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Abstract

Reasoning about events and their relations at-
tracts surging research efforts since it is re-
garded as an indispensable ability to fulfill
various event-centric or common-sense reason-
ing tasks. However, these tasks often suffer
from limited data availability due to the labor-
intensive nature of their annotations. Conse-
quently, recent studies have explored knowl-
edge transfer approaches within a multi-task
learning framework to address this challenge.
Although such methods have achieved accept-
able results, such brute-force solutions struggle
to effectively transfer event-relational knowl-
edge due to the vast array of inter-event rela-
tions (e.g. temporal, causal, conditional) and
reasoning formulations (e.g. discriminative, ab-
ductive, ending prediction). To enhance knowl-
edge transfer and enable zero-shot generaliza-
tion among various combinations, in this work
we propose a novel unified framework, called
UNIEVENT. Inspired by prefix-based multi-
task learning, our approach organizes event re-
lational reasoning tasks into a coordinate sys-
tem with multiple axes, representing inter-event
relations and reasoning formulations. We then
train a unified text-to-text generative model that
utilizes coordinate-assigning prefixes for each
task. By leveraging our adapted prefixes, our
unified model achieves state-of-the-art or com-
petitive performance on both zero-shot and su-
pervised reasoning tasks, as demonstrated in
extensive experiments.

1 Introduction

An ‘event’ is defined as a semantic molecule to
explain the states or actions of a person, entity,
or thing (Zhou et al., 2022). In natural language
literature, it is usually represented as a span in
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Temporal RE

Question: What is the 
relation between 
documenting and voiced?

Answer: BEFORE

Document:
Memorial is famous for documenting human rights abuses in Russia . the 
US embassy in Moscow has voiced concern and asked the Russian 
government for an explanation.

RE QA

TEMP

CA

Temporal QA

Question: What happens 
before that the US embassy has 
voiced concern?
Answer: Memorial is famous 
for documenting human rights 
abuses in Russia . 

Causal RE

Question: What is the relation 
between documenting and 
voiced?

Answer: CAUSE

Causal QA

Question: What causes that the 
US embassy has voiced concern?
Answer: Memorial is famous 
for documenting human rights 
abuses in Russia . 

Existing Approaches UniEvent

Figure 1: Illustration of knowledge transfer types across
event-relational reasoning tasks. Existing approaches
can only achieve inter-relation or inter-formulation trans-
fer while UNIEVENT succeeds in all.

narrative text (e.g., sentences, paragraphs or doc-
uments), which is composed of an event trigger
(e.g., predicate) and its arguments (e.g., subject,
object, adverbial modifier). Based on the semantic
unit at the event level, a broad spectrum of event-
relational reasoning tasks was presented to learn
various inter-event relations (e.g., temporal, causal,
conditional) and thus enable commonsense or cog-
nitive reasoning capabilities for advanced AI sys-
tems. The inherent event-relational reasoning logic
has been formulated as tasks as relation extrac-
tion (Han et al., 2021b), question answering (Yang
et al., 2022b; Han et al., 2021a), intend predic-
tion (Rashkin et al., 2018), summarization (Daumé
and Marcu, 2006) and knowledge base construc-

7088



tion (Sap et al., 2019; Li et al., 2020).

Attributed to recently advanced language mod-
els (e.g., BERT and GPT-3) pre-trained on raw
corpora with billions of words in a self-supervised
manner, data-driven methods via a pre-training &
fine-tuning paradigm achieves acceptable perfor-
mance on the event-relational reasoning tasks (Han
et al., 2021b; Chen et al., 2022; Man et al., 2022a).
Nonetheless, its inherently complex intra-event
semantics and intricate inter-event relations in-
evitably increase the labor intensity of human an-
notation processes (e.g., experts-required, time-
consuming, label-inconsistent). This limits the
scale of human-labeled data for fine-tuning and
thus affects the effectiveness of the data-driven
methods on those tasks (Ning et al., 2018). For ex-
ample, considering the event temporal question an-
swering task, there are only 198 training instances
in CIDER (Ghosal et al., 2021) among all datasets.

Therefore, such a data-scarcity issue necessitates
knowledge transfer to an event-relational reason-
ing task. Besides task-specific heuristic pseudo
labeling in a self- or semi-supervised framework
to transfer from large-scale in-domain raw corpus,
recent event-centric research works resort to super-
vised knowledge transfer due to its general learn-
ing methodology and superior fine-tuning perfor-
mance. That is, transferring knowledge among
supervised datasets under a variety of inter-event
relations (e.g., temporal, causal) (Han et al., 2019;
Wang et al., 2020) and reasoning formulations
(e.g., event relation extraction, question answer-
ing) (Tang et al., 2021; Li et al., 2022b; Lourie
et al., 2021). Despite their superior transfer per-
formance, as shown in Figure 1, these works do
not well consider knowledge transfer among a va-
riety of both targeted relations and reasoning for-
mulations in event-relational reasoning, and they
usually fail to generalize to unseen event-relational
reasoning tasks with distinct relations and/or for-
mulations. For example, according to our empirical
study shown in NT column of Table 3, unified train-
ing on T5 fails to transfer to tasks both unseen in
formulation and relation.

To enhance knowledge transfer and empower
zero-shot generalization among event-relational
reasoning tasks, in this work we propose a brand-
new unified framework UNIEVENT for zero-shot
event-relational reasoning tasks transferring. We
first categorize all event-relational reasoning tasks
according to their original formulation types and

event relation. We then construct generative for-
mats for each task and convert them into genera-
tion forms. We train on adapted tasks based on a
pretrained generation model (Raffel et al., 2020).
Based on that, the proposed unified model enables
implicit transfer across event-relational reasoning
tasks. However, without explicitly discriminating
the categorical coordination of the data, straightfor-
ward multi-task training may suffer from negative
transfer (Liu et al., 2019) and intensive diversity
of formulations and relations. Therefore, inspired
by recent success of prompt tuning (Lester et al.,
2021; Li and Liang, 2021; Liu et al., 2021b) where
prompt instruction show great benefit in multi-task
training (Sanh et al., 2021; Wei et al., 2021; Xu
et al., 2022; Raffel et al., 2020), we propose to add
prefix (Li and Liang, 2021) adapting to diversified
formulations and relations. This multi-dimensional
prefix additionally facilitates further transfer across
tasks. We introduce to generate of these prefixes via
the Adaptive Prefix Generators which allow shar-
ing of flexible features among distinct dimensions.
We then perform a contrastive regularization (Wu
et al., 2020; Su et al., 2021) to learn to discrimi-
nate various task formulations and relations and
enhance the representation.

We conduct extensive experiments on 16
datasets (3 for multi-task training, 13 for testing).
Experiment results demonstrate that our method
shows significant transferability and outperforms
baselines in both zero-shot and full data multi-task
settings We summarize our contributions as:

• We propose UNIEVENT for zero-shot event-
relational reasoning tasks. We first catego-
rize the event-relational reasoning tasks by
the task formulation type and event relation.
Then we unify the training datasets with event-
relational reasoning targeted generative for-
mats to enable knowledge transfer.

• We propose the Adaptive Prefix Generator to
generate prefixes to guide the event-relational
reasoning process. We also put up with a
formulation- and relation-aware contrastive
regularization to enhance further knowledge
transfer across relations and formulations.

• We conduct extensive experiments to testify
to our method. UNIEVENT outperforms the
baselines on average of all datasets in both
zero-shot and full-data settings.
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UniEvent

“Curfew was imposed to 
bring the situation under control and prevent the clashes 
from spreading to nearby areas , sources said . Is it causal 
related?”

Encoding 
Relation-wise

APG

Encoding 
Formulation-wise

APG

Decoding 
Relation-wise

APG

Decoding 
Formulation-wise

APG

Adaptive
Prefix Generator

!"#$

%"&$

%"#$
%"&$

“With the general election due this 
September , … What is the relation between election and come. 
Options:  before after simultaneous including during”

TEMP RE

“Hosseini however 
did not give details of any retaliation… Question: 
What could Iran do if the Security Council 
sanctions against Tehran?”

COND QA

CA NLI

“after [eos]”TEMP RE

”Blocking 
United Nations inspections. [eos]"

COND QA

“causal[eos]”CA NLI

Bottleneck

!"&$ !"'$

Figure 2: Overview of UNIEVENT. We propose to unify event-relational reasoning tasks with constructed generative
formats. We use the Adaptive Prefix Generators to generate formulation-wise and relation-wise prefixes in both the
encoder and decoder sides. In total, there are four Adaptive Prefix Generators of the same architecture. We illustrate
the architecture on the right.

2 Method

Task Formulation. The objective of our study
is to train a model using a combination of training
datasets from different task formulations and event
relations, enabling it to transfer its learning to a
set of unseen datasets that were withheld during
training. Formally, given a unified training dataset
T =

⋃
Ti, we aim to train a model P (Y|X ) on

T. Each data (X ,Y, ς) ∈ T consists of an input X ,
an label Y and the original task formulation type ς .
In summary, our framework encompasses relation
extraction, natural language inference, question
answering, and multiple-choice formulations., i.e.
ς ∈ {RE,NLI,QA,MC}. For all types of formula-
tion, the inputs X and label Y are specifically:

(X ,Y) =





((D, E0, E1, γ), L), ς = RE
((D, γ), L), ς = NLI
((D, Q, γ), A), ς = QA
((D, E0, E1, I, γ), A), ς = MC

where D indicates the document, E0 and E1 are
two queried events, Q is a question about events,
I stands for the queried dimension (e.g. cause
and result for event causality tasks), γ denotes
for inherent event relation of that data, L is the
gold label and A is the gold answer text. Then we
transfer the models to the held-out unseen datasets
Z =

⋃
Zz which is also composed by such four

types of tasks. In this paper, we mainly consider
four event relations which are temporal (TEMP),
causal (CA), counterfactual (COUNT), and condi-
tional (COND). We finally result in tasks taxonomy
as shown in Table 1.

Form. Rel. Task

RE
TEMP

TBD (Chambers et al., 2014), MA (Ning et al., 2018)
RED (O’Gorman et al., 2016), TM (Naik et al., 2019)

CA
ESL (Caselli and Vossen, 2017), SCI (Li et al., 2021)
CTB (Mirza and Tonelli, 2016)

NLI
CA

CNC (Tan et al., 2022a), ALT (Liang et al., 2022)

MC ECA (Du et al., 2022)

QA

CA

EST (Han et al., 2021a), CQA (Yang et al., 2022c)
RI (Poria et al., 2021), RD (Poria et al., 2021)
CID (Ghosal et al., 2021)

TEMP CID (Ghosal et al., 2021)

COUNT

EST (Han et al., 2021a), CQA (Yang et al., 2022c)
SE (Yang et al., 2020), CID (Ghosal et al., 2021)
EST (Han et al., 2021a), CQA (Yang et al., 2022c)

COND CID (Ghosal et al., 2021)

Table 1: Event-relational reasoning tasks taxonomy. We
categorize these tasks according to their task formula-
tions and event relations. Some of the tasks cover more
than one relations such as CQA and EST.

Model Overview. Our model undergoes training
on unified diverse datasets of task formulations and
event relations, followed by evaluation on held-out
test sets where it encounters zero-shot scenarios.
We first convert all tasks into text-to-text genera-
tion based on our constructed generative formats
as in Section 2.1. After that, UNIEVENT takes in-
put with multi-dimensional prefix concatenated and
generates output sequence. To improve knowledge
transfer, we use the Adaptive Prefix Generators to
generate the above prefixes according to the formu-
lation and the relation of each data as in Section 2.2
and propose the formulation- and relation-aware
contrastive regularizationas in Section 2.3. Finally,
UNIEVENT perform unified multi-task training in
Section 2.4. We depict an overview of UNIEVENT

as shown in Figure 2.
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2.1 Unified Generative Adaptation

We adapt all tasks into generation forms with con-
structed generative formats to enable unified gen-
erative training. However, there have been no
available human-engineered prompts for event-
related tasks so far. As is known to all, model
performance is sensitive to the prompt and ver-
balizer designs (Shin et al., 2020). Such prompts
from Prompt Source1 are not directly suitable for
event-relational reasoning tasks. Considering that,
we construct the discrete generative formats from
scratch. The generative format varies with task for-
mulations and event relations, as listed in Figure 2.
We mainly take RE as an example to explain the
following process.

Input Adaptation. The adapted input is mainly
a question "What is the relation between E0 and E1
?". E0 and E1 are queried events. We prepend the
document content placeholder D before the ques-
tion. We also append optional O representing the
candidate label set. For MC, there’s another place-
holder I which denotes for queried dimension(eg.
cause and effect for the causal relation).

Ouput Adaptation. Conventionally in prompt
tuning (Shin et al., 2020), we construct a verbalizer
VERB(·) to map relation labels L to label words.
As is shown in Figure 2, we show all verbalizers for
all mentioned event relations. After, the generation
output is the label word VERB(L) appended by the
[eos] indicator. In QA and MC, we directly take the
original answer A to compose the output. As a
result, for data of any formulation and relation, we
convert it into a text-to-text form with input X and
linearized output sequence Y .

Model Generation. Then given an input X , X =
(x1, x2, ..., xn) where xi is the ith token of the in-
put X and n is the sequence length, UNIEVENT

output the prediction by generating the linearized
answer Y . The generation process is modeled by
a pretrained encoder-decoder language model M
such as BART (Lewis et al., 2019) and T5 (Raf-
fel et al., 2020) which are pretrained on a large-
scale corpus. After the generation adaptation,
UNIEVENT first encode X by the encoder Enc
of M. Each encoder layer of M is a multi-head
self-attention (Vaswani et al., 2017) block which
take H l ∈ Rn×d as input to compute input of next
layer H l+1 = Encl(H l; θle). d is the hidden state

1https://github.com/bigscience-workshop/promptsource

dimension. UNIEVENT then generate answer Y
with decoder of M in an auto-regressive genera-
tion process. We use θM = (θe, θd) to denote both
encoder and decoder parameters of M

P (Y|X ) =
∏

i

Dec(Y<i,H; θd). (1)

2.2 Multi-Dimensional Prefix-Tuning
Straightforward unifying all tasks can impede a
model’s ability to recognize distinct formulations
and relations, and could further result in negative
transfer (Liu et al., 2019). To have UNIEVENT

adapt to different tasks and relations while share
basic information across them, we propose to use
multi-dimensional prefix to instruct the generation.
We generate formulation-wise prefix matrix Pkς

and relation-wise prefix matrix Pkγ via our Adap-
tive Prefix Generators. To further train the Adaptive
Prefix Generators and facilitate the discriminated
representation, we propose the Task- and Relation-
aware Contrastive Regularization.

2.2.1 Adaptive Prefix Generator (APG)
To better adapt UNIEVENT to different formulation
types and relations, we utilize prepended layer-wise
prefixes (Li and Liang, 2021) to guide the gener-
ation. Moreover, on account of sharing flexible
features of various task formulations and event re-
lations, we instead generate these prefixes via a
novel Adaptive Prefix Generators.

We first introduce the learnable embeddings
V l
k ∈ Rs×dp for various aspects in each layer,

k ∈ A. A can be any considering attributes which
in this paper is the set of task formulations or event
relations. dp is the vector dimension, s is the length.
l ∈ [1, L] is the layer index. V l

k can be randomly
initialized or pretrained from other tasks before.

Given V l
k , our APG gl(·) takes it as input and

generates dimension-specific prefix P l
k. gl(·) con-

sists a trainable bottleneck layer which is a pair of
down and up projections that firstly align different
knowledge representations to the same semantic
space and then project them to space of M. Math-
ematically, given V l

k

P l
k[i, :] := gl(V l

k [i, :]; θg)

=W ul
Tanh (W dlV l

k [i, :]),

P l
k[i, :] ∈ Rd, i ∈ [1, s],

(2)

where W dl ∈ Rdp×dm and W ul ∈ Rdm×d. dm is
the mid dimension of the bottleneck layer. Tanh
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Form. Rel. Generative Formats Verbalizer

RE
TEMP Input: D What is the relation between E0 and E1? Options: O.

Answer:
Output: L [eos]

BEFORE: before AFTER: after
INCLUDES: including VAGUE: vague
IS_INCLUDED: during
SIMULTANEOUS: simultaneous

CA CAUSAL: causal NONE: none

MC CA
Input: What is the I of D? Options: E0 ; E1. Answer:

-Output: A [eos]

NLI CA
Input: D Is it causal related? Options: O. Answer: ENTAILMENT: causal
Output: L [eos] CONTRADICTION: none

QA * Input: D. Q ? Output: A [eos] -

Table 2: Generative Formats and Verbalizers. We show inputs and outputs of all relations and formulations. D, E·,
O and I represents placeholders for document, queried events, options and queried dimension. L and A stands for
answer label words and answer sequence.

is the hyperbolic tangent activation function. θg is
the parameter for APG. The APG can apply to the
both formulation and relation axis. Specifically, for
formulation-wise APG, the attributes set A is:

A = {RE,NLI,QA,MC}.

Turning to event relation:

A = {TEMP,CA,COUNT,COND}.

The Adaptive Prefix Generator are learned end-to-
end with the backbone transformer M.

2.2.2 Prefix Instructed Generation
To instruct the accomplishment of a task and in-
duce considering task formulation and relational
knowledge from the model. We prepend generated
formulation-wise and relation-wise prefix matrix
P l
kς and P l

kγ to inputs of each encoder layer of M:

H l+1 = Encl([P l
kς ;P

l
kγ ;H

l]; θle), (3)

H l ∈ Rn×d,P l
kς ∈ Rsς×d,P l

kγ ∈ Rsγ×d,

H is hidden states of the lth layer. sς and sγ are
lengths of formulation-wise and relation-wise pre-
fix respectively. [; ] is the concatenation operation.

We also add non-identical prefixes generated by
another two APGs to each layer of decoder. There-
fore, in total, we have four APGs in UNIEVENT.

2.3 Formulation- and Relation-aware
Contrastive Regularization (TRC)

When trained solely on the supervised multi-task
loss, a model has a tendency to undergo shortcuts of
neglecting the prefixes. If this happens, UNIEVENT

degrades to normal multi-task training on M. To
avoid such a dilemma and further adapt UNIEVENT

to various dimensions, we add an additional con-
trastive regularization (Wu et al., 2020; Su et al.,
2021). We take the vector H[bos] of the first token
[bos] after all prefixes from the last layer’s hidden
states as the representation. Then we map H[bos]

to another space via a feed-forward layer f(·):
uX := f(H[bos]; θc) = Tanh(W cH[bos]), (4)

uX ∈ Rd. W c ∈ Rd×dc . θc represents the param-
eters. Then we take uX as the representation of X .
For a data point X with its formulation type ςX and
event relation γX , we sample a subset KX from the
whole training set. Then we conduct contrastive
learning on X with KX :

φX =
∑

Xp∈ K+
X

log
exp(uX · uXp/τ)∑

Xa∈ KX
exp(uX · uXa/τ)

,

(5)

LC = −
∑

X∈ T

1

|KX |
φX ,

K+
X = {Xp|Xp ∈ KX , ςXp = ςX ∧ γXp = γX },

where τ is the temperature parameter and · is vector
inner production.

2.4 Multi-Task Training
To train UNIEVENT, we perform multi-task train-
ing on T. We shuffle all data of T which ends up
with a mixed-up training batch composed of data
from various datasets. Then we acquire the final
training loss with scaling factor α:

LE = −
∑

(X ,Y)∈ T
logP (Y|X ; θM, θg, θc),

L = LE + α× LC ,

(6)
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AVG

NT TEMP CA NLU QA-F1 QA-EM QA ALL

T5-zero (Raffel et al., 2020) 22.62 19.99 17.09 36.93 3.01 0.31 2.00 17.11
T0-3B (Sanh et al., 2021) 34.77 29.28 30.85 47.89 31.08 5.92 19.90 30.91

T5-unified (Raffel et al., 2020) 28.36 29.36 27.90 42.72 39.95 9.20 24.57 30.19
UniEvent (Ours) 42.89 29.94 37.07 48.37 46.87 11.79 29.33 37.43

Ablation

UniEvent - r (Ours) 30.89 29.29 31.83 46.76 45.33 11.86 25.32 34.85
UniEvent - t (Ours) 38.92 33.39 36.59 47.96 43.69 10.85 27.27 36.02
UniEvent - c (Ours) 38.76 28.11 36.13 47.09 40.81 10.07 25.44 35.07

Table 3: The main results for average zero-shot performance on event-relational reasoning tasks. Bold numbers are
best scores for each average metrics. ALL averages scores of all metrics of all zero-shot dataset. TEMP, CA, NLU,
QA average all metrics of temporal, causal, NLU and QA datasets respectively. QA-F1 and QA-EM evaluate F1
and EM of all QA datasets. NT denotes for all datasets of those there are no training datasets with both the same
formulation type and event relation, namely ESL, CTB, SCI, ECA and temporal part of CID.

3 Experiments

3.1 Event-Relational Reasoning Datasets

In total, we assess the performance of UNIEVENT

across 16 datasets that involve event-relational
reasoning . Datasets can be divided by their
original formulation types and event relation.
Datasets we use are TB-Dense (TBD) (Cham-
bers et al., 2014), MATRES (MA) (Ning et al.,
2018), RED (O’Gorman et al., 2016), TD-
DMan (TM) (Naik et al., 2019) which are
temporal relation extraction; ESL (Caselli and
Vossen, 2017)2, SCITE (SCI) (Li et al., 2021),
CTB (CTB) (Mirza and Tonelli, 2016) which are
event causality identification; CNC (CNC) (Tan
et al., 2022b), ALTLEX (ALT) (Liang et al., 2022)
which are causal natural language inference; ES-
TER (EST) (Lester et al., 2021), CQA (Yang et al.,
2022c) and CIDER (CID) (Ghosal et al., 2021)
are multi-relational question extractive answering
datasets which cover causal, counterfactual and
conditional event relation. RECCON-IE (RI) and
RECCON-DD (RD) (Poria et al., 2021) are causal
QA tasks. SE2020-EQA (SE) (Yang et al., 2020)
which is a counterfactual question answering task.
ECARE (ECA) (Du et al., 2022) is a causal mul-
tiple choice task. To better show the results, in
the following part, we organize RD, RI, SE, CQA,
CID as QA part and leave the rest as NLU part. We
summarize data statistics in Figure 8 and state the
details of each dataset in Appendix A. We select
TBD, CNC, and EST as train sets and leave others

2In this paper, we don’t perform 5-folds cross-validation
and instead split each dataset into 8 :1 :1 for training, valida-
tion and test.

as held-out unseen test datasets.

3.2 Evaluation Metrics

All evaluation metrics follow previous researches
on each dataset. We use micro-F1 score to evalu-
ate all relation extraction tasks. Since causal NLI
only has two labels(entailment and contradiction),
we evaluate them by binary-F1 score. We denote
both micro-F1 and binary-F1 as F1. We use F1-
score (F1), EM to measure QA task. F1 measures
the correctness of uni-grams in generated sentence
comparing those in ground truth sentences. EM
score measures the exactly matches of uni-grams.
In ESTER dataset, previous works also evaluate
by HIT@1 which measures whether the event trig-
ger words are generated in the sentences. Multiple
choice tasks are measured by accuracy.

3.3 Parameters

We choose T5-base (Raffel et al., 2020) as the back-
bone of UNIEVENT. We set both formulation-wise
and relational knowledge-wise prefix length sς and
sγ as 200. For all experiments, we use batch size
32, learning rate 5e-5 on AdamW optimizer. For
contrastive learning, we set τ = 0.07, α = 0.05
and |K| = 512. We don’t use any optimization
tricks like label smoothing and randomly initialize
all parameters our Adaptive Prefix Generators. We
train till 15 epochs for all model and select best
performing checkpoint on average score of all val-
idation sets. We use deepspeed3 framework and
train on two Tesla V-100 GPUs.

3https://www.deepspeed.ai/
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Dataset RD RI SE CQA CID

Metric F1 EM F1 EM F1 EM F1 EM F1 EM

T5-zero (Raffel et al., 2020) 5.55 0.21 3.88 0.37 2.23 0.36 0.12 0.00 3.25 0.00
T0-3B (Sanh et al., 2021) 36.57 8.55 30.75 7.77 37.66 0.97 40.68 6.37 9.76 0.00

T5-unified (Raffel et al., 2020) 23.48 0.58 23.97 0.45 64.72 7.53 69.60 28.99 17.98 8.44
UniEvent (Ours) 38.40 3.27 34.32 2.22 72.03 20.46 72.25 28.54 17.36 4.45

Table 4: Results of QA tasks. Bold numbers are highest scores of the columns.

Dataset TM MA RED SCI ESL CTB ALT ECA

Metric F1 F1 F1 F1 F1 F1 F1 ACC

T5-zero (Raffel et al., 2020) 13.80 38.94 38.78 49.89 31.40 3.49 67.90 51.27
T0-3B (Sanh et al., 2021) 25.27 55.46 39.61 49.87 72.21 4.39 68.03 68.25

T5-unified (Raffel et al., 2020) 28.93 35.57 44.87 51.87 31.91 0.00 56.95 48.97
UniEvent (Ours) 30.66 35.29 42.11 82.78 70.64 8.95 62.50 54.03

Table 5: Results of NLU tasks. Bold numbers are highest scores of the columns.

3.4 Baselines

• T0-3B(Sanh et al., 2021) This is the strongest
baseline which is trained on a massive corpus
of hundreds of general datasets. And more,
this model is 10× bigger than our model.

• T5-zero (Raffel et al., 2020). We directly test
on T5 without any training.

• T5-unified This is the baseline that only con-
ducts multi-task training on T5-base without
multi-dimensional prefix-tuning.

• UniEvent-r This is the ablated model of
UNIEVENT without relation-wise prefixes.

• UniEvent-t This is the ablated model of
UNIEVENT without formulation-wise pre-
fixes.

• UniEvent-c This is the ablated model of
UNIEVENT without formulation- and relation-
aware contrastive regularization.

3.5 Zero-Shot Results

We list models’ average performances on all zero-
shot test datasets in Table 3. We find UNIEVENT

outperforms strong baseline T0-3B on average 6.52
scores of all tasks in column ALL. This demon-
strate the effectiveness of transferability on zero-
shot event-relational reasoning tasks. The multi-
dimensional prefixes with task- and relation-aware
contrastive loss further boost the model to transfer
across tasks. We also find T5-unified achieves com-
parable performance with T0-3B which is 10 ×
larger than it. All above findings testify our motiva-
tions that transfer knowledge via task formulation
and relation axis is promising. Moreover, our multi-
dimensional prefix-tuning ensures the knowledge

transfer.

We list average score of QA tasks of all mod-
els in columns QA-F1 (i.e. average of f1-scores.),
QA-Em (i.e. average of exactly match scores.)
and QA of Table 3 and show score of each dataset
in Table 4. In Table 3, we find UNIEVENT out-
performs T0-3B with average 9.43 scores on QA
which is average scores of all both F1 and EM.
This reveals UNIEVENT works encouragingly on
QA reasoning. We show average score of NLU
tasks in column NLU of Table 3 and results of each
dataset in Table 5. We find UNIEVENT exceeds
0.48 scores on average which indicates the effec-
tiveness of UNIEVENT on NLU part of datasets.
As we can find, UNIEVENT performs not that well
on NLU as on QA, we believe this is probably due
to the pretrained generation backbone M is more
suitable for generation tasks and T0-3B are trained
on massive NLU datasets.

We also conduct experiments to evaluate cross-
formulation and cross-relation transfer. Results are
listed in NT column in Table 3 which are average
scores of all datasets without training data in the
same coordination in Figure 1. We surprisingly
find that UNIEVENT exceeds T0-3B on a large
margin, i.e. 8.12 average scores. These results
indicate promising transferability of UNIEVENT

since those tested dataset can only be completed by
transfering from other datasets.

We report performances on TEMP datasets (MA,
RED, TM, temporal part of CID) and CA
datasets(ESL, SCI, CTB, ALT, ECA, RD, RI,
causality parts of CQA and CID) of all models as
well. Results are illustrated in TP and CA columns
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Dataset TBD CNC EST AVG

Metric F1 F1 F1 HIT@1 EM

T5-base 41.94 73.79 58.23 79.73 21.93 55.12
T5-unified 29.90 78.05 60.76 78.41 23.59 54.14
UniEvent 42.97 78.69 61.44 79.07 21.59 56.75

Table 6: Performances on training set of all models.

AVG

NLU QA-F1 QA-EM QA ALL

T5-zero 38.32 4.38 0.25 4.38 18.05
T0-3B 49.93 30.49 3.86 20.60 33.33

T5-unified 44.19 30.96 6.38 22.74 31.78
UniEvent 38.50 41.20 12.51 27.72 33.65

Table 7: Trainset substituted by TM, ALT and CQA.
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Figure 3: Prefix length analysis. (a) Formulation-wise
prefix length sς under sγ = 200, (b) Relation-wise
prefix length sγ under sς = 200

in Table 3. Firstly, we find UNIEVENT performs
well on CA datasets. However, we find formulation-
wise prefixes harms performances of TEMP tasks
which is probably due to most of TEMP datasets
are RE.

3.6 Multi-Task Training Results

We also report multi-task training results on three
trainsets. We find scores of trainsets can still in-
crease if we continue training after the 10th epoch
while zero-shot performance would drop. There-
fore, for fair comparison, we report best results
within 10th epochs for all models. As shown in the
Table 6, UNIEVENT exceeds T5-unified. T5-base
is a model finetuned on T5 base model in single
task. Results demonstrate that our unified model
can even transfer knowledge in full data setting. We
believe our multi-dimensional prefix-tuning can re-
duce notorious negative transfer to some degree.

Figure 4: Dataset ablation study. Each score is com-
puted by x−x̂

x , where x is the score of UNIEVENT, x̂ is
the score with a dataset ablated.

3.7 Ablation Study

Model Ablation. We conduct model ablation
studies. The results are detailed in Table 3. We find
both formulation-wise and relation-wise prefixes
effect. UniEvent outperforms UniEvent-c, which
indicates task- and relation-aware contrastive regu-
larization is crucial since it discriminates all sorts
of dimensions in the unified training.

Dataset Ablation. In order to inspect the transfer-
ability and quantify the amount, we conduct dataset
ablation studies. We complete three experiments,
each with one of three training set ablated. Then
we compute the transfer ratio of each trainset on all
metrics as x−x̂

x , where x is the score of UniEvent,
x̂ is the score with a dataset ablated. We detail the
results in Figure 4. Basically, these experimental
results are consistent with our motivation. EST
contributes to all QA datasets. Causal part of EST
transfer to CTB. CNC transfers causality knowl-
edge to SCI, ESL, CTB, ALT and QA datasets as
RD and RI. TBD can transfer to most of the RE
dataset except MA. We believe MA suffers from
negative transfer of all training sets. We surpris-
ingly find TBD contributes to RD and RI. In sum,
all training sets can transfer to other datasets on
average (AVG row of Figure 4).
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3.8 Prefix Length

In this part, we study influence of prefix length.
In UniEvent, there are two types of prefix, i.e.
Pkς and Pkγ . We illustrate the results in Figure 3.
Specifically, in Figure 3(a), we fix length of Pkγ to
200, and vary length of Pkς (i.e. sς ) from 50 to 400.
We find almost all average metrics increase with
sς varying from 50 to 400 except from temporal
relation average performance. The results show
that formulation-wise prefix length should reach to
a scale to guarantee zero-shot performance.

On the other hand, we also analysis the length of
Pkγ under fixed sς = 200. Results are depicted in
Figure 3(b). Results are similar with sς , sγ should
reach a critical scale to make Pkγ work.

We also find a interesting phenomena that NT
metrics are still increasing in both experiments
which indicates prefix length should be large for
both formulation and relation unseen tasks.

3.9 Dataset Substitution

We substitute training set with TM, ALT and CQA.
Results are shown in Table 7. We find UNIEVENT

outperforms all baselines with dataset substituted.
It indicates that UNIEVENT can transfer knowledge
in various datasets permutations.

4 Related Work

Unified Training To fulfill knowledge transfer,
sorts of brute-force solutions known as multi-
task learning trains parameter-sharing neural mod-
els (Raffel et al., 2020; Sanh et al., 2021; Xu et al.,
2022; Wei et al., 2021; Li et al., 2022a). How-
ever, learning out-of-domain and -formulation data
could diminish the model efficacy on the targeted
tasks, not to mention domain/formulation varying
significantly in event-relational reasoning. Built
upon a multi-task learning framework recent works
are dedicated to integrating knowledge by uni-
fying massive tasks (Lourie et al., 2021; Zhong
et al., 2022; Xie et al., 2022; Lu et al., 2022;
Khashabi et al., 2020). Via unified task formu-
lations (e.g., text-to-text generation) and advanced
training strategies, these works excel single task
finetuning in conventional multi-task learning.
Prompting Transfer Yang et al. (2022a); Liu et al.
(2022); Gu et al. (2022); Asai et al. (2022); Vu et al.
(2021) transfer knowledge from pretrained tasks
to downstream ones via prompting. In this work,
we don’t acquire prior knowledge from other tasks
while enhance generalization across tasks.

Event-Relational Reasoning Zuo et al. (2020);
Liu et al. (2021a); Zuo et al. (2021a); Cao et al.
(2021); Zuo et al. (2021b); Chen et al. (2022); Phu
and Nguyen (2021); Man et al. (2022b) identify
event causality between two event trigger men-
tions. Zuo et al. (2020); Liu et al. (2021a); Zuo
et al. (2021a) utilize external knowledge. Chen
et al. (2022); Phu and Nguyen (2021) develop novel
graph neural networks to capture structural infor-
mation. Tan et al. (2022b); Liang et al. (2022) ob-
tain event causality via natural language inference
formulation.

Mathur et al. (2021); Zhou et al. (2020, 2021);
Han et al. (2021b); Zhang et al. (2021); Hwang
et al. (2022); Man et al. (2022a) extract temporal
relations of events from documents or sentences.
Zhou et al. (2020, 2021); Han et al. (2021b) learn
from unsupervised or distant supervision.

Yang et al. (2020) asks for counterfactual state-
ments. Du et al. (2022) aims to choose correct
cause or effect from choices. Poria et al. (2021);
Han et al. (2021a); Yang et al. (2022c) question
about diversified event relations. Among all meth-
ods, we are the first to study the unification across
these relations and formulations.

5 Conclusion

In this work, we propose UNIEVENT to transfer
knowledge for unseen event-relational reasoning
tasks. We first categorize these tasks. Then we con-
struct generative formats and then unify them with
generated multi-dimensional prefixes. UNIEVENT

outperforms all baselines in both zero-shot and full-
data settings.
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Limilations

The current UniEvent is limited to performing
event-relational reasoning tasks in a textual modal-
ity. It is unable to transfer knowledge between
tasks of different modalities. However, combin-
ing event knowledge from different modalities may
have more interactions and further enhance perfor-
mance. As this is beyond the scope of our current
work, we leave it to future research.
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Nelleke Oostdijk, Tadashi Nomoto, Hansi Het-
tiarachchi, Iqra Ameer, Onur Uca, Farhana Ferdousi
Liza, and Tiancheng Hu. 2022b. The causal news cor-
pus: Annotating causal relations in event sentences
from news. arXiv preprint arXiv:2204.11714.

Jialong Tang, Hongyu Lin, Meng Liao, Yaojie Lu, Xi-
anpei Han, Le Sun, Weijian Xie, and Jin Xu. 2021.
From discourse to narrative: Knowledge projection
for event relation extraction. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 732–742.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and
Daniel Cer. 2021. Spot: Better frozen model adap-
tation through soft prompt transfer. arXiv preprint
arXiv:2110.07904.

Haoyu Wang, Muhao Chen, Hongming Zhang, and Dan
Roth. 2020. Joint constrained learning for event-
event relation extraction. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 696–706.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Sen Wu, Hongyang R Zhang, and Christopher Ré.
2020. Understanding and improving information
transfer in multi-task learning. arXiv preprint
arXiv:2005.00944.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Vic-
tor Zhong, Bailin Wang, Chengzu Li, Connor Boyle,

Ansong Ni, Ziyu Yao, Dragomir Radev, Caiming
Xiong, Lingpeng Kong, Rui Zhang, Noah A. Smith,
Luke Zettlemoyer, and Tao Yu. 2022. Unifiedskg:
Unifying and multi-tasking structured knowledge
grounding with text-to-text language models. arXiv
preprint arXiv:2201.05966.

Hanwei Xu, Yujun Chen, Yulun Du, Nan Shao, Yang-
gang Wang, Haiyu Li, and Zhilin Yang. 2022. Zero-
prompt: Scaling prompt-based pretraining to 1,000
tasks improves zero-shot generalization. arXiv
preprint arXiv:2201.06910.

Kexin Yang, Dayiheng Liu, Wenqiang Lei, Baosong
Yang, Mingfeng Xue, Boxing Chen, and Jun Xie.
2022a. Tailor: A prompt-based approach to attribute-
based controlled text generation. arXiv preprint
arXiv:2204.13362.

Linyi Yang, Zhen Wang, Yuxiang Wu, Jie Yang, and
Yue Zhang. 2022b. Towards fine-grained causal rea-
soning and qa. arXiv preprint arXiv:2204.07408.

Linyi Yang, Zhen Wang, Yuxiang Wu, Jie Yang, and
Yue Zhang. 2022c. Towards fine-grained causal rea-
soning and qa. arXiv preprint arXiv:2204.07408.

Xiaoyu Yang, Stephen Obadinma, Huasha Zhao, Qiong
Zhang, Stan Matwin, and Xiaodan Zhu. 2020.
Semeval-2020 task 5: Counterfactual recognition.
arXiv preprint arXiv:2008.00563.

Shuaicheng Zhang, Lifu Huang, and Qiang Ning. 2021.
Extracting temporal event relation with syntactic-
guided temporal graph transformer. arXiv preprint
arXiv:2104.09570.

Wanjun Zhong, Yifan Gao, Ning Ding, Yujia Qin,
Zhiyuan Liu, Ming Zhou, Jiahai Wang, Jian Yin,
and Nan Duan. 2022. ProQA: Structural prompt-
based pre-training for unified question answering. In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 4230–4243, Seattle, United States. Association
for Computational Linguistics.

Ben Zhou, Qiang Ning, Daniel Khashabi, and Dan Roth.
2020. Temporal common sense acquisition with min-
imal supervision. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7579–7589.

Ben Zhou, Kyle Richardson, Qiang Ning, Tushar Khot,
Ashish Sabharwal, and Dan Roth. 2021. Temporal
reasoning on implicit events from distant supervision.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1361–1371.

Yucheng Zhou, Tao Shen, Xiubo Geng, Guodong Long,
and Daxin Jiang. 2022. Claret: Pre-training a
correlation-aware context-to-event transformer for

7099

https://doi.org/10.18653/v1/2022.naacl-main.313
https://doi.org/10.18653/v1/2022.naacl-main.313


event-centric generation and classification. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 2559–2575.

Xinyu Zuo, Pengfei Cao, Yubo Chen, Kang Liu, Jun
Zhao, Weihua Peng, and Yuguang Chen. 2021a.
Improving event causality identification via self-
supervised representation learning on external causal
statement. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
2162–2172.

Xinyu Zuo, Pengfei Cao, Yubo Chen, Kang Liu, Jun
Zhao, Weihua Peng, and Yuguang Chen. 2021b.
LearnDA: Learnable knowledge-guided data augmen-
tation for event causality identification. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 3558–3571, Online.
Association for Computational Linguistics.

Xinyu Zuo, Yubo Chen, Kang Liu, and Jun Zhao. 2020.
KnowDis: Knowledge enhanced data augmentation
for event causality detection via distant supervision.
In Proceedings of the 28th International Conference
on Computational Linguistics, pages 1544–1550,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

A Dataset Details

Dataset Train Validation Test

TBD 4,032 629 1,427
MA 5,412 920 827
TM 3,987 650 1500

RED 2,609 303 361
SCI 4,936 - 891
ESL 4,611 499 492
CTB 1,212 845 846
CNC 2,632 293 293
ALT 100,744 488 611
ECA 14,928 2,132 2,132
RD 7,271 347 1,894
RI - - 1,080
SE 3,551 - 1,950

EST 4,547 301 301
CQA 19,588 2,449 2,449
CID 1,938 237 225

Table 8: Dataset statistics. There are no validation set
in SCI and SE. RI only have test set.

In this section, we state processing details of all
datasets. We show dataset statistics in Table 8.

Considering temporal event relation extraction,
we strictly follow settings in Han et al. (2021b) for
MATRES, TBD, RED and setting in (Naik et al.,
2019) for TM.

For event causality identification, in ESL, CTB,
we don’t perform 5-folds cross validation as in Zuo

et al. (2021b) and instead split each dataset into
8:1:1 for train, validation and test. We follow Li
et al. (2021) for SCI.

We follow CNC in Tan et al. (2022b) and ALT
in Liang et al. (2022) respectively for causal NLI.

In view of question answering datasets, we fol-
low Han et al. (2021a), Yang et al. (2022c), Ghosal
et al. (2021) and Yang et al. (2020) for EST, CQA,
CID and SE. RD and RI are the same with Poria
et al. (2021).

Lastly, the setting for ECA is the same with Du
et al. (2022).

There are no validation set for SCI, RI, SE, so
when compute average score in validation, we don’t
consider these three datasets.
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