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Abstract

Geometric transformations including transla-
tion, rotation, and scaling are commonly used
operations in image processing. Besides, some
of them are successfully used in developing
effective knowledge graph embedding (KGE).
Inspired by the synergy, we propose a new
KGE model by leveraging all three operations
in this work. Since translation, rotation, and
scaling operations are cascaded to form a com-
posite one, the new model is named Com-
poundE. By casting CompoundE in the frame-
work of group theory, we show that quite a
few distanced-based KGE models are special
cases of CompoundE. CompoundE extends
the simple distance-based scoring functions
to relation-dependent compound operations on
head and/or tail entities. To demonstrate the
effectiveness of CompoundE, we perform three
prevalent KG prediction tasks including link
prediction, path query answering, and entity
typing, on a range of datasets. CompoundE
outperforms extant models consistently, demon-
strating its effectiveness and flexibility.1

1 Introduction

Knowledge graphs (KGs) such as DBpedia (Auer
et al., 2007), YAGO (Suchanek et al., 2007), NELL
(Carlson et al., 2010), Wikidata (Vrandečić and
Krötzsch, 2014), Freebase (Bollacker et al., 2008),
and ConceptNet (Speer et al., 2017) have been cre-
ated and made available to the public to facilitate
research on KG modeling and applications. Triples,
denoted by (h, r, t), are basic elements of a KG,
where h and t are head and tail entities while r is
the relation connecting them. KG representation
learning, also known as knowledge graph embed-
ding (KGE), has been intensively studied in recent
years. Yet, it remains one of the most fundamental
problems in Artificial Intelligence (AI) research.

∗Corresponding author
1Our source code is available at https://github.c

om/hughxiouge/CompoundE

KGE is critical to many downstream applications
such as question answering (Guu et al., 2015)
knowledge integration (Chen et al., 2017), text anal-
ysis (Li et al., 2019), entity classification (Zhao
et al., 2020; Ge et al., 2022), etc. There are sev-
eral challenges in the design of good KGE models.
Complex relation patterns (e.g. 1-to-N, N-to-1, and
N-to-N, antisymmetric, transitive, hierarchical re-
lations, etc.) remain difficult to model. Also, each
of extant KGE models has its own strengths and
weaknesses. It is desired yet unclear how to de-
sign a KGE model that leverages strengths of some
models and complements weaknesses of others.

Geometric operations such as translation and
rotation belong to the family of affine transforma-
tions. These operations have been used to build
effective KGE models such as TransE, RotatE, and
PairRE. Previous KGEs often use a single type of
operation to model all relation patterns with dif-
ferent properties. This could be problematic since
each operator may have modeling limitations. A
synergy of different transformations may comple-
ment the weaknesses of individual operators. In
fact, generic compound operations yielded from
a cascade of affine transformations find numerous
applications in image processing (Pratt, 2013), in-
cluding image warping (Wolberg, 1990), image
morphing (Seitz and Dyer, 1996), and robot motion
planning (LaValle, 2006). Motivated by the syn-
ergy, we propose a new KGE model to address the
above-mentioned challenges. Since translation, ro-
tation, and scaling operations are cascaded to form
a compound operation, the proposed KGE model is
named CompoundE. Compound operations inherit
many desirable properties from the affine group,
allowing CompoundE to model complex relations
in different KGs.

There are four main contributions of this work.
They are summarized below.

• We present a novel KG embedding model
called CompoundE, which combines three
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fundamental operations in the affine group
and offers a wide range of designs.

• It is proved mathematically that CompoundE
can handle complex relation types in KG
thanks to unique properties of the affine group.

• We apply CompoundE to perform three im-
portant KG prediction tasks, including link
prediction, path query answering, and entity
typing on widely adopted KG benchmarking
datasets extracted from Freebase, WordNet,
Wikidata, and YAGO. CompoundE consis-
tently outperforms prior work.

• Against large-scale datasets containing mil-
lions of entities under the memory constraint,
CompoundE outperforms other benchmarking
methods by a big margin with fewer parame-
ters.

The rest of this paper is organized as follows.
Recent KGE models for both distance-based and
entity-Transformation-based categories are first re-
viewed in Section 2. Then, we present CompoundE,
show its relationship with previous KG embedding
models, and explain the reason why it can model
complex relations well in Section 3. Experiment
details and performance comparisons are given in
Section 4. Finally, concluding remarks are given
and possible extensions are suggested in Section 5.

2 Related Work

2.1 Distance-based Models

Distance-based scoring function is a prevailing
strategy in optimizing KGE. The main idea is to
model a relation as a transformation that places
head entity vectors in the proximity of their corre-
sponding tail entity vectors, and vice versa. For a
given triple, (h, r, t), the goal is to minimize the dis-
tance between h and t vectors after the transforma-
tion introduced by r. TransE (Bordes et al., 2013)
is one of the earlier KGE models that interpret rela-
tions between entities as translation operations in
the vector space. However, this simple approach
is ineffective in modeling 1-to-N, N-to-1, N-to-N,
and symmetric relations. To better encode complex
relations, TransH (Wang et al., 2014) enables the
relation-specific entity representation by projecting
each entity to a relation-specific hyperplane. In or-
der to represent symmetric relations, RotatE (Sun
et al., 2019) models entities in the complex vector

space and interprets a relation as a rotation instead
of a translation. The self-adversarial negative sam-
pling contributes to RotatE’s performance improve-
ment as compared to its predecessors. However,
RotatE does not handle the hierarchical structure
appearing in many KGs. MuRP (Balažević et al.,
2019) and ROTH (Chami et al., 2020) leverage the
power of hyperbolic curvature to better capture the
hierarchical structure in KGs.

2.2 Entity-Transformation-based Models

Adding relation-specific transformation to baseline
models is another popular line of work. Although
TransH (Wang et al., 2014) enables the transla-
tion approach to model complex relations, the or-
thogonal projection prevents the model from en-
coding inverse and composition relations. Instead,
TransR (Lin et al., 2015) models relations and enti-
ties in two different spaces. However, the relation-
specific transformation is a dense matrix and signif-
icantly increase parameter complexity. To alleviate
this problem, TransD (Ji et al., 2015) comes up with
dynamic mapping matrices using relation and entity
projection vectors. Similarly, TranSparse (Ji et al.,
2016) enforces the relation projection matrix to be
sparse. More recently, PairRE (Chao et al., 2021)
performs transformations on both heads and tails.
Specifically, head and tail entities had a Hadamard
product with their respective weight vectors rH

and rT. This elementwise multiplication is noth-
ing but the scaling operation. SFBR (Liang et al.,
2021) introduces a semantic filter that includes a
scaling and translation component. STaR (Li and
Yang, 2022) adopts a similar approach but adds
a rotation operator to design the bilinear product
matrix for semantic matching scoring functions.
ReflectE (Zhang et al., 2022a) models a relation
as the Householder reflection. Different composi-
tion of geometric operations inspire us to invent
CompoundE embedding in this paper.

3 Methodology

Translation, rotation, and scaling transformations
appear frequently in engineering applications. In
image processing, a cascade of translation, rotation,
and scaling operations offers a set of image manip-
ulation techniques. Such compound operations can
be used to develop a new KGE model called Com-
poundE. We provide an illustration of CompoundE
and comparison with previous KGE in Fig. 1.
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Figure 1: An illustration of previous distance-based KGE models and CompoundE.

3.1 Definition of CompoundE
Three forms of CompoundE scoring function can
be written as

• CompoundE-Head

fr(h, t) = ∥Tr ·Rr · Sr · h− t∥, (1)

• CompoundE-Tail

fr(h, t) = ∥h− T̂r · R̂r · Ŝr · t∥, (2)

• CompoundE-Complete

fr(h, t) = ∥Tr ·Rr · Sr · h− T̂r · R̂r · Ŝr · t∥,
(3)

where h, t denote head and tail entity embeddings,
Tr,Rr,Sr denote the translation, rotation, and
scaling operations for the head entity embedding,
and T̂r, R̂r, Ŝr denote the counterparts for the tail
entity embedding, respectively. These constituent
operators are relation-specific. To generalize, any
order or subset of translation, rotation, and scaling
component can be a valid instance of CompoundE.
Since matrix multiplications are non-commutative,
different orders of cascading the constituent opera-
tors result in distinct CompoundE operators. Per-
formance difference between these variations are
discussed in Section B of the appendix.

3.2 CompoundE as An Affine Group
Most analysis in previous work was restricted to
the Special Euclidean Group SE(n) (Cao et al.,
2022). Yet, we will show that CompoundE is not
a special Euclidean group but an affine group. To
proceed, we first formally introduce the lie group
and three special groups as below.

Definition 3.1. A Lie group is a continuous group
that is also a differentiable manifold.

Several Lie group examples are given below.

• The real vector space, Rn, with the canonical
addition as the group operation.

• The real vector space excluding zero,
(R\{0}), with the element-wise multiplica-
tion as the group operation.

• The general linear group, GLn(R), with the
canonical matrix multiplication as the group
operation.

Furthermore, the following three special groups are
commonly used.

Definition 3.2. The special orthogonal group is
defined as

SO(n) =

{
A

∣∣∣∣A ∈ GLn(R),A⊤A = I, det(A) = 1

}
.

(4)

Definition 3.3. The special Euclidean group is
defined as

SE(n) =

{
A

∣∣∣∣A =

[
R v
0 1

]
,R ∈ SO(n),v ∈ Rn

}
.

(5)

Definition 3.4. The affine group is defined as

Aff(n) =

{
M

∣∣∣∣M =

[
A v
0 1

]
,A ∈ GLn(R),v ∈ Rn

}
.

(6)
By comparing Eqs. (5) and (6), we see that SE(n)
is a subset of Aff(n).

Without loss of generality, consider n = 2. If
M ∈ Aff(2), we have

M =

[
A v
0 1

]
,A ∈ R2×2,v ∈ R2. (7)

The 2D translational matrix can be written as

T =



1 0 vx
0 1 vy
0 0 1


, (8)
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Dataset #Entities #Relations #Training #Validation #Test Ave. Deg. Scale
ogbl-wikikg2 2,500,604 535 16,109,182 429,456 598,543 12.2 Large
FB15k-237 14,541 237 272,115 17,535 20,466 19.74 Medium
WN18RR 40,943 11 86,835 3,034 3,134 2.19 Small

Table 1: Link Prediction Datasets Statistics.

while the 2D rotational matrix can be expressed as

R =



cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


 . (9)

It is easy to verify that they are both special Eu-
clidean groups (i.e. T ∈ SE(2) and R ∈ SE(2)).
On the other hand, the 2D scaling matrix is in form
of

S =



sx 0 0
0 sy 0
0 0 1


 . (10)

It is not a special Euclidean group but an affine
group of n = 2 (i.e., S ∈ Aff(2)).

Compounding translation and rotation opera-
tions, we can get a transformation in the special
Euclidean group,

T ·R =



1 0 vx
0 1 vy
0 0 1





cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1




=



cos(θ) − sin(θ) vx
sin(θ) cos(θ) vy

0 0 1


 ∈ SE(2).

(11)

Yet, if we add the scaling operation, the compound
will belong to the Affine group. One of such com-
pound operator can be written as

T ·R · S =



sx cos(θ) −sy sin(θ) vx
sx sin(θ) sy cos(θ) vy

0 0 1


 ∈ Aff(2).

(12)
When sx ̸= 0 and sy ̸= 0, the compound operator
is invertible. It can be written in form of

M−1 =

[
A−1 −A−1v
0 1

]
. (13)

3.3 Relation with Other Distance-based KGE
Models

CompoundE is a general form of quite a few
distance-based KGE models. That is, we can derive
their scoring functions from that of CompoundE by
setting translation, scaling, and rotation operations
to certain forms. Four examples are given below.
Derivation of TransE (Bordes et al., 2013). We
begin with CompoundE-Head and set its rotation

component to identity matrix I and scaling param-
eters to 1. Then, we get the scoring function of
TransE as

fr(h, t) = ∥Tr · I · diag(1) · h− t∥
= ∥h+ r− t∥. (14)

Derivation of RotatE (Sun et al., 2019). We
can derive the scoring function of RotatE from
CompoundE-Head by setting the translation com-
ponent to I (translation vector t = 0) and scaling
component to 1.

fr(h, t) = ∥I ·Rr · diag(1) · h− t∥
= ∥h ◦ r− t∥. (15)

Derivation of LinearRE (Peng and Zhang, 2020).
We can add back the translation component for the
head transformation:

fr(h, t) = ∥Tr · I · Sr · h− I · I · Ŝr · t∥
= ∥h⊙ rH + r− t⊙ rT∥.

(16)

Derivation of PairRE (Chao et al., 2021).
CompoundE-Complete can be reduced to PairRE
by setting both translation and rotation component
to I, for both head and tail transformation.

fr(h, t) = ∥I · I · Sr · h− I · I · Ŝr · t∥
= ∥h⊙ rH − t⊙ rT∥.

(17)

3.4 Properties of CompoundE
With a richer set of operations, CompoundE is more
capable of modeling complex relations such as 1-
to-N, N-to-1, and N-to-N relations in KG datasets.
Modeling these relations are important since more
than 98% of triples in FB15k-237 and WN18RR
datasets involves complex relations. The impor-
tance of complex relation modeling is illustrated by
two examples below. First, there is a need to distin-
guish different outcomes of relation compositions
when modeling non-commutative relations. That
is r1 · r2 → r3 while r2 · r1 → r4. For instance,
r1, r2, r3 and r4 denote isFatherOf, isMotherOf,
isGrandfatherOf and isGrandmotherOf, respec-
tively. TransE and RotatE cannot make such
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Datasets FB15K-237 WN18RR
Metrics MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
text-based methods
SimKGC (Wang et al., 2022) 0.666 0.587 0.717 0.800 0.336 0.249 0.362 0.511
KG-S2S (Chen et al., 2022) 0.574 0.531 0.595 0.661 0.336 0.257 0.373 0.498
embedding-based methods
TransE (Bordes et al., 2013) 0.294 - - 0.465 0.226 - - 0.501
DistMult (Yang et al., 2015) 0.241 0.155 0.263 0.419 0.430 0.390 0.440 0.490
ComplEx (Trouillon et al., 2016) 0.247 0.158 0.275 0.428 0.440 0.410 0.460 0.510
RotatE (Sun et al., 2019) 0.338 0.241 0.375 0.533 0.476 0.428 0.492 0.571
ROTH (Chami et al., 2020) 0.348 0.252 0.384 0.540 0.496 0.449 0.514 0.586
PairRE (Chao et al., 2021) 0.351 0.256 0.387 0.544 - - - -
FieldE (Nayyeri et al., 2021) 0.36 0.27 0.39 0.55 0.48 0.44 0.50 0.57
KGTuner (Zhang et al., 2022b) 0.352 0.263 0.387 0.530 0.484 0.440 0.506 0.562
IAS (Yang et al., 2022) 0.339 0.242 0.374 0.532 0.483 0.467 0.502 0.570
CAKE (Niu et al., 2022) 0.321 0.227 0.355 0.515 - - - -
CompoundE 0.357 0.264 0.393 0.545 0.491 0.450 0.508 0.576

Table 2: Filtered ranking of link prediction for FB15k-237 and WN18RR.

distinctions since they are based on commuta-
tive relation embeddings. Second, to capture
the hierarchical structure of relations, it is es-
sential to build a good model for sub-relations.
For example, r1 and r2 denote isCapitalCityOf
and cityLocatedInCountry, respectively. Log-
ically, isCapitalCityOf is a sub-relation of
cityLocatedInCountry because if (h, r1, t) is true,
then (h, r2, t) must be true. We provide mathemat-
ical proofs to show that CompoundE is capable
of modeling symmetric/antisymmetric, inversion,
composition, commutative/non-commutative, tran-
sitive, and sub-relations in Section A of the ap-
pendix.
Optimization We follow RotatE’s negative sam-
pling loss and the self-adversarial training strategy.
The loss function of CompoundE can be written as

LKGE =− log σ(ζ1 − fr(h, t))

−
n∑

i=1

p(h′i, r, t
′
i) log σ(fr(h

′
i, t

′
i)− ζ1),

(18)
where σ is the sigmoid function, ζ1 is a fixed mar-
gin hyperparameter, (h′i, r, t

′
i) is the i-th negative

triple, and p(h′i, r, t
′
i) is the probability of drawing

negative triple (h′i, r, t
′
i). Given a positive triple,

(hi, r, ti), the negative sampling distribution is

p(h′j , r, t
′
j |{(hi, r, ti)}) =

expα1fr(h
′
j , t

′
j)∑

i expα1fr(h′i, t
′
i)
,

(19)
where α1 is the temperature of sampling.

4 Experiments

4.1 Link Prediction

Datasets. We conduct experiments on three widely
used benchmarking datasets: ogbl-wikikg2, FB15k-
237, and WN18RR. ogbl-wikikg2 is one of Open
Graph Benchmark dataset (Hu et al., 2020) ex-
tracted from the Wikidata (Vrandečić and Krötzsch,
2014) KG. Its challenge is with designing embed-
ding models that can scale to large KGs. FB15k-
237 and WN18RR are extracted from the Freebase
(Bollacker et al., 2008) and the WordNet (Miller,
1995), respectively. Inverse relations are removed
from both to avoid the data leakage problem.
Their main challenge lies in modeling symme-
try/antisymmetry and composition relation patterns.
The detailed statistics of the three datasets are
shown in Table 1.
Evaluation Protocol. To evaluate the link pre-
diction performance of CompoundE, we compute
the rank of the ground truth entity in the list of
top candidates. Since embedding models tend to
rank entities observed in the training set higher,
we compute the filtered rank to prioritize candi-
dates that would result in unseen triples. We follow
the convention (Wang et al., 2017; Ji et al., 2021)
and adopt the Mean Reciprocal Rank (MRR) and
Hits@k metrics to compare the quality of different
KGE models. Higher MRR and Hits@k values
indicate better model performance.

Performance Benchmarking. Tables 2 and
3 show the best performance of CompoundE
and other benchmarking models for FB15k-237,
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Datasets ogbl-wikikg2

Metrics Dim Valid Test
MRR MRR

AutoSF+NodePiece 100 0.5806 0.5703
ComplEx-RP 50 0.6561 0.6392

TransE 500 0.4272 0.4256
DistMult 500 0.3506 0.3729
ComplEx 250 0.3759 0.4027

RotatE 250 0.4353 0.4353
PairRE 200 0.5423 0.5208

TripleRE 200 0.6045 0.5794
CompoundE 100 0.6704 0.6515

Table 3: Filtered ranking of link prediction on ogbl-
wikikg2. Best results are in bold and best known pub-
lished results are underlined.

WN18RR and ogbl-wikikg2 datasets, respectively.
The best results are shown in bold fonts whereas
the second best are underlined. CompoundE is a
competitive model among embedding-based meth-
ods across all three datasets. As shown in Table
3, the results of CompoundE are much better than
previous KGE models while the embedding dimen-
sion and the model parameter numbers are signifi-
cantly lower for the ogbl-wikikg2 dataset. This im-
plies lower computation and memory costs of Com-
poundE. We see from Table 2 that CompoundE has
achieved significant improvement over distance-
based KGE models using a single operation, either
translation (TransE), rotation (RotatE), or scaling
(PairRE). This confirms that cascading geometric
transformations is an effective strategy for design-
ing KG embeddings. In Table 2, we also com-
pare CompoundE with text-based methods for link
prediction on FB15k-237 and WN18RR datasets.
Note that text-based methods require entity tex-
tual descriptions to make meaningful prediction. It
is worth noting that CompoundE can still outper-
form transformer-based approaches significantly
for WN18RR dataset, without having access to
large amount of pretraining corpus.
Performance on Different Relation Types. To
gain insights into the superior performance of Com-
poundE, we examine the performance of Com-
poundE on each type of relations. KG relations
can be categorized into 4 types: 1) 1-to-1, 2) 1-
to-N, 3) N-to-1, and 4) N-to-N. We classify the
relations based on the following rule. For each rela-
tion, r, we compute the average number of subject
(head) entities per object (tail) entity as hptr and
the average number of object entities per subject as

(a) T (b) R(θ) (c) S

Figure 2: Distribution of relation embedding values
for “friends” relation in FB15k-237, obtained using
∥Sr ·Rr ·Tr · h− t∥.

tphr. Then, with a specific threshold η,




hptr < η and tphr < η =⇒ r is 1-to-1
hptr < η and tphr ≥ η =⇒ r is 1-to-N
hptr ≥ η and tphr < η =⇒ r is N-to-1
hptr ≥ η and tphr ≥ η =⇒ r is N-to-N.

(20)
We set η = 1.5 as a logical threshold by follow-
ing the convention. Table 4 compares the MRR
scores of CompoundE with benchmarking mod-
els on 1-to-1, 1-to-N, N-to-1, and N-to-N rela-
tions in head and tail entities prediction perfor-
mance for the FB15k237 dataset. We see that
CompoundE consistently outperforms benchmark-
ing models in all relation categories. The fil-
tered MRR scores on each relation type of the
WN18RR dataset are given in Table 5. We ob-
serve that CompoundE has a significant advan-
tage over benchmarking models for certain 1-to-N
relations such as “member_of_domain_region”
(+84.8%) and for some N-to-1 relations such
as “synset_domain_topic_of” (+12.7%). Com-
poundE is more effective than previous KGE mod-
els in modeling complex relations.

In Fig. 2, we visualize relation embedding for
the “friend” relation in FB15k-237 by plotting the
histogram of translation, rotation, and scaling pa-
rameter values. Since “friend” is a symmetric re-
lation, we expect the translation value to be close
to zero, which is consistent with Fig. 2 (a). Also,
since “friend” is an N-to-N relation, we expect
the Compound operation to be singular. Actually,
most of the scaling values are zero as shown in
Fig. 2 (c). They support our theoretical analysis of
CompoundE’s properties.

4.2 Path Query Answering

Path query is important since it is often desired
to perform complex queries on knowledge graph.
For example, one might ask "where did Michelle
Obama’s spouse live in?". To obtain the answer, a
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Task Predicting Head Predicting Tail
Type 1-to-1 1-to-N N-to-1 N-to-N 1-to-1 1-to-N N-to-1 N-to-N

TransE 0.492 0.454 0.081 0.252 0.485 0.072 0.740 0.367
RotatE 0.493 0.471 0.088 0.259 0.491 0.072 0.748 0.370
PairRE 0.496 0.476 0.117 0.274 0.492 0.073 0.763 0.387

CompoundE 0.501 0.488 0.123 0.279 0.497 0.074 0.783 0.394

Table 4: Filtered MRR on four relation types of FB15k-237.

Relation Type TransE RotatE Ours
similar_to 1-to-1 0.294 1.000 1.000
verb_group 1-to-1 0.363 0.961 0.974
member_meronym 1-to-N 0.179 0.259 0.254
has_part 1-to-N 0.117 0.200 0.200
member_of_domain_usage 1-to-N 0.113 0.297 0.309
member_of_domain_region 1-to-N 0.114 0.217 0.401
hypernym N-to-1 0.059 0.156 0.179
instance_hypernym N-to-1 0.289 0.322 0.351
synset_domain_topic_of N-to-1 0.149 0.339 0.382
also_see N-to-N 0.227 0.625 0.629
derivationally_related_form N-to-N 0.440 0.957 0.956

Table 5: Filtered MRR on each relation type of
WN18RR.

model first need to correctly predict the fact that
(Michelle Obama, spouse, Barack Obama), and
then predict (Barack Obama, livedIn, Chicago).
CompoundE has the property to perform well on
this task since it is capable of modeling the non-
commutative relation compositions.

In Path Query Answering (PQA), a tuple (s, P, t)
is given, where s and t denote the source and target
entities and P = {r1, . . . , rk} denotes the relation
path consisting of a sequence of relations that links
s → r1 → r2 · · · → rk → t. PQA tests that after
traversing through the relation path from a given
source entity, whether the model is able to predict
the correct target entity. During testing, the ground
truth t is hidden and we compute the score for
all candidate target entities and evaluate the quan-
tile of ground truth, which is the fraction of irrele-
vant candidates that’s ranked lower than the ground
truth. Mean quantile of all test paths are reported.
In particular, type match paths are excluded since
those are trivial for prediction. Specifically, we use
both the KG triples and sampled paths with length
|P | ∈ {2, 3, 4, 5} to train the embedding, which is
also referred to as the “comp” setting (Guu et al.,
2015). We use CompoundE to perform PQA on the
Freebase and WordNet datasets prepared by (Guu
et al., 2015). Statistics of these two datasets are
shown in Table 10. Performance comparison with
previous models on the PQA task under the “comp”

setting is shown in Table 6. Results show that
CompoundE is very competitive for the PQA task
among pure embedding models.

WordNet Freebase
MQ H@10 MQ H@10

Bilinear 0.894 0.543 0.835 0.421
TransE 0.933 0.435 0.880 0.505

DistMult 0.904 0.311 0.848 0.386
RotatE 0.947 0.653 0.901 0.601

Rotate3D 0.949 0.671 0.905 0.621
CompoundE 0.951 0.674 0.913 0.650

Table 6: Performance comparison for path query an-
swering.

4.3 KG Entity Typing
KG Entity typing predicts class labels for nodes in
knowledge graph. Entity type provides semantic
signals for information extraction tasks such as rela-
tion extraction (Yaghoobzadeh et al., 2017), entity
linking (Gupta et al., 2017; Choi et al., 2018) and
coreference resolution (Durrett and Klein, 2014).
Entity typing is challenging since each entity may
be associated with a large number of type labels.
We show that CompoundE can also be effective for
performing entity typing.

We perform entity typing using CompoundE
embedding on the FB15k-ET and YAGO43k-ET
dataset prepared by (Moon et al., 2017). Statistics
of these datasets are shown in Table 9. In addi-
tion to RDF triples (h, r, t), entity and entity type
pairs (e, t) are added to these entity typing datasets.
Since the type can be interpreted as “isA” relation-
ship between e and t, we add a “type” relation
between the e and t pair and treat that as a special
triple. Performance comparison with existing work
is shown in Table 7. The optimal configuration
is shown in Table 13. Similar to link prediction,
we also report the MRR and Hits@k scores. Re-
sults show that CompoundE achieves significant
improvement over other models especially for the
YAGO43k-ET dataset, even without giving special
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Datasets FB15k-ET YAGO43k-ET
Metrics MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE (Bordes et al., 2013) 0.45 31.51 51.45 73.93 0.21 12.63 23.24 38.93
TransE-ET (Moon et al., 2017) 0.46 33.56 52.96 71.16 0.18 9.19 19.41 35.58

ETE (Moon et al., 2017) 0.50 38.51 55.33 71.93 0.23 13.73 26.28 42.18
HMGCN (Jin et al., 2019) 0.51 39.02 54.75 72.36 0.25 14.21 27.34 43.69

ConnectE (Zhao et al., 2020) 0.59 49.55 64.32 79.92 0.28 16.01 30.85 47.92
CORE (Ge et al., 2022) 0.60 48.91 66.30 81.60 0.35 24.17 39.18 54.95
AttEt (Zhuo et al., 2022) 0.62 51.66 67.68 82.13 0.35 24.43 41.31 56.48

CompoundE 0.64 52.49 71.88 85.89 0.48 36.36 55.80 70.31

Table 7: Entity typing performance comparison for FB15k-ET and YAGO43k-ET datasets. Best result are in bold
and second best result are underlined.

treatment to the representation of entity types. This
observation supports the claim that CompoundE is
strongly capable of representing entity semantics.

4.4 Complexity Analysis.

We compare the computational complexity of Com-
poundE and several popular KGE models in Table
8. The last column gives the estimated number of
free parameters used by different models to achieve
the best performance for the ogbl-wikikg2 dataset.
CompoundE cuts the number of parameters at least
by half while achieving much better performance.
In the table, n, m, and d denote the entity number,
the relation number, and their embedding dimen-
sion, respectively. Since n≫ m in most datasets,
we can afford to increase the complexity of relation
embedding for better link prediction result without
significantly increasing the overall space complex-
ity. In Fig. 3, we compare the MRR scores of Com-
poundE and previous SOTA embedding models on
the ogbl-wikikg2 dataset under different dimension
settings d ∈ {10, 20, 50, 100, 150, 200, 250, 300}.
CompoundE significantly outperforms benchmark-
ing methods, even under low dimension setting.
Hyperparameters. We conduct two sets of con-
trolled experiments to find the best model con-
figurations for ogbl-wikikg2, FB15k-237, and
WN18RR datasets. For the first set, we evaluate the
effect of different combinations of learning rates
and embedding dimensions while keeping other
hyperparameters constant. For the second set, we
evaluate the effect of different combinations of the
training batch size and the negative sample size,
while keeping other hyperparameters constant. The
optimal model configurations for three datasets are
given in Table 11 of the appendix.

Figure 3: MRR scores on ogbl-wikikg2 dataset.

5 Conclusion and Future Work

A new KGE model called CompoundE was pro-
posed in this work. We showed that quite a
few distance-based KGE models are special cases
of CompoundE. Extensive experiments were con-
ducted for three different knowledge graph predic-
tion tasks including link prediction, path query an-
swering, and entity typing. Competitive experimen-
tal results demonstrate the effectiveness of Com-
poundE. We also mathematically prove the proper-
ties of CompoundE and its capability of modeling
different relation patterns. We also explain the
performance difference of different CompoundE
forms, especially for the complex relation patterns.

We are interested in exploring two topics as fu-
ture extensions. First, we may consider more com-
plex operations in CompoundE. For example, there
is a recent trend to extend 2D rotations to 3D ro-
tations for rotation-based embeddings such as Ro-
tatE3D (Gao et al., 2020), SU2E (Yang et al., 2020).
It is worthwhile to explore CompoundE3D. Sec-
ond, CompoundE is expected to be useful in many
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Model Ent. emb. Rel. emb. Scoring Function Space # Params
TransE h, t ∈ Rd r ∈ Rd −∥h+ r− t∥1/2 O((m+ n)d) 1251M

ComplEx h, t ∈ Cd r ∈ Cd Re
(∑K

k=1 rkhktk

)
O((m+ n)d) 1251M

RotatE h, t ∈ Cd r ∈ Cd −∥h ◦ r− t∥ O((m+ n)d) 1250M
PairRE h, t ∈ Rd rH, rT ∈ Rd −∥h⊙ rH − t⊙ rT∥ O((m+ n)d) 500M
CompoundE-Head h, t ∈ Rd T[:, d− 1], diag(S) ∈ Rd, θ ∈ Rd/2 −∥T ·R(θ) · S · h− t∥ O((m+ n)d) 250.1M

CompoundE-Tail h, t ∈ Rd T̂[:, d− 1], diag(Ŝ) ∈ Rd, θ ∈ Rd/2 −
∥∥∥h− T̂ · R̂(θ) · Ŝ · t

∥∥∥ O((m+ n)d) 250.1M

CompoundE-Complete h, t ∈ Rd T/T̂[:, d− 1], diag(S/Ŝ) ∈ Rd, θ ∈ Rd/2 −
∥∥∥T ·R(θ) · S · h− T̂ · R̂(θ) · Ŝ · t

∥∥∥ O((m+ n)d) 250.3M

Table 8: Complexity comparison of KGE models.

downstream tasks. This conjecture has to be veri-
fied. If this is the case, CompoundE can offer a low
memory solution to these tasks in realistic settings.

Limitations

Similar to many knowledge graph embedding mod-
els, our proposed method is yet to handle link
prediction under inductive settings. One possible
future extension is to leverage entity description
information to generate textual features and use
CompoundE as a decoder to handle unseen enti-
ties. Also, the affine operators we use are limited to
translation, rotation, and scaling and this may limit
the number of different relation patterns we can
handle. In the future, we can include all affine trans-
formations and investigate their difference. Also,
because we use 2D givens rotation matrix, the em-
bedding dimension setting needs to be a factor of
2. We can explore higher dimensional transforma-
tions such as 3D transformations and compare the
modeling power.
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A Properties of CompoundE

Let M and M̂ denote the compound operation for
the head and tail entity embeddings, respectively.
In the following, we will prove nine properties of
CompoundE.

Proposition A.1. CompoundE can model 1-N re-
lations.

Proof. A relation r is an 1-N relation iff there exist
at least two distinct tail entities t1 and t2 such that
(h, r, t1) and (h, r, t2) both hold. Then we have:

M · h = M̂ · t1, M · h = M̂ · t2
M̂ · (t1 − t2) = 0

(21)

Since t1 ̸= t2, CompoundE can model 1-N rela-
tions when M̂ is singular.

Proposition A.2. CompoundE can model N-1 re-
lations.

Proof. A relation r is an N-1 relation iff there exist
at least two distinct head entities h1 and h2 such
that (h1, r, t) and (h1, r, t) both hold. Then we
have:

M · h1 = M̂ · t, M · h2 = M̂ · t
M · (h1 − h2) = 0

(22)

Since h1 ̸= h2, CompoundE can model N-1 rela-
tions when M is singular.

Proposition A.3. CompoundE can model N-N re-
lations.
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Proof. By the proof for Prop.A.1 and A.2, N-N
relations can be modeled when both M and M̂ are
singular.

Proposition A.4. CompoundE can model symmet-
ric relations.
Proof. A relation r is a symmetric relation iff
(h, r, t) and (t, r, h) holds simultaneously. Then
we have:

M · h = M̂ · t =⇒ h = M−1M̂ · t
M · t = M̂ · h =⇒ M · t = M̂M−1M̂ · t

MM̂−1 = M̂M−1

(23)
Therefore, CompoundE can model symmetric rela-
tions when MM̂−1 = M̂M−1.

Proposition A.5. CompoundE can model antisym-
metric relations.
Proof. A relation r is a antisymmetric relation
iff (h, r, t) holds but (t, r, h) does not. By
similar proof for Proposition A.4, CompoundE
can model symmetric relations when MM̂−1 ̸=
M̂M−1.

Proposition A.6. CompoundE can model inversion
relations.
Proof. A relation r2 is the inverse of relation r1 iff
(h, r1, t) and (t, r2, h) holds simultaneously. Then
we have:

M1 · h = M̂1 · t =⇒ h = M−1
1 M̂1 · t

M2 · t = M̂2 · h =⇒ M2 · t = M̂2M
−1
1 M̂1 · t

M̂−1
2 M2 = M−1

1 M̂1

(24)
Therefore, CompoundE can model inversion rela-
tions when M̂−1

2 M2 = M−1
1 M̂1.

Proposition A.7. CompoundE can model relation
compositions.

Proof. r3 is a composition of r1 and r2 iff
(e1, r1, e2), (e2, r2, e3), and (e1, r3, e3) hold simul-
taneously. Then we have:

M1 · e1 = M̂1 · e2 =⇒ e1 = M−1
1 M̂1 · e2

M2 · e2 = M̂2 · e3 =⇒ e3 = M̂−1
2 M2 · e2

M3 · e1 = M̂3 · e3
M3M

−1
1 M̂1 · e2 = M̂3M̂

−1
2 M2 · e2

M̂−1
3 M3 = (M̂−1

2 M2)(M̂
−1
1 M1)

(25)
Therefore, CompoundE can model relations com-
position when M̂−1

3 M3 = (M̂−1
2 M2)(M̂

−1
1 M1).

Proposition A.8. CompoundE can model both
both commutative and non-commutative relations.

Proof. Since the general form of affine group is
non-commutative, our proposed CompoundE is
non-commutative i.e.

(M1M̂
−1
1 )(M2M̂

−1
2 ) ̸= (M2M̂

−1
2 )(M1M̂

−1
1 )
(26)

where each M consists of translation, rotation, and
scaling component. However, in special cases,
when our relation embedding has only one of
the translation, rotation, or scaling component,
then the relation embedding becomes commutative
again.

Proposition A.9. CompoundE can model transi-
tive relations.

Proof. r is a transitive relation iff (e1, r, e2),
(e2, r, e3), and (e1, r, e3) hold simultaneously.
Consider the CompoundE variant, and let R = R̂,
S be a idempotent matrix.

fr(h, t) = ∥S ·R · h− R̂ · t∥
= ∥R · (R−1SR · h− t)∥
= ∥R−1SR · h− t∥

(27)

Let Mr = R−1SR. Then it is easy to see that

Mr ·Mr · · · · ·Mr

=(R−1SR) · (R−1SR) · · · · · (R−1SR)

=R−1SR

=Mr

(28)

Therefore, CompoundE can model transitive rela-
tions.

Proposition A.10. CompoundE can model sub-
relations.

Proof. A relation r1 is a sub-relation of r2 if
(h, r2, t) implies (h, r1, t). Without loss of gen-
erality, suppose our compounding operation takes
the following form

M = T ·R · S, M̂ = T̂ · R̂ · Ŝ, (29)

and suppose

T1 = T2, T̂1 = T̂2,

R1 = R2, R̂1 = R̂2,

S1 = γS2, Ŝ1 = γŜ2, γ ≤ 1.

(30)
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With these conditions, we can compare the Com-
poundE scores generated by (h, r1, t) and (h, r2, t)
as follows:

fr1(h, t)− fr2(h, t)

=∥T1 ·R1 · S1 · h− T̂1 · R̂1 · Ŝ1 · t∥−
∥T2 ·R2 · S2 · h− T̂2 · R̂2 · Ŝ2 · t∥

=∥T2 ·R2 · (γS2) · h− T̂2 · R̂2 · (γŜ2) · t∥−
∥T2 ·R2 · S2 · h− T̂2 · R̂2 · Ŝ2 · t∥

=∥γ(T2 ·R2 · S2 · h− T̂2 · R̂2 · Ŝ2 · t)∥−
∥T2 ·R2 · S2 · h− T̂2 · R̂2 · Ŝ2 · t∥ ≤ 0

(31)
This means that (h, r1, t) generates a smaller error
score than (h, r2, t). If (h, r2, t) holds, (h, r1, t)
must also holds. Therefore, r1 is a sub-relation of
r2.

B Performance comparison for different
variations of CompoundE

We investigate the performance difference of Com-
poundE variants. Specifically, the different forms
of CompoundE have visible difference in dif-
ferent relation types. We conduct experiment
on YAGO3-10 dataset and compare the perfor-
mance of CompoundE-left, CompoundE-right,
CompoundE-Complete for 1-to-1, 1-to-N, and N-
to-1 relations. In particular, when evaluating the
1-to-N relations, we focus on predicting (?, r, t)
while for N-to-1 relations we focus on predicting
(h, r, ?) to correctly reflect the performance on re-
spective relation types. Performance comparison
is shown in 4. We observe that for CompoundE-
Complete has advantage over other forms for 1-to-1
relations. CompoundE-left and CompoundE-right
are the better performing forms for 1-to-N and N-to-
1 relations respectively. This observation is consis-
tent with the discussion of the modeling capability
of CompoundE. It still remains a questions that
how different order of operator composition will
affect the performance of CompoundE and we will
address that in future work.

C Visualization of Embedding

We provide a 2D t-SNE visualization of the entity
embedding generated by CompoundE for FB15k-
237 in Fig. 5. Each entity is colored with its respec-
tive entity type. As shown in the figure, some entity
type class are well separated while others are not.
This scatter plot shows that entity representations

extracted by CompoundE can capture the seman-
tics of the entity. Thus, their embeddings can be
used in various downstream tasks such as KG entity
typing and similarity based recommendations.

Besides the histograms shown in the main pa-
per, we add more plots to visualize CompoundE
relation embedding values. In Fig. 6, we show the
embedding values for the “friends” relation in the
FB15k-237. We use the CompoundE-Complete
variant (∥Sr ·Rr ·Tr · h− Ŝr · R̂r · T̂r · t∥) to
generate the embedding. We plot the translation
and scaling components for both the head and the
tail. We only show a single plot for the rotation
component since the rotation parameter is shared
between the head and the tail. Different from
the CompoundE-head (∥Sr ·Rr ·Tr · h− t∥), we
see two modes (instead of only one mode) in
CompoundE-Complete’s plots. One conjecture
for this difference is that CompoundE-Complete
has a pair of operations on both the head and
the tail, the distribution of values need to have
two modes to maintain the symmetry. Similar
to CompoundE-head, the scaling parameters of
CompoundE-Complete have a large amount of ze-
ros to maintain the singularity of compounding
operators and help learn the N-to-N complex rela-
tions.

Fig. 7 and Fig. 8 display the histogram of re-
lation embeddings for “instance_hypernym” re-
lation and “similar_to” relation in WN18RR, re-
spectively. The real (in blue) and the imaginary
(in orange) parts are overlaid in each plot. Notice
that “instance_hypernym” is an antisymmetric re-
lation while “similar_to” is a symmetric relation.
This relation pattern is reflected on the embedding
histogram since the translation and the scaling his-
tograms for the head and the tail are different in
“instance_hypernym”. In contrast, the translation
and scaling histograms for the head and the tail are
almost identical in “similar_to”.

D Datasets

The path query dataset can be obtained from the
link2. The original github repo3 has the MIT li-
cense. The entity typing dataset can be found here4.
Statistics of these datasets are shown in Table 9 and

2https://worksheets.codalab.org/works
heets/0xfcace41fdeec45f3bc6ddf31107b829f

3https://github.com/kelvinguu/travers
ing-knowledge-graphs

4https://github.com/cmoon2/knowledge_
graph/tree/master/datasets
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Dataset #Ent #Rel #Type #KG Triples #Entity Type Pairs
#Train #Valid #Test #Train #Valid #Test

FB15k-ET 14,951 1,345 3,851 483,142 50,000 59,071 136,618 15,749 15,780
YAGO43k-ET 42,335 37 45,182 331,687 29,599 29,593 375,853 42,739 42,750

Table 9: Entity Typing Datasets Statistics.

Dataset #Ent #Rel #KG Triples #Path
#Train #Valid #Test #Train #Valid #Test

WordNet 38,551 11 110,361 2,602 10,462 2,129,539 11,277 46,577
Freebase 75,043 13 316,232 5,908 23,733 6,266,058 27,163 109,557

Table 10: Path Query Answering Datasets Statistics.

(a) 1 to 1 (b) 1 to n (c) n to 1

Figure 4: Comparing the performance of different CompoundE forms.

Figure 5: t-SNE visualization of entity embedding in
the 2D space for some major entity types in FB15K-237.

Table 10.

E Implementation and Optimal
Configurations

To form relation specific transformation matrices
for high dimensional entity vectors, we can first cas-
cade translation, rotation, and scaling operator to
yield a compound operator Or,i = Tr,i ·Rr,i · Sr,i

In the actual implementation, we use the operator’s
representation in regular Cartesian coordinate in-
stead of the homogeneous coordinate. Furthermore,

a high-dimensional relation operator can be repre-
sented as a block diagonal matrix in the form of

Mr = diag(Or,1,Or,2, . . . ,Or,n), (32)

where Or,i ∈ R2×2 is the compound operator of
the i-th block.

In our implementation, we normalize all entity
embeddings to unit vectors before applying com-
pound operations. The optimal configurations of
CompoundE are given in Table 11. The implemen-
tation of the rotation operation in the optimal Com-
poundE configuration for the WN18RR dataset is
adapted from RotatE.

All experiments were conducted on a NVIDIA
V100 GPU with 32GB memory. GPUs with larger
memory such as NVIDIA A100 (40GB), NVIDIA
A40 (48GB) are only needed for hyperparameter
sweep when the dimension, the negative sample
size, and the batch size are high. We should point
out that such settings are not essential for Com-
poundE to obtain good results. They were used
to search for the optimal configurations. We have
considered the following set of numbers as our pa-
rameter search space to obtain the best performance
we can for each dataset and tasks.
Link Prediction.
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Table 11: Optimal Configurations for Link Prediction Tasks. B denotes the batch size and N denotes the negative
sample size.

Dataset CompoundE Variant #Dim lr B N α ζ

ogbl-wikikg2 ∥h− Ŝ · T̂ · R̂ · t∥ 100 0.005 4096 250 1 7
FB15k-237 ∥S ·R ·T · h− Ŝ · R̂ · T̂ · t∥ 600 0.00005 1024 125 1 6
WN18RR ∥R · S ·T · h− Ŝ · T̂ · t∥ 500 0.00007 1024 256 0.5 6

Table 12: Optimal Configurations for Path Query Answering. B denotes the batch size and N denotes the negative
sample size.

Dataset CompoundE Variant #Dim lr B N α ζ

Freebase ∥S ·T ·R · h− t∥ 1500 0.00002 1024 256 1 6
WordNet ∥S ·T ·R · h− t∥ 1000 0.00005 1024 256 1 6

(a) (b)

(c) (d)

(e)

Figure 6: FB15k-237 “friends” relation embedding
obtained using ∥S ·R ·T · h− Ŝ · R̂ · T̂ · t∥: (a) dis-
tribution of head translation values, (b) distribution of
tail translation values, (c) distribution of head scaling
values, (d) distribution of tail scaling values, and (e)
distribution of rotation angle values.

Wikikg2

• d ∈ {50, 100, 150, 200, 250, 300, 400}

• lr ∈ {0.0005, 0.001, 0.005, 0.01}

• ζ ∈ {5, 6, 7, 8, 9}

• batch ∈ {256, 512, 1024, 2048}

• negative sample ∈ {256, 512, 1024, 2048}

FB15k-237

(a) (b)

(c) (d)

Figure 7: WN18RR “instance_hypernym” relation: (a)
distribution of head translation values, (b) distribution
of tail translation values, (c) distribution of head scaling
values, and (d) distribution of tail scaling values.

(a) (b)

(c) (d)

Figure 8: WN18RR “similar_to” relation: (a) distribu-
tion of head translation values, (b) distribution of tail
translation values, (c) distribution of head scaling val-
ues, and (d) distribution of tail scaling values.
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Table 13: Optimal Configurations for Entity Typing. B denotes the batch size and N denotes the negative sample
size.

Dataset CompoundE Variant #Dim lr B N α ζ

FB15k-ET ∥R ·T · S · h− R̂ · T̂ · Ŝ · t∥ 1500 0.00005 2048 512 1 10
YAGO43k-ET ∥h− T̂ · Ŝ · R̂ · t∥ 1000 0.00005 1024 256 1 6

• d ∈ {100, 200, 300, 400}

• lr ∈ {0.00001, 0.00005, 0.0001, 0.0005}

• ζ ∈ {4, 5, 6, 7, 8, 9}

• batch ∈ {256, 512, 1024, 2048}

• negative sample ∈ {256, 512, 1024, 2048}

WN18RR

• d ∈ {100, 200, 300, 400}

• lr ∈ {0.00001, 0.00005, 0.0001, 0.0005}

• ζ ∈ {5, 6, 7, 8, 9}

• batch ∈ {256, 512, 1024, 2048}

• negative sample ∈ {256, 512, 1024, 2048}

Path Query Answering.
Freebase

• d ∈ {500, 1000, 1500, 2000}

• lr ∈ {0.00001, 0.00002, 0.00005, 0.0001}

• ζ ∈ {6, 9, 12, 15}

• batch ∈ {512, 1024}

• negative sample ∈ {256, 512}

WordNet

• d ∈ {500, 1000, 1500, 2000}

• lr ∈ {0.00001, 0.00002, 0.00005, 0.0001}

• ζ ∈ {6, 9, 12, 15}

• batch ∈ {512, 1024}

• negative sample ∈ {256, 512}

Entity typing.
FB15k-ET

• d ∈ {500, 1000, 1500}

• lr ∈ {0.00001, 0.00005, 0.0001, 0.0005}

• ζ ∈ {8, 9, 10, 11}

• batch ∈ {1024, 2048, 4096, 8192}

• negative sample ∈ {256, 512, 1024, 2048}
YAGO43k-ET

• d ∈ {500, 1000, 1500}

• lr ∈ {0.00001, 0.00005, 0.0001, 0.0005}

• ζ ∈ {19, 20, 21, 22}

• batch ∈ {1024, 2048}

• negative sample ∈ {256, 512}

F Comparing CompoundE and STaR

The main difference between CompoundE and
STaR is that STaR embedding uses a bilinear prod-
uct and adopts a semantic matching approach while
CompoundE’s scoring function is a distance-based
metric. Because of this, the optimization strat-
egy for CompoundE is the self-adversrial negative
sampling loss whereas STaR uses the regularized
cross-entropy loss. More importantly, CompoundE
embedding has clear and intuitive geometric in-
terpretations whereas the design of STaR is less
intuitive since it is unclear what composition of
operators means in the context of a bilinear prod-
uct. We also shed light on the superior capability
of CompoundE to model relation compositions and
entity semantics through PQA and entity typing
experiments. Lastly, we can incorporate reflection
and shear operators below who also belong to the
affine operator family. The reflection matrix can be
defined as

F =



cos(ϕ) sin(ϕ) 0
sin(ϕ) − cos(ϕ) 0

0 0 1


 , (33)

And the shear matrices on two different directions
can be defined as

Hx =



1 tan(ψx) 0
0 1 0
0 0 1


 , (34)
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Datasets ogbl-wikikg2

Metrics Dim Valid Test
MRR MRR Hit@1 Hit@3 Hit@10

∥h− Ŝ · T̂ · R̂ · t∥ 100 0.6704 0.6515 0.5843 0.6781 0.7872
∥h− Ŝ · T̂ · F̂ · R̂ · t∥ 100 0.6694 0.6509 0.5844 0.6760 0.7865

∥h− Ŝ · Ĥx · Ĥy · T̂ · R̂ · t∥ 100 0.6701 0.6539 0.5865 0.6805 0.7906

Table 14: Preliminary comparison after adding reflection and shear operators.

Hy =




1 0 0
tan(ψy) 1 0

0 0 1


 , (35)

We have done preliminary experiments on
Wikikg2 but reflection and shear operators and re-
sult is shown in Table 14. We will further improve
the result in the future.
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