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Abstract

Most weakly supervised named entity recog-
nition (NER) models rely on domain-specific
dictionaries provided by experts. This approach
is infeasible in many domains where dictionar-
ies do not exist. While a phrase retrieval model
was used to construct pseudo-dictionaries with
entities retrieved from Wikipedia automatically
in a recent study, these dictionaries often have
limited coverage because the retriever is likely
to retrieve popular entities rather than rare ones.
In this study, we present a novel framework,
HighGEN, that generates NER datasets with
high-coverage pseudo-dictionaries. Specifi-
cally, we create entity-rich dictionaries with
a novel search method, called phrase embed-
ding search, which encourages the retriever to
search a space densely populated with various
entities. In addition, we use a new verifica-
tion process based on the embedding distance
between candidate entity mentions and entity
types to reduce the false-positive noise in weak
labels generated by high-coverage dictionaries.
We demonstrate that HighGEN outperforms the
previous best model by an average F1 score of
4.7 across five NER benchmark datasets.

1 Introduction

Named entity recognition (NER) models often re-
quire a vast number of manual annotations for train-
ing, which limits their utility in practice. In several
studies, external resources such as domain-specific
dictionaries have been employed as weak supervi-
sion to reduce annotation costs (Shang et al., 2018;
Liang et al., 2020; Meng et al., 2021). However,
such dictionaries exist only for certain domains and
building a dictionary for a new domain requires a
high level of expertise and effort.

To address this problem, a recent study proposed
a framework called GeNER, which generates NER
datasets without hand-crafted dictionaries (Kim
et al., 2022). In GeNER, user questions that re-
flect the needs for NER are received as inputs
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Figure 1: The most frequent ten entities in the top
1,000 phrases retrieved from the 2018-12-20 version
of Wikipedia for the three questions: “Which politi-
cian?”, “Which city?”, and “Which band?”. Due to a
bias in the entity popularity (Chen et al., 2021), a current
phrase retrieval model, DensePhrases (Lee et al., 2021),
primarily returns popular entities, limiting the coverage
of dictionaries.

(e.g., “Which city?”), and an open-domain question-
answering (QA) system, DensePhrases (Lee et al.,
2021), is used to retrieve relevant phrases (i.e.,
answers) and evidence sentences from Wikipedia.
The retrieved phrases constitute a ‘pseudo’ dictio-
nary, which serves as weak supervision in place
of hand-crafted dictionaries. The evidence sen-
tences are annotated based on string matching with
the pseudo dictionary, resulting in the final dataset.
This approach allows NER models to adapt to new
domains for which training data are scarce and
domain-specific dictionaries are unavailable.

However, because the entity popularity of
Wikipedia is biased (Chen et al., 2021; Leszczyn-
ski et al., 2022), existing open-domain QA models
tend to retrieve popular entities rather than rare
ones. This limits the coverage of dictionaries gen-
erated by GeNER. Figure 1 shows examples of
a bias in the entity population retrieved from the
open-domain QA model. “David Cameron,” “Bei-
jing,” and “The Beatles” frequently appear in the
top 1,000 retrieved phrases for each type of ques-
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tion. Low-coverage dictionaries created from these
biased results can cause incomplete annotations
(i.e., false-negative entities), which impedes the
training of NER models. Unfortunately, increas-
ing the number of retrieved phrases (i.e., larger
top-k) is not an appropriate solution because it is
computationally inefficient and causes a high false-
positive rate in the dictionary. Therefore, a new
search method that can efficiently retrieve diverse
entities with a reasonable top-k and a new NER
dataset generation framework based on this search
method are needed.

In this study, we present HighGEN, an advanced
framework for generating NER datasets with auto-
matically constructed ‘high-coverage’ dictionaries.
Specifically, we first obtain phrases and sentences
and constitute an initial dictionary in a similar man-
ner to GeNER. Subsequently, we expand the initial
dictionary using a phrase embedding search, in
which the embeddings of the retrieved phrases are
averaged to re-formulate query vectors. These new
queries specify contexts in which different entities
of the same type appear, allowing our retriever to
search over a vector space in which various entities
are densely populated.1 The expanded dictionary is
used to annotate the retrieved sentences. Because
a larger dictionary can induce more false-positive
annotations during rule-based string matching, we
introduce a new verification process to ensure that
weak labels annotated by the string matching are
correct. The verification process is performed by
comparing the distance between the embeddings of
a candidate entity and the target entity type.

We trained recent NER models (Liu et al., 2019;
Lee et al., 2020; Liang et al., 2020; Meng et al.,
2021) with the datasets generated by HighGEN and
evaluated the models on five datasets. Our mod-
els outperformed the baseline models trained us-
ing the previous best model GeNER by an aver-
age F1 score of 4.7 (Section 4). In addition, we
show an additional advantage of HighGEN over
GeNER, which generates datasets using only a few
hand-labeled examples without input user ques-
tions. HighGEN outperformed few-shot NER mod-
els on two datasets (Section 5). Finally, we perform
an analysis of the factors affecting the retrieval
diversity and NER performance (Section 6). We
make the following contributions:2

1We provide an explanation of its working principle (Sec-
tion 3.2) and an analysis of its retrieval diversity (Section 6.1).

2We will make our code publicly available.

• We propose a HighGEN framework that gener-
ates NER datasets with entity-rich dictionaries
that are automatically constructed from unla-
beled Wikipedia corpus.

• We present two novel methods in HighGEN:
(i) phrase embedding search to overcome the
limitations of the current open-domain phrase
retriever and successfully increase the entity
recall rate and (ii) distance-based verification
to effectively reduce the false-positive noise
in weak labels.

• HighGEN outperformed the previous-best
weakly-supervised model GeNER by an F1
score of 4.7 on five datasets. In few-shot NER,
HighGEN created datasets using few-shot ex-
amples as queries and outperformed current
few-shot NER models on two datasets.

2 Preliminaries

2.1 Weakly Supervised NER

The aim of NER is to identify named entities in text
and classify them into predefined entity types. Let
D = {X,Y} be a dataset, where X = {xn}Nn=1 is
a list of N unlabeled sentences and Y = {yn}Nn=1

is a list of N corresponding token-level label se-
quences. While supervised learning relies on the
human-annotated labels, Y, to train models, in
weakly supervised NER, the weak labels Ŷ are
generated using string matching between a domain-
specific dictionary, V , built by experts and the unla-
beled sentences, X (Yang et al., 2018; Shang et al.,
2018; Peng et al., 2019; Cao et al., 2019; Yang
and Katiyar, 2020; Liang et al., 2020; Meng et al.,
2021). Hand-crafted labeling rules are utilized in
another line of studies (Fries et al., 2017; Ratner
et al., 2017; Safranchik et al., 2020; Zhao et al.,
2021); however, these rules are difficult to apply to
new entity types. Recently, Kim et al. (2022) pro-
posed GeNER, in which weak labels are gener-
ated with a pseudo-dictionary, V̂ , created using a
phrase retrieval model. We follow their approach
but present an advanced framework for address-
ing the low-coverage problem and obtaining more
entity-rich dictionaries and NER datasets.

2.2 DensePhrases

DensePhrases (Lee et al., 2021) is a phrase retrieval
model that finds relevant phrases for natural lan-
guage inputs in a Wikipedia corpus. Unlike the
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Figure 2: Overview of the natural language search and phrase embedding search in our HighGEN framework.
(a) Natural language search retrieves unlabeled sentences (X̂1) and an initial dictionary (V̂1) for the given question,
“Which sports team?” (Section 3.1). (b) Phrase embedding search further retrieves an additional dictionary (V̂2)
using the top 100 phrases retrieved from the natural language search (Section 3.2). Note that the retrieved sentences
and phrases are fed into the dictionary matching and verification stage (see Section 3.3 and Figure 3).

retriever-reader approach, which first retrieves evi-
dence passages from Wikipedia and then finds the
answer (Chen et al., 2017), DensePhrases retrieves
answers directly from dense phrase vectors of the
entire English Wikipedia as follows:

s = Es(s, x), q = Eq(q),

(s∗, x∗) = argmax
(s,x)∈W

(s⊤q), (1)

where s is a phrase, a sequence of words from evi-
dence text x (i.e., sentence, passage, etc.); W is the
set of all phrase-evidence pairs in Wikipedia. The
input question q is converted into the query vector
q by the question encoder, Eq. Subsequently, rel-
evant phrases are retrieved based on the similarity
scores between the query vector q and phrase vec-
tor s, which is represented as the concatenation of
the start and end vectors of the phrase, produced
by the phrase encoder, Es. All phrase vectors are
‘pre-indexed’ before inference, which greatly im-
proves run-time efficiency (Seo et al., 2019; Lee
et al., 2021). In the context of weakly supervised
NER, DensePhrases can be used as a database to
obtain candidate entities for specific NER needs,
along with sentences to construct the final NER
corpus (Kim et al., 2022).

2.3 Entity Popularity Bias
Chen et al. (2021) found that current document
retrievers exhibit entity popularity bias in which

the models prefer popular entities over rare ones
and encounter problem in disambiguating entities
in open-domain tasks. For instance, the models
returned documents related to the company Apple
for questions about the British rock band Apple
or the 1980 film The Apple. Similarly, we raised
the problem that phrase retrievers mainly provide
popular entities for NER owing to the biased nature
of Wikipedia in terms of entity popularity, which
limits the coverage of dictionaries.

3 Method

HighGEN comprises three stages of natural lan-
guage search, phrase embedding search (Figure 2),
and dictionary matching and verification (Figure 3).
We highlight that the natural language search is
similarly used in GeNER, but the last two stages
are novel and first proposed in our study.

3.1 Natural Language Search

Query formulation. Let T = {t1, ..., tL} be a
set of L target entity types. The concrete needs for
these entity types are translated into simple ques-
tions. The questions follow the template of “Which
[TYPE]?,” where the [TYPE] token is substituted for
each entity type of interest. For instance, the ques-
tion is formulated as “Which city?” if the target
entity type t is city.
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Natural Language Search

Q: Which actor?
[1] . . . including Best British Film, Best British Director for Danny Boyle and Best British Actor for Ewan McGregor.
[2] His first movie role was in “The Detective,” which starred Frank Sinatra.

Q: Which athlete?
[1] The nation’s most famous Olympic athlete is Eric Moussambani, who achieved some international notoriety for . . .
[2] Donovan Bailey holds the men’s world record with a time of 5.56 seconds and Irina Privalova holds the women’s . . .

Phrase Embedding Search

Q: Which actor?
[1] Owen Ash Weingott (21 June 1921 - 2013 12 October 2002) was an Australian actor and director although . . . ,
[2] Ron Vawter (December 9, 1948 - 2013 April 16, 1994) was an American actor and a founding member of . . . ,

Q: Which athlete?
[1] Yuri Floriani (born 25 December 1981) is an Italian steeplechase runner.
[2] Jeremy Porter Linn (born January 6, 1975) is an American former competition swimmer, Olympic medalist, and . . .

Table 1: Comparison of context diversity of sentences retrieved using natural language search and phrase embedding
search for the two questions. Sentences by the phrase embedding search tend to have similar patterns.

Retrieval. Input questions are fed into the phrase
retrieval model, DensePhrases, to retrieve the top k
phrases s∗ and sentences x∗ (see Section 2.2). For
L different questions, a total of k1 + · · ·+ kL sen-
tences are used as the unlabeled sentences, X̂1. The
retrieved phrases are used as the pseudo-dictionary,
V̂1, which comprises phrase s and corresponding
type t pairs (e.g., Beijing–city).

3.2 Phrase Embedding Search
Query re-formulation. As mentioned in Sec-
tion 1, the coverage of the initial dictionary V̂1
is often limited because of the entity popularity
bias. Our solution to search for diverse entities is
very simple. We re-formulate queries by averaging
the phrase vectors as follows:

q =
1

N

N∑

n=1

Es(sn, xn), (2)

where sn and xn are the n-th top phrase and cor-
responding sentence from the natural language
search. We used only the top 100 phrases for each
question (i.e., N = 100) because a larger number
of phrases did not improve retrieval quality in our
initial experiments.

Retrieval. For L new queries obtained by Equa-
tion (2), a total of k′1+· · ·+k′L phrases are addition-
ally retrieved by Equation (1) and constitute a new
dictionary V̂2. Subsequently, we merge V̂1 and V̂2
to obtain the final dictionary V̂ . Note that we do not
use the retrieved sentences X̂2 because we found
using only X̂1 as the final unlabeled sentences (i.e.,
X̂) resulted in better NER performance.3

3A related analysis is included in Section 6.2.

Interpretation. Natural language search results
in the retriever performing ‘broad’ searches for all
the Wikipedia contexts relevant to the target entity
class. In contrast, phrase embedding search, which
averages phrase vectors of the same entity type, can
be viewed as providing prompts that implicitly rep-
resent certain contextual patterns in which entities
of the target class often appear. Having the retriever
perform ‘narrow’ searches by focusing on specific
contexts leads to a wide variety of entities with less
bias towards popular ones. This is because (1) the
same entities rarely appear repeatedly in a specific
context, (2) whereas different entities of the same
type frequently appear in a similar context as they
are generally interchangeable.

Our qualitative analysis supports our claim
above. We retrieved 5k sentences using two ques-
tions, “Which actor?” and “Which athlete?”, and
manually analyzed 100 sentences sampled from
them. Table 1 shows that sentences by the phrase
embedding search exhibit clear patterns in their
contexts, whereas those by the natural language
search do not. Specifically, 91 and 94 of the 100
sentences for the actor and athlete types had similar
patterns, respectively. Further analysis shows that
this property of the phrase embedding search con-
tributes significantly to improving entity diversity
(Section 6.1) and NER performance (Section 6.2).

3.3 Dictionary Matching & Verification
Dictionary matching. After X̂ and V̂ are ob-
tained, dictionary matching is performed to gen-
erate weak labels, Ŷ. Specifically, if a string in
the unlabeled sentence matches an entity name in
the dictionary, the string is labeled with the corre-
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Figure 3: Overview of the (a) dictionary matching and (b) verification stage in our HighGEN framework. This
annotates sentences based on the vector distance between a candidate entity (e.g., “San Jose Earthquakes”) and
entity type (e.g, “sport team”) that is represented as the average of phrase vectors in the retrieval results.

sponding entity type. However, this method cannot
handle label ambiguity inherent in entities4 because
it relies only on lexical information without lever-
aging contextual information of phrases. The false-
positive noise due to label ambiguity is amplified
as the dictionary size increases, making it difficult
to effectively use our expanded dictionary V̂ .

Verification. Candidate annotations provided by
dictionary matching are passed to the verification
stage. Let e be a matched string in the sentence and
T̄ be the matched entity types (a subset of T ). The
verification function L is defined as follows:

L(e, T̄ ) =
{
t∗ if d(e, t∗) < τ,

not entity otherwise,
(3)

t∗ = argmin
tl∈T̄

d(e, tl), tl =
1

kl

kl∑

n=1

Es(sn, xn),

where d is the Euclidean distance function; e is the
phrase vector of the candidate string; tl is the l-th
type vector; τ is the cut-off value. The string is
labeled with the nearest type t∗, or unlabeled if the
distance is higher than the cut-off value. The type
vector is calculated by averaging all the retrieved
phrase vectors of the entity type, based on the as-
sumption that the mean vector of phrases is a good
representative of the entity class. In addition, the
cut-off value is also calculated using phrase vectors.
Specifically, the function d computes the distance
scores between the type vector tl and all the phrase
vectors of the type. The distribution of the distance
scores is then standardized, and the score of ‘z’
times the standard deviation from the mean is used
as the cut-off value (e.g., z = 3).5

4Even the same string can be labeled with different entity
types depending on the context, leading to label ambiguity.
For instance, “Liverpool” could be a city or a sports team.

5The distribution of the distance scores is generally bal-
anced; thus, we used a usual method to compute the cut-off
value without any other tricks to balance the distribution.

4 Experiments

In this experiment, it was assumed that human-
annotated datasets did not exist; thus, our mod-
els were trained only using synthetic data {X̂, Ŷ}
by HighGEN. To avoid excessive hyperparame-
ter search, we used the same sets of input ques-
tions and the same number of sentences for each
question (i.e., k1, . . . , kL) as those used in the pre-
vious study (Kim et al., 2022). A new hyperpa-
rameter introduced in HighGEN, the number of
phrases retrieved by phrase embedding search (i.e.,
k′1, . . . , k

′
L), was set to 30k. Please refer to in Ap-

pendix A for the full list of hyperparameters and im-
plementation details. For metrics, the entity-level
precision, recall, and F1 scores were used (Tjong
Kim Sang and De Meulder, 2003).

4.1 Datasets

We used five datasets from four domains. Fol-
lowing Kim et al. (2022), we did not use the
MISC and other classes because they are vague
to represent with some user questions. (i) CoNLL-
2003 (Tjong Kim Sang and De Meulder, 2003)
consists of Reuters news articles with three coarse-
grained entity types of person, location, and orga-
nization. (ii) Wikigold (Balasuriya et al., 2009)
is a small-size dataset that consists of Wikipedia
documents with the same entity types as CoNLL-
2003. (iii) WNUT-16 (Strauss et al., 2016) consists
of nine entity types annotated in tweets, such as
TV show, movie, and musician. (iv) Two biomedi-
cal domain datasets, NCBI-disease (Doğan et al.,
2014) and BC5CDR (Li et al., 2016), are collec-
tions of PubMed abstracts with manually annotated
diseases (NCBI-disease) or disease and chemical
entities (BC5CDR). The benchmark statistics are
listed in Table B.2 (Appendix).
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Model CoNLL-2003 Wikigold WNUT-16 NCBI-disease BC5CDR

Full Dictionary
+ Standard 74.4 (80.5/69.1) 54.9 (53.8/56.1) 45.3 (44.3/46.2) 66.6 (67.5/65.7) 79.7 (82.8/76.8)
+ BOND 83.5 (82.1/84.9) 55.7 (46.0/70.8) 35.0 (30.6/40.9) 67.0 (63.7/70.6) 81.1 (76.6/86.1)
+ RoSTER 85.8 (84.3/87.3) 73.1 (67.1/80.2) 28.9 (43.1/21.8) 74.3 (75.9/72.7) 80.7 (78.6/83.0)

Pseudo-dictionary

GeNER
+ Standard 56.3 (72.9/45.8) 41.3 (58.6/31.9) 36.5 (41.3/32.6) 45.9 (59.0/37.6) 64.9 (76.6/56.3)
+ BOND 64.5 (70.7/59.3) 59.5 (65.2/54.7) 42.1 (36.7/49.5) 67.0 (70.8/63.5) 69.3 (69.0/69.7)
+ RoSTER 67.8 (77.9/60.0) 55.8 (66.9/47.9) 51.8 (49.1/54.8) 71.0 (74.1/68.1) 72.1 (74.6/69.7)

HighGEN (Ours)
+ Standard 58.0 (73.3/48.0) 43.6 (59.5/34.4) 38.5 (42.2/35.4) 53.3 (66.4/44.6) 72.2 (77.9/67.3)
+ BOND 66.0 (65.5/66.5) 68.2 (67.2/69.2) 40.2 (32.6/52.3) 70.2 (72.9/67.6) 72.9 (69.5/76.7)
+ RoSTER 73.3 (78.5/68.7) 67.5 (68.5/66.5) 53.4 (49.0/58.8) 73.2 (77.4/69.4) 74.6 (73.3/76.0)

HighGEN + RoSTER (for ablation study)
w/o L 70.6 (68.2/73.1) 65.7 (56.8/78.0) 35.1 (24.3/63.6) 71.4 (69.7/73.2) 72.2 (68.3/76.6)

Table 2: Main results on the test sets of five NER benchmarks. F1 score (precision/recall) is reported.

4.2 NER Models

We trained three types of NER models on our syn-
thetic data. We provide descriptions of the models
below, but we cannot cover all the details; readers
interested in details are therefore recommended to
refer to Liang et al. (2020) and Meng et al. (2021).
Note that we did not use validation sets to find
the best model parameters during training to avoid
excessive parameter tuning. The implementation
details are provided in Appendix A.

Standard: This type of model consists of a pre-
trained language model for encoding input se-
quences and a linear layer for token-level predic-
tion. We used RoBERTa (Liu et al., 2019) as the
language model for the news, Wikipedia, and Twit-
ter domains and BioBERT (Lee et al., 2020) for the
biomedical domain.

BOND (Liang et al., 2020): This model is based
on self-training, which is a learning algorithm that
corrects weak labels with the power of large-scale
language models. Specifically, a teacher model
(similar to the standard model above) is initially
trained on the weakly-labeled corpus and used to re-
annotate the corpus based on its predictions. This
re-annotation process allows the model to remove
noisy labels and further identify missing entities. A
student model with the same model structure as the
teacher model is trained on the re-annotated cor-
pus. The teacher model is updated by the student
model’s parameters in the next round and performs
the re-annotation process again. This process is re-
peated until the maximum training step is reached.

RoSTER (Meng et al., 2021): In RoSTER, the
generalized cross-entropy (GCE) loss is used to
a standard model, which is designed to be more
robust to noise than a normal cross-entropy loss.
During the GCE training, weak labels are removed
at every update step if the model assigns low confi-
dence scores. Using the algorithm described above,
five randomly initialized models are trained, and a
new model is trained to approximate the average
predictions of the five models. Finally, the new
model is further trained with language model aug-
mented self-training, which jointly approximates
the teacher model’s predictions for the given (1)
original sequence and (2) augmented sequence with
some tokens replaced by a language model.

4.3 In-domain Resources

Baseline models are classified into two categories
based on the amount of in-domain resources re-
quired during training.

GeNER (Kim et al., 2022): GeNER is the only
baseline model that uses the same amount of re-
sources as HighGEN. GeNER retrieves phrases and
unlabeled sentences using natural language search
and performs string matching to create datasets.

Full dictionary: Full-dictionary models use
large-scale dictionaries that comprises numerous
entities hand-labeled by experts. For the CoNLL-
2003, Wikigold, and WNUT-16 datasets, each
dictionary was constructed using Wikidata and
dozens of gazetteers compiled from multiple web-
sites (Liang et al., 2020). For NCBI-disease and
BC5CDR, the dictionary was constructed by com-
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bining the MeSH database and Comparative Toxi-
cogenomics Database (more than 300k disease and
chemical entities) (Shang et al., 2018). These dic-
tionaries were used to generate weak labels based
on string matches with in-domain corpus, which is
an unlabeled version of the original training corpus.

4.4 Results

Table 2 shows that HighGEN outperformed
GeNER on five datasets by average F1 scores of
4.2, 3.0, and 4.7 for the standard, BOND, and RoS-
TER models, respectively. Performance improve-
ments were particularly evident in recall. When the
verification method was not applied (i.e., w/o L),
the performance dropped by an average F1 score
of 5.4 (mostly in precision). A high NER perfor-
mance can be expected with full dictionaries, but
they cannot be built without tremendous effort of
experts. We emphasize that our method of automat-
ically creating high-coverage pseudo-dictionaries
and NER datasets is a promising way to achieve
competitive performance with minimal effort.

5 Few-shot NER

We show an additional use case for HighGEN to
create NER datasets using only a few hand-labeled
examples, without using input questions. This can
eliminate a tuning/engineering effort of users that
might be required for designing appropriate ques-
tions to identify NER needs, which is a distinct
advantage of HighGEN over GeNER. Specifically,
HighGEN takes sentences with annotated phrases
as input and retrieves X̂2 and V̂2 using the phrase
embedding search (defined in Equations (1) and
(2)), which are used as the unlabeled sentences and
pseudo-dictionary to produce the final dataset.

We tested two types of models. (1) The entity-
level model uses every annotated phrase as a sep-
arate query; thus, the number of queries equals
the number of human annotations. On the other
hand, (2) the class-level model first averages phrase
vectors of the same entity types and uses them as
queries; thus, the number of queries equals the
number of entity types. The entity-level model
would have an advantage in terms of entity recall
and the class-level model can mitigate noise that
each phrase vector may contain.

Setups. We sampled datasets from CoNLL-2003
and BC5CDR so that each dataset consists of five
sentences per entity type, which results in 20 and 10

Model CoNLL-2003 BC5CDR

5-shot sentences (per entity type)

Supervised 53.5 55.0
+ NSP 61.4 -

+ Self-training 65.4 -
QUIP 74.0 65.7

HighGEN (entity) 75.6 68.2
HighGEN (class) 73.2 72.5

Table 3: F1 scores of HighGEN and baseline models
in few-shot NER. Note that the scores of the baseline
models are from previous studies (Huang et al., 2021;
Jia et al., 2022; Kim et al., 2022).

examples for CoNLL-2003 and BC5CDR, respec-
tively. 6 All experimental results were averaged
over five sampled datasets. We used the models of
Huang et al. (2021) and Jia et al. (2022) as base-
lines, and among them, QUIP (Jia et al., 2022)
is the previous best model in few-shot NER (de-
tails on the models are presented in Appendix C).7

For HighGEN, we retrieved the same number of
sentences for each query, and the total number of
sentences was 120k for CoNLL-2003 and and 10k
for BC5CDR. We initially trained RoSTER on our
synthetic data and then fine-tuned the model on
few-shot examples.

Results. Table 3 shows that our entity- and class-
level models outperformed QUIP by an average F1
score of 2.1 and 3.0 on the two datasets, respec-
tively. For CoNLL-2003, the entity-level model
was better than the class-level model because en-
tities of the same entity type often belong to dif-
ferent sub-categories. For instance, “Volkswagen”
and “University of Cambridge” belong to the same
organization type in CoNLL-2003 but their sub-
categories are “company” and “institution,” respec-
tively. Therefore, it is difficult to group them into
a single vector and it is important to widely cover
various entities using separate queries for each sub-
category. On the other hand, entities in BC5CDR
can be naturally grouped by disease or chemical
type, which allows the class-level model to per-
form well. Additionally, biomedical entity names
often contain domain-specific terms, numbers, spe-
cial characters, and abbreviations that are difficult
to encode with a general-purpose phrase encoder,

6Unlike the experiments in Section 4, the MISC type was
included for a fair comparison with baseline models.

7Other few-shot NER models were excluded because they
used a sufficient amount of ‘source’ data (Yang and Katiyar,
2020; Cui et al., 2021), which is different from our setups.
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Type
P@100 Div@10k

NL PE △ NL PE △
PER 98.3 99.0 0.7 37.1 81.4 44.3
LOC 97.7 99.0 1.3 2.6 2.9 0.3
ORG 95.7 95.0 −0.7 36.2 61.5 25.3
BIO 96.5 98.5 2.0 20.1 62.7 42.6

Average 97.1 97.9 0.8 24.0 52.1 28.1

Table 4: Retrieval results from natural language search
(NL) and phrase embedding search (PE) for the four
entity types: person (PER), location (LOC), organiza-
tion (ORG), and biomedicine (BIO). △: performance
difference between PE and NL.

making their vector representations relatively more
error-prone. The class-model can produce good
representations by averaging phrase vectors.

6 Analysis

6.1 Retrieval Performance

We compared natural language search and phrase
embedding search in terms of their accuracy and
diversity. With reference to Kim et al. (2022), we
used 11 fine-grained questions within the following
four coarse-grained entity types of (i) person (ath-
lete, politician, actor), (ii) location (country, city,
state in the USA), (iii) organization (sports team,
company, institution), and (iv) biomedicine (dis-
ease, drug). We report the average scores for each
coarse-grained entity type.

Metrics. (i) The precision at 100 (P@100) repre-
sents the accuracy of the top 100 retrieved phrases.
Because there are no gold annotations for the re-
trieved phrases, we manually determined whether
the phrases correspond to the correct entity types.
(ii) Diversity at 10k (Div@10k) calculates the
percentage of unique phrases out of the top 10k
phrases based on their lowercase strings.

Results. The phrase embedding search largely
outperformed the natural language search by a
macro average of 28.1 diversity across the four
types without loss of accuracy. The diversity scores
for the location entity types did not improve sig-
nificantly because there are only limited numbers
of names for locations such as countries in the real
world, but the diversity scores for the other types
improved dramatically (+ 37.4 diversity).

While both queries produced accurate top results
(P@100), the accuracy tends to decrease as the top-
k increased, which makes it difficult to increase the
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Figure 4: Performance of RoSTER models on BC5CDR
with different sizes of the additional dictionary and the
top-k to reach a certain dictionary size by the natural
language search (NL) and phrase embedding search
(PE). ‘Add Sent’ presents the performance of the model
trained with additional sentences by the phrase embed-
ding search (i.e., X̂1+X̂2). The size of the initial dic-
tionary (x = 0) is 12k.

dictionary size by retrieving more phrases. Thus,
retrieving diverse entities with a reasonable top-k
is not only important for computational efficiency
but also helps the retriever to maintain accuracy. In
this regard, phrase embedding search has a huge ad-
vantage over natural language search. We discuss
this further in Section 6.2. In addition, examples of
the top phrases retrieved by both search methods
are listed in Table D.3 (Appendix).

6.2 Data Size

Effect of dictionary size. Figure 4 shows the
NER performance of RoSTER models according
to the size of the additional dictionary added to the
initial dictionary V̂1. We expanded the dictionary
using the natural language search or phrase em-
bedding search. F1 scores were measured on the
BC5CDR test set.

The performance of both models increased ini-
tially but decreased after the peaks, indicating that
there was a trade-off between the size and accuracy
of the dictionary. The optimal size of the addi-
tional dictionary by the phrase embedding search
(i.e., 45k) was larger than that of the natural lan-
guage search (i.e., 30k). As shown in the second
graph in Figure 4, the natural language search re-
quired a much larger number of sentences (more
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Sentence Small V
+ String

Large V
+ String

Large V
+ Verif.

[1] . . . and on Central and Eastern Europeans living in the . . . None ( ) Company (×) None ( )
[2] . . . Foreign Minister Alexander Downer and various . . . None (×) Politician ( ) Politician ( )
[3] . . . at club level for Cruzeiro, PSV, Barcelona, and Inter Milan. Sport team ( ) City (×) Sport team ( )

Table 5: Case study of dictionary sizes and dictionary matching methods. Small V: initial dictionary (i.e., V̂1)
consisting of 12k entities. Large V : expanded dictionary (i.e., V̂1 + V̂2) consisting of 134k entities. String: rule-based
string matching. Verif.: the verification method. ×: incorrect annotations. : correct annotations.

than twice as much) than the phrase embedding
search to obtain the required dictionary size, which
caused more false-positive results to be included in
the dictionary.

Effect of Additional Sentences. In addition to
using the additional dictionary V̂2 obtained using
phrase embedding search, we tried to use addi-
tional sentences X̂2 along with X̂1 (see ‘Add Sent’
in Figure 4). The performance was higher than the
other models at low top-k (x = 15k), but the per-
formance degraded rapidly as the dictionary size
grew. As discussed in Section 3.2, the sentences
from the phrase embedding search have similar pat-
terns, and from this result, we conjecture that the
limited contextual patterns hindered the model’s
generalizability. In conclusion, using only X̂1 for
the unlabeled corpus and both V̂1 and V̂2 for the dic-
tionary would result in the best NER performance
in most cases. However, as shown in Section 5,
using X̂2 and V̂2 can be a good alternative if users
want to avoid effort required in query tuning.

6.3 Case Study

Table 5 shows several examples of how a large
dictionary induced noise annotations in dictionary
matching and how these annotations were corrected
by the verification method. We used nine fine-
grained entity types belonging to the person, lo-
cation, and organization types, which were used
in the experiments in Section 6.1. We denote the
initial dictionary (i.e., V̂1) as a small dictionary and
the expanded dictionary that consists of the initial
and additional dictionaries (i.e., V̂1 + V̂2) as a large
dictionary. While the small dictionary could not
match the entity “Alexander Downer” owing to its
limited coverage, the entity was correctly annotated
by a large dictionary. However, the large dictionary
incorrectly annotated “Central” as a company, indi-
cating that there is a trade-off between the coverage
and accuracy of a dictionary. Also, “Barcelona” ap-
peared mainly as a sports team in the small dictio-

nary, whereas in the large dictionary it frequently
appeared as a city and was therefore incorrectly
annotated by the latter. In contrast, our verification
method had the advantages of both dictionaries;
it preserved the high accuracy of the small dictio-
nary while retaining the high coverage of the large
dictionary, resulting in correct annotations.

7 Conclusion

In this study, we presented an advanced dataset gen-
eration framework, HighGEN, which combines (1)
phrase embedding search to address the problem
of efficiently retrieving various entities using an
open-domain retriever and (2) verification method
to deal with false positives in a large dictionary.
In the experiments, we demonstrated the superi-
ority of HighGEN using five NER benchmarks
and performed extensive ablation studies, com-
parison of retrieval performance, and analysis of
potential uses of the phrase embedding search in
few-shot NER scenarios. We hope that our study
will provide practical help in several data-poor do-
mains and valuable insights into entity retrieval and
weakly supervised NER.

Limitations

Inappropriate initial user questions can negatively
affect NER performance. If they are not proper, the
QA model returns incorrect phrases, and the phrase
embedding queries generated from them will also
be erroneous. The absence of a component for
controlling this error cascade in our framework
should be addressed in future studies.

In addition, our method is dependent on the
phrase encoder of DensePhrases. Because the
phrase encoder is a general-purpose model trained
on Wikipedia-based datasets, its capability may
be limited for domain-specific entities. In few-
shot NER, the phrase encoder can be sensitive to
the quality of given example sentences. Future
studies should thoroughly analyze the effect of the

7156



phrase encoder’s performance on the resulting NER
datasets and NER performance.
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A Implementation Details

Input questions. We used the same sets of in-
put questions and the same number of sentences
for each question as those used in the previous
study (Kim et al., 2022), which are listed in Ta-
ble A.1. It should be noted that (1) multiple ques-
tions for a single entity type were used because en-
tity types in benchmark datasets are often defined
in a coarse-grained way (i.e., they include several
sub-categories), and using specific and concrete
questions for each sub-category is more effective
in covering entities in the benchmark as a whole.
For instance, using three questions, “Which sports
team?”, “Which company?”, and “Which institu-
tion?”, is better for covering the organization type
than a single question “Which organization?”. In
addition, (2) different questions were used for dif-
ferent benchmarks, even though the entity types
had the same category names, because the sub-
categories were different due to domain and corpus
differences between the benchmarks.

Computational environment. We ran High-
GEN and trained all NER models on Intel(R)
Xeon(R) Silver 4210R CPU @ 2.40GHz and a
single 24GB GPU (GeForce RTX 3090). When
retrieving a huge amount of phrases (e.g., kl is
greater than 100k), we disabled the “cuda” option
and run the model on the CPU.

Implementation. We used the official codes pro-
vided by previous studies for the implementation
of BOND,8 RoSTER,9 and GeNER.10 We used
GeNER’s repository for the standard models. We
did not implement the few-shot models but used
the scores provided by Huang et al. (2021), Jia et al.
(2022), and Kim et al. (2022). We implemented our
phrase embedding search and HighGEN by modi-
fying the code base of GeNER. We will release our
code after the paper is accepted.

Hyperparameters.

• Standard: Standard models are vulnerable to
over-fitting when trained on synthetic data by
GeNER or HighGEN. Therefore, we trained
RoBERTa and BioBERT-based models for
only one epoch with a batch size of 32 and
a learning rate of 1e-5. When using full dic-
tionaries, we trained models for ten epochs

8https://github.com/cliang1453/BOND
9https://github.com/yumeng5/RoSTER

10https://github.com/dmis-lab/GeNER

for CoNLL-2003 and the biomedical domain
datasets, and 20 epochs for the other small
datasets (Wikigold and WNUT-16).

• BOND: We initially trained the teacher model
for one epoch and also self-trained the model
for additional one epoch. For the other hy-
perparameters, we used the ones suggested by
the authors.

• RoSTER: We referred to the official reposi-
tory to select hyperparameters. We used the
default hyperparameters suggested by the au-
thors, except for noise training epochs and
self-training epochs that were set to 1. In
addition, when training models on biomedi-
cal domain datasets by HighGEN, we used a
threshold value of 0.1 in the noisy label re-
moval step.

B Dataset Statistics

Table B.2 lists the statistics of the five benchmark
datasets.

C Few-shot Models

Supervised: A standard model (described in Sec-
tion 4.2) is trained directly on few-shot examples
using a token-level cross-entropy loss.

Noisy supervised pre-training (NSP) (Huang
et al., 2021): The model is initially trained
on a large-scale weakly-labeled corpus, called
WiNER (Ghaddar and Langlais, 2017), which con-
sists of Wikipedia documents with weak labels gen-
erated using the anchor links and coreference res-
olution. Subsequently, the model is fine-tuned on
few-shot examples.

Self-training (Huang et al., 2021): This model
is trained using a current semi-supervised learning
method (Xie et al., 2020). Specifically, the model
is initially trained using few-shot examples and
fine-tuned by self-training on unlabeled training
sentences. Note that the detailed algorithm can
be different from the self-training methods used in
BOND and RoSTER; therefore, please refer to the
papers for details.

QUIP (Jia et al., 2022): QUIP was used as the
state-of-the-art few-shot model in our experiment.
The model is pre-trained with approximately 80
million question-answer pairs that are automati-
cally generated by the BART-large model (Lewis
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Dataset Entity Types (Query Terms) kl k′
l |X̂|

CoNLL-2003
person (athlete, politician, actor) /

5k 30k 45klocation (country, city, state in the USA) /
organization (sports team, company, institution)

Wikigold
person (athlete, politician, actor, director, musician) /

4k 30k 60klocation (country, city, state in the USA, road, island) /
organization (sports team, company, institution, association, band)

WNUT-16

person (athlete, politician, actor, author) /

1k 30k 29k

location (country, city, state in the USA) /
product (mobile app, software, operating system, car, smart phone) /
facility (facility, cafe, restaurant, college, music venue, sports facility) /
company (company, technology company, news agency, magazine) /
sports team (sports team) / TV show (TV show) / movie (movie) /
music artist (band, rapper, musician, singer)

NCBI-disease disease (disease) 35k 30k 35k

BC5CDR disease (disease) / chemical (chemical compound, drug) 15k 30k 45k

Table A.1: Questions and hyperparameters used for NER benchmarks. Each question is formulated as “Which
[TYPE]?” and used for the retrieval. kl and k′l indicate the number of the top phrases/sentences retrieved from the
natural language search and the phrase embedding search for each question, respectively. |X̂| represents the dataset
size (i.e., number of training sentences), which is calculated by multiplying the number of questions by kl.

Domain (Corpus) Dataset (# Types) Training Validation Test
# Sents # Labels # Sents # Labels # Sents # Labels

News (Reuters) CoNLL-2003 (3) 14,987 20,061 3,469 5,022 3,685 4,947

Wikipedia Wikigold (3) 1,142 1,842 280 523 274 484

Twitter WNUT-16 (9) 2,394 1,271 1,000 529 3,850 2,889

Biomedicine
(PubMed)

NCBI-disease (1) 5,432 5,134 923 787 942 960

BC5CDR (2) 4,582 9,387 4,602 9,596 4,812 9,809

Table B.2: Statistics of NER benchmark datasets. # Types: number of entity types. # Sents: number of sentences. #
Labels: number of entity-level human annotations.

et al., 2020), enabling the model to generate
high-quality phrase representations, and therefore,
achieve strong performance in several few-shot
downstream tasks such as NER and QA. After pre-
training, the prediction layer of QUIP is initialized
with the embeddings of question prompts, which
has shown to be more effective in few-shot exper-
iments than random initialization. For instance,
‘Who is a person?” was used for the person type
and “What is a location?” was used for the lo-
cation type. We used the same question prompts
as those used in the study of Jia et al. (2022) for
CoNLL-2003, and those used in the study of Kim
et al. (2022) for BC5CDR.

D Retrieved Entities

Table D.3 shows the top 20 phrases retrieved by
the natural language search and phrase embedding
search for the four entity types of politician, com-
pany, disease, and drug. The phrases from both

search methods are generally accurate except for
some noisy ones, but the phrase embedding search
outperformed the natural language search in terms
of the diversity of the retrieved phrases.
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Natural Language Search

Politician Company Disease Drug

Ed Miliband Foxconn Leprosy morphine
David Cameron Boeing cirrhosis opium
David Cameron Plessey leprosy alcohol
David Cameron Marconi polio heroin
David Cameron Sony Corporation leprosy morphine

Nick Clegg Packard Bell syphilis chlorpromazine
David Cameron Airbus typhus – Copaxone
David Cameron Olympus Cholera aspirin
David Cameron Airbus syphilis heroin
Douglas Hurd Airbus tuberculosis Vioxx

Ted Heath Nokia typhus heroin
David Cameron Paramount leprosy imipramine
David Cameron Seagate tuberculosis cocaine
Gordon Brown Cisco Leprosy Thalidomide
Gordon Brown Cisco Leprosy LSD

Margaret Thatcher News Corporation syphilis cocaine
Jeremy Corbyn Nokia leprosy Cisplatin
Harold Wilson Mattel polio penicillin
David Cameron Seagate typhus cannabis
David Cameron Airbus Group Measles Opioids

Phrase Embedding Search

Politician Company Disease Drug

David Anthony Laws Unicer Unicer Leprosy Adrafinil
Stefan Löfven Boeing Leptospirosis Nitrous oxide

Michael Ignatieff Diesel hereditary rheumatic syndrome ivermectin
Tony Benn Arctic chronic fatigue syndrome Pentothal
John Major Monster Mal de Débarquement syndrome Camptothecin

Sir Oswald Mosley Samsung seasickness Glybera
George Galloway Gateway 2000 Guillain Barre Syndrome Trimecaine

Arthur Gordon Lishman Airbus Leptospirosis Gerovital H3
William Hague Fiat Smallpox Elaterin

Sarah Louise Teather Fiat Crohn’s disease Prozac
Robert Owen Biggs Wilson American DeForest Achromatopsia Methamphetamine

Helle Thorning-Schmidt TNT Leprosy metronidazole
Philip Andrew Davies Tenneco Automotive Haff disease Desvenlafaxine

Vince Gair AgustaWestland rhabdomyolysis 4-Fluoroamphetamine
Paul William Barry Marsden Anshe Chung Studios Möbius syndrome ephedra

Jeremy William Bray Raytheon Systems Ltd Hansen’s Disease ephedrine
Michael Howard Microsoft Lady Windermere syndrome Alseroxylon
Bruce Hawker Airbus McCune–Albright syndrome Benzydamine

Andrew David Smith Diesel Grover’s disease Diclofenamide
Peter David Shore Microsoft Lipodermatosclerosis Cefdinir

Table D.3: Top 20 phrases retrieved by the natural language search and phrase embedding search for the four entity
types: politician, company, disease, and drug.
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