reliable detec-
tion labels, indicating that the proposed method
can accommodate various detection models.

Effect of Detection Class As stated in Yuan et al.
(2021), the performance of GEC models incorpo-
rating detection labels is influenced by the choice
of detection class. The results indicate that the
F0.5 score of the 4-class detection is slightly lower
than that of the 2-class detection on average. As
the performance of the 4-class detection model is
suboptimal, further research is required to explore
methods to enhance the TemplateGEC system with
more fine-grained class detection labels.

Effect of Detection Template To investigate the
significance of designing appropriate detection tem-
plates, we create a simple template that concate-
nates the detection prefix with the original source

6884



Template Consistency ERR = 0 (42.4%) ERR = 1 (30.5%) ERR = 2 (16.5%) ERR = 3 (7.5%) ERR > 3 (3.1%)

P R F0.5 P R F0.5 P R F0.5 P R F0.5 P R F0.5

✕ ✕ 65.4 35.1 55.8 72.8 51.2 67.1 73.5 55.9 69.1 75.2 58.1 71.0 68.3 56.1 65.5
✓ ✕ 64.3 31.5 53.2 75.0 51.5 68.7 74.7 56.5 70.2 75.7 60.3 72.0 64.4 54.6 62.2
✓ ✓ 68.2 31.9 55.6 78.6 51.6 71.2 74.6 54.6 69.5 77.4 60.1 73.2 69.3 52.7 65.2

Table 7: Results of error numbers in the source of CoNLL14-Test set. ERR denotes the number of errors.

Example 1 Example 2

Source She decided to divorce with her husband . Therefore there is nothing to be shy for or be afraid of .
Target She decided to divorce her husband . Therefore there is nothing to be shy about or be afraid of .

Predicted Label C C C C I C C C C I C C C C C I C C C C C
Gold Label C C C C I C C C C C C C C C C I C C C C C

Vanilla She decided to divorce with her husband . Therefore , there is nothing to be shy of or be afraid of .
w/ Template She decided to divorce from her husband . Therefore , there is nothing to be shy about or be afraid of .
w/ Template&Consistency She decided to divorce her husband . Therefore there is nothing to be shy about or be afraid of .

Table 8: Examples from CoNLL14-Test set.

Type Baseline TemplateGEC

P R F0.5 P R F0.5

M 75.1 72.2 74.5 76.6 69.0 74.9
R 73.5 63.2 71.2 76.3 62.4 73.0
U 75.4 72.2 74.7 80.7 68.7 78.0

Table 9: Results of error types in BEA-Test.

sentence without any reformatting of the source.
The simple template ts is:

ts = d <sep> x. (9)

The results show that the use of the simple tem-
plate results in a decrease in performance, high-
lighting the effectiveness and appropriateness of
our method in incorporating detection labels.

Effect of Consistency Loss Type Various loss
functions can be used to measure how different
two probability distributions are from each other,
to find the divergence by employing different loss
functions, we change the KL divergence loss to
the Mean Squared Error (MSE) loss between two
output representations. The results show that when
MSE loss is adopted as the consistency function,
a certain degree of performance degradation will
be observed, which indicates that KL divergence
loss is more appropriate for enhancing the model
performance in our method.

Effect of Coefficient of Consistency Loss To
learn the influence of the coefficient of consistency
loss, we test several different values of β. Default
value of β = 1, and we test for β = 2 and β = 3.
The results show that our default setting β = 1

can get the best F0.5 score. The result reveals that
the consistency between the predicted and gold
predictions is not always the higher the better.

5.3 Model Robustness

Error Detection Robustness As shown in Ta-
ble 7, we explore the performance of different mod-
els under various sentence error numbers and the re-
sults. The baseline model achieves the best results
when the error number is zero or more than three,
while the template-only method shows a weak per-
formance. It may be due to the unbalanced data
distribution and the performance of the detection.
Based on the results, TemplateGEC is still competi-
tive in the two situations and outperforms the base-
line in other situations, which is attributed to con-
sistency learning. By introducing gold labels, the
model is guided in the right direction even though
the predicted labels may be wrong. It indicates that
TemplateGEC is robust for different error numbers
and performs better when there are few errors.

Error Type Robustness To explore if Tem-
plateGEC can correct every error type well, the
results of three error types, which are categorized
as M (Missing), R (Replacement), and U (Unneces-
sary), are computed and shown in Table 9. Results
show that compared with the baseline model, Tem-
plateGEC gets the better F0.5 score for all error
types, especially the replacement and unnecessary
types, which demonstrates the robustness of Tem-
plateGEC on the error type level.

Case Study Table 8 illustrates how Tem-
plateGEC works better than the baseline model
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in terms of model robustness. For the first exam-
ple, the baseline model fails to correct the error. In
contrast, despite the correction being incorrect, the
template-only model attempt to correct the error in-
dicated by the predicted label, which also confirms
the effectiveness of the template. Based on the
results of the template-only model, TemplateGEC
successfully corrects the unnecessary type of er-
ror, corresponding to the ability of TemplateGEC
reflected in Table 9. For the second example, the
template-only model still modifies the correspond-
ing positions indicated by the template, but one of
them is wrongly corrected, which is misguided by
the predicted label. However, we surprisingly ob-
serve that TemplateGEC ignores this misdirection
and corrects the whole source sentence success-
fully. This result strongly suggests that our model
can make correct corrections even when the prior
information is wrong, which fully demonstrates the
reliability and robustness of our method.

6 Conclusion

This paper presents a new method for GEC, called
TemplateGEC, which integrates the Seq2Edit and
Seq2Seq frameworks, leveraging their strengths in
error detection and correction. TemplateGEC con-
verts the original erroneous sentence into a novel
template format that incorporates predicted and
gold error detection labels, which are generated by
a Seq2Edit model. Besides, TemplateGEC incorpo-
rates gold label-assisted consistency learning to en-
hance performance by maximizing the consistency
between the predictions of the predicted and gold
templates through the use of a Seq2Seq model. Ex-
perimental results on widely-used English and Chi-
nese benchmarks show that TemplateGEC exhibits
competitive performance in comparison to previ-
ous GEC methods. Additional analysis suggests
that the proposed method is a promising approach
for human-in-the-loop GEC and confirms that Tem-
plateGEC is effective and robust. We will inves-
tigate the feasibility of adapting TemplateGEC to
other languages and assess its effectiveness through
additional experimentation in our future work.

Limitations

The primary limitation of the proposed model is
computational efficiency. Specifically, during the
training phase, the input size of the model is more
than double that of traditional models, which is
due to the inclusion of both predicted and gold

templates. Besides, the source sentences are trans-
formed into longer sequences, resulting in an in-
creased memory footprint and longer training time.
Additionally, both during the training and testing
phase, an additional step of preparing detection la-
bels for the data further contributes to the increased
processing time. In future research, we aim to
investigate methods for achieving comparable or
superior performance while reducing the input size
and addressing these limitations, building upon the
foundation of our current work. Additionally, Tem-
plateGEC does not support the joint training of the
Seq2Edit model. We will further explore how to
jointly train the Seq2Edit model in future work,
particularly focusing on the continuous modeling
of detection labels based on an end-to-end model.

Ethics Statement
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Maja Popović. 2018. Error classification and analysis
for machine translation quality assessment. In Trans-
lation quality assessment, pages 129–158. Springer.

Muhammad Qorib, Seung-Hoon Na, and Hwee Tou
Ng. 2022. Frustratingly easy system combination
for grammatical error correction. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1964–1974,
Seattle, United States. Association for Computational
Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

6888

https://doi.org/10.18653/v1/2022.acl-long.571
https://doi.org/10.18653/v1/2022.acl-long.571
https://doi.org/10.18653/v1/2022.acl-long.571
https://arxiv.org/abs/2205.10884
https://arxiv.org/abs/2205.10884
https://arxiv.org/abs/2205.10884
https://aclanthology.org/2022.emnlp-main.574
https://aclanthology.org/2022.emnlp-main.574
https://aclanthology.org/2022.emnlp-main.574
https://proceedings.neurips.cc/paper/2021/file/5a66b9200f29ac3fa0ae244cc2a51b39-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/5a66b9200f29ac3fa0ae244cc2a51b39-Paper.pdf
https://arxiv.org/abs/2004.04438
https://arxiv.org/abs/2004.04438
https://doi.org/10.18653/v1/N19-1333
https://doi.org/10.18653/v1/N19-1333
https://github.com/NLP2CT/kNN-TL
https://github.com/NLP2CT/kNN-TL
https://github.com/NLP2CT/kNN-TL
https://openreview.net/forum?id=n1HD8M6WGn
https://openreview.net/forum?id=n1HD8M6WGn
https://openreview.net/forum?id=n1HD8M6WGn
https://doi.org/10.18653/v1/D19-1510
https://doi.org/10.18653/v1/D19-1510
https://aclanthology.org/I11-1017
https://aclanthology.org/I11-1017
https://aclanthology.org/I11-1017
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.3115/v1/W14-1701
https://aclanthology.org/W13-3601
https://aclanthology.org/W13-3601
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.1109/ACCESS.2020.2998149
https://doi.org/10.1109/ACCESS.2020.2998149
https://doi.org/10.1109/ACCESS.2020.2998149
https://link.springer.com/chapter/10.1007/978-3-319-91241-7_7
https://link.springer.com/chapter/10.1007/978-3-319-91241-7_7
https://doi.org/10.18653/v1/2022.naacl-main.143
https://doi.org/10.18653/v1/2022.naacl-main.143
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html


Hongkai Ren, Liner Yang, and Endong Xun. 2018. A
sequence to sequence learning for chinese grammati-
cal error correction. In Natural Language Processing
and Chinese Computing: 7th CCF International Con-
ference, NLPCC 2018, Hohhot, China, August 26–30,
2018, Proceedings, Part II, pages 401–410. Springer.

Sascha Rothe, Jonathan Mallinson, Eric Malmi, Sebas-
tian Krause, and Aliaksei Severyn. 2021. A simple
recipe for multilingual grammatical error correction.
In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 702–707,
Online. Association for Computational Linguistics.

Yunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai,
Fei Yang, Li Zhe, Hujun Bao, and Xipeng Qiu.
2021. Cpt: A pre-trained unbalanced transformer
for both chinese language understanding and genera-
tion. ArXiv preprint, abs/2109.05729.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmäs-
san, Stockholm, Sweden, July 10-15, 2018, volume 80
of Proceedings of Machine Learning Research, pages
4603–4611. PMLR.

Felix Stahlberg and Shankar Kumar. 2020. Seq2Edits:
Sequence transduction using span-level edit opera-
tions. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 5147–5159, Online. Association for
Computational Linguistics.

Xin Sun, Tao Ge, Shuming Ma, Jingjing Li, Furu Wei,
and Houfeng Wang. 2022. A unified strategy for
multilingual grammatical error correction with pre-
trained cross-lingual language model. ArXiv preprint,
abs/2201.10707.

Xin Sun, Tao Ge, Furu Wei, and Houfeng Wang. 2021.
Instantaneous grammatical error correction with shal-
low aggressive decoding. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 5937–5947, Online. Association
for Computational Linguistics.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. 2016. Re-
thinking the inception architecture for computer vi-
sion. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas,
NV, USA, June 27-30, 2016, pages 2818–2826. IEEE
Computer Society.

Toshikazu Tajiri, Mamoru Komachi, and Yuji Mat-
sumoto. 2012. Tense and aspect error correction for
ESL learners using global context. In Proceedings
of the 50th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),

pages 198–202, Jeju Island, Korea. Association for
Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Shuo Wang, Peng Li, Zhixing Tan, Zhaopeng Tu,
Maosong Sun, and Yang Liu. 2022a. A template-
based method for constrained neural machine trans-
lation. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 3665–3679, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Yu Wang, Yuelin Wang, Kai Dang, Jie Liu, and Zhuo
Liu. 2021. A comprehensive survey of grammatical
error correction. ACM Transactions on Intelligent
Systems and Technology (TIST), 12(5):1–51.

Zhijun Wang, Xuebo Liu, and Min Zhang. 2022b.
Breaking the representation bottleneck of Chinese
characters: Neural machine translation with stroke
sequence modeling. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 6473–6484, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Helen Yannakoudakis, Øistein E Andersen, Ardeshir
Geranpayeh, Ted Briscoe, and Diane Nicholls. 2018.
Developing an automated writing placement system
for esl learners. Applied Measurement in Education,
31(3):251–267.

Michihiro Yasunaga, Jure Leskovec, and Percy Liang.
2021. LM-critic: Language models for unsupervised
grammatical error correction. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 7752–7763, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Zheng Yuan and Ted Briscoe. 2016. Grammatical er-
ror correction using neural machine translation. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 380–386, San Diego, California. Association
for Computational Linguistics.

Zheng Yuan, Shiva Taslimipoor, Christopher Davis, and
Christopher Bryant. 2021. Multi-class grammatical
error detection for correction: A tale of two systems.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
8722–8736, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Yue Zhang, Zhenghua Li, Zuyi Bao, Jiacheng Li,
Bo Zhang, Chen Li, Fei Huang, and Min Zhang.

6889

http://tcci.ccf.org.cn/conference/2018/papers/EV15.pdf
http://tcci.ccf.org.cn/conference/2018/papers/EV15.pdf
http://tcci.ccf.org.cn/conference/2018/papers/EV15.pdf
https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.18653/v1/2021.acl-short.89
https://arxiv.org/abs/2109.05729
https://arxiv.org/abs/2109.05729
https://arxiv.org/abs/2109.05729
http://proceedings.mlr.press/v80/shazeer18a.html
http://proceedings.mlr.press/v80/shazeer18a.html
https://doi.org/10.18653/v1/2020.emnlp-main.418
https://doi.org/10.18653/v1/2020.emnlp-main.418
https://doi.org/10.18653/v1/2020.emnlp-main.418
https://arxiv.org/abs/2201.10707
https://arxiv.org/abs/2201.10707
https://arxiv.org/abs/2201.10707
https://doi.org/10.18653/v1/2021.acl-long.462
https://doi.org/10.18653/v1/2021.acl-long.462
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://aclanthology.org/P12-2039
https://aclanthology.org/P12-2039
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://aclanthology.org/2022.emnlp-main.240
https://aclanthology.org/2022.emnlp-main.240
https://aclanthology.org/2022.emnlp-main.240
https://dl.acm.org/doi/abs/10.1145/3474840
https://dl.acm.org/doi/abs/10.1145/3474840
https://aclanthology.org/2022.emnlp-main.434
https://aclanthology.org/2022.emnlp-main.434
https://aclanthology.org/2022.emnlp-main.434
https://www.tandfonline.com/doi/abs/10.1080/08957347.2018.1464447
https://www.tandfonline.com/doi/abs/10.1080/08957347.2018.1464447
https://doi.org/10.18653/v1/2021.emnlp-main.611
https://doi.org/10.18653/v1/2021.emnlp-main.611
https://doi.org/10.18653/v1/N16-1042
https://doi.org/10.18653/v1/N16-1042
https://doi.org/10.18653/v1/2021.emnlp-main.687
https://doi.org/10.18653/v1/2021.emnlp-main.687


2022a. MuCGEC: a multi-reference multi-source
evaluation dataset for Chinese grammatical error cor-
rection. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 3118–3130, Seattle, United States.
Association for Computational Linguistics.

Yue Zhang, Bo Zhang, Zhenghua Li, Zuyi Bao, Chen Li,
and Min Zhang. 2022b. Syngec: Syntax-enhanced
grammatical error correction with a tailored gec-
oriented parser. In Proceedings of EMNLP.

Wei Zhao, Liang Wang, Kewei Shen, Ruoyu Jia, and
Jingming Liu. 2019. Improving grammatical error
correction via pre-training a copy-augmented archi-
tecture with unlabeled data. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 156–165, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Yuanyuan Zhao, Nan Jiang, Weiwei Sun, and Xiaojun
Wan. 2018. Overview of the nlpcc 2018 shared task:
Grammatical error correction. In Natural Language
Processing and Chinese Computing, pages 439–445,
Cham. Springer International Publishing.

Junpei Zhou, Chen Li, Hengyou Liu, Zuyi Bao, Guang-
wei Xu, and Linlin Li. 2018. Chinese grammatical
error correction using statistical and neural models.
In Natural Language Processing and Chinese Com-
puting: 7th CCF International Conference, NLPCC
2018, Hohhot, China, August 26–30, 2018, Proceed-
ings, Part II 7, pages 117–128. Springer.

Wangchunshu Zhou, Tao Ge, Chang Mu, Ke Xu, Furu
Wei, and Ming Zhou. 2020. Improving grammati-
cal error correction with machine translation pairs.
In Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 318–328, Online.
Association for Computational Linguistics.

6890

https://doi.org/10.18653/v1/2022.naacl-main.227
https://doi.org/10.18653/v1/2022.naacl-main.227
https://doi.org/10.18653/v1/2022.naacl-main.227
https://arxiv.org/abs/2210.12484
https://arxiv.org/abs/2210.12484
https://arxiv.org/abs/2210.12484
https://doi.org/10.18653/v1/N19-1014
https://doi.org/10.18653/v1/N19-1014
https://doi.org/10.18653/v1/N19-1014
https://link.springer.com/chapter/10.1007/978-3-319-99501-4_41
https://link.springer.com/chapter/10.1007/978-3-319-99501-4_41
http://tcci.ccf.org.cn/conference/2018/papers/EV36.pdf
http://tcci.ccf.org.cn/conference/2018/papers/EV36.pdf
https://doi.org/10.18653/v1/2020.findings-emnlp.30
https://doi.org/10.18653/v1/2020.findings-emnlp.30


ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Section 7

�7 A2. Did you discuss any potential risks of your work?
The data we used are publicly available and do not contain this issue.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Section 1, 6

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 3

�3 B1. Did you cite the creators of artifacts you used?
Section 4

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
The datas we used are public available and do not contain this issue.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. The data we used are publicly available and do not contain this issue.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. The data we used are publicly available and do not contain this issue.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. The data we used are publicly available and do not contain this issue.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 4

C �3 Did you run computational experiments?
Section 4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 4

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

6891

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 4

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 4

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
The data we used are publicly available and do not contain this issue.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

6892


