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Abstract

Adversarial detection aims to detect adversarial
samples that threaten the security of deep neu-
ral networks, which is an essential step toward
building robust AI systems. Density-based es-
timation is widely considered as an effective
technique by explicitly modeling the distribu-
tion of normal data and identifying adversarial
ones as outliers. However, these methods suf-
fer from significant performance degradation
when the adversarial samples lie close to the
non-adversarial data manifold. To address this
limitation, we propose a score-based genera-
tive method to implicitly model the data dis-
tribution. Our approach utilizes the gradient
of the log-density data distribution and calcu-
lates the distribution gap between adversarial
and normal samples through multi-step itera-
tions using Langevin dynamics. In addition,
we use supervised contrastive learning to guide
the gradient estimation using label information,
which avoids collapsing to a single data mani-
fold and better preserves the anisotropy of the
different labeled data distributions. Experimen-
tal results on three text classification tasks upon
four advanced attack algorithms show that our
approach is a significant improvement (+15.2
F1 score on average against previous SOTA)
over previous detection methods.

1 Introduction

It has already become a consensus in the machine
learning community that deep neural networks
(DNNs) are vulnerable against adversarial exam-
ples (Goodfellow et al., 2015; Kurakin et al., 2017).
Adversarial samples are generated by adding some
imperceptible perturbations to normal samples and
cause the trained network to produce defective re-
sults. The widely-used pre-trained language mod-
els (PLMs) (Devlin et al., 2019; Liu et al., 2019;
Brown et al., 2020) also have been demonstrated
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to be highly susceptible under textual adversarial
attacks (Zhang et al., 2019). Given that pre-trained
language models have become the de facto back-
bone models for many practical applications, their
security risks deserve more attention.

Existing approaches to counteract adversarial at-
tacks can be broadly divided into two directions,
adversarial defense and adversarial detection (Wiy-
atno et al., 2019). Although adversarial defenses
have made great progress in recent years, popular
defense methods, such as adversarial training (Zhu
et al., 2020; Madry et al., 2018), impose certain
restrictions on the attack space to certify robust-
ness, which often results in a sacrifice of original
accuracy (Akhtar et al., 2021). In contrast, adver-
sarial detection methods aim to separate adversarial
samples before they enter the model. The detected
adversarial samples can be processed by a dedi-
cated module and then re-entered into the model.
This approach not only avoids the degradation of
original accuracy, but also imposes no restrictions
on the attack method.

One of the most effective detection methods that
can handle all textual attack algorithms is density-
based estimation approaches (Yoo et al., 2022; Fein-
man et al., 2017). These approaches are built on
the assumption that the adversarial examples are
not lying inside the non-adversarial data manifold.
They explicitly model the original data distribu-
tion and use the probability of a data point as the
adversarial confidence. Nevertheless, recent work
(Shamir et al., 2021) argues that the adversarial
samples are roughly close and perpendicular to the
low-dimensional manifold containing normal sam-
ples. The overlap problem poses a challenge for
detection performance, as the closer the attack al-
gorithm produces results resembling real samples,
the more the detection performance is degraded.

In this work, we propose to model the gradient
of log-density data distribution via denoising score
matching function (Song and Ermon, 2019; Vin-
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cent, 2011). Then the gradients are used through
Langevin dynamics to generate normal samples
from the noise-perturbed distribution by multi-step
denoising process. The distance from the adversar-
ial samples to the normal data distribution is mea-
sured indirectly using the denoising score matching
function. This is more refined than the previous
direct density estimation, thus avoiding the perfor-
mance loss caused by overlapping density regions.

We introduce the class-aware score network
(CASN) to compute the gradient of log-density
distribution required in the detection phase. To
train this score network, with the general training
objective of conditional noise scores (Song et al.,
2021), we also compute supervised contrastive loss
(Khosla et al., 2020) by constructing different class
sample pairs. It allows models to better distinguish
between different classes of data manifold and pre-
vents the model from collapsing into a single data
distribution. Afterward, all samples are denoised
using the score network, and the adversarial sam-
ples are determined by recording the size of the
feature distance before and after denoising.

Our contribution can be summarized as follows:

• We propose a new paradigm that uses the
class-aware score network to portray the dis-
tribution changes of the adversarial samples
during the denoising process, greatly alleviat-
ing the distribution overlap problem.

• Introducing supervised contrastive learning in
the training phase of the score network makes
better use of label information and enables
more accurate calculation of sample distances
in the denoising process.

• Experimentally, we achieve nearly 100% ac-
curacy under many settings, significantly out-
performing baseline methods, and presenting
a greater challenge to counterattackers.

2 Related work

2.1 Textual Adversarial Attacks
Considering the different granularities that DNNs
are attacked, the textual attack algorithms can be
grouped as character-level (Gao et al., 2018; Gil
et al., 2019), word-level (Jin et al., 2020; Garg and
Ramakrishnan, 2020; Ren et al., 2019), sentence-
level (Iyyer et al., 2018) and multi-level (Liang
et al., 2018; Ebrahimi et al., 2018) attacks. The
different fine-grained groupings mean that these
algorithms modified the original text at different

levels. The usual manipulation includes insertion,
deletion, and replacement. At the same time, the
definition of adversarial attacks has to be satisfied,
i.e., the adversarial sample needs to maintain se-
mantic invariance and be imperceptible to human
beings (Zhang et al., 2019).

2.2 Textual Adversarial Detection
DISP (Zhou et al., 2019) is a framework that learns
to identify malicious perturbations, then block the
attacks by replacing them with synonyms. This
method relies on a perturbation discriminator to
give a confidence score in whether the current word
is perturbed or not. Liu et al. (2022) adapt Lo-
cal Intrinsic Dimensionality (Ma et al., 2018) and
propose MDRE based entirely on the distribution
features of the learned representations. Noticing
that word-level adversarial algorithms often replace
high-frequency words with low-frequency words,
Mozes et al. (2021) introduce FGWS algorithm
to detect adversarial samples by word frequency
properties and calibrate the adversarial samples to
improve the model performance. Yoo et al. (2022)
propose RDE which utilizes multivariate Gaussian
distribution to model the feature density of clean
samples. The samples in low-density regions are
considered as adversarial samples during detection.
Compared with previous explicit density estima-
tion methods such as RDE and MDRE, our method
uses the gradient of log-density and Langevin dy-
namics to depict the distribution distance between
adversarial and normal samples, avoiding the per-
formance degradation caused by the distribution
overlap problem.

3 Preliminary

Score matching (HyvärinenAapo, 2005) was pro-
posed to generate samples from a non-normalized
distribution. The core idea of this method is to
estimate the score function, i.e., the gradient of log-
density data distribution, and then generate data by
sampling through Langevin dynamics.

Let x be a data point, p(x) denote the data distri-
bution, the score function can be a score network
sθ(·) that approximate ∇x log p(x) as accurately
as possible, which can be written as

sθ(x) := ∇x log p(x). (1)

After that, Langevin dynamics can generate sam-
ples from the data distribution p(x) using the score
function. Given a fixed step size ε, and an initial
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Figure 1: Overview of CASN training process. (Left): We train the encoder with a linear classifier by supervised
learning to obtain the encoder representations of text. (Right): We train the representation space using denoising
score matching and supervised contrastive learning. The amplitude of the noise gradually increases from t = 0 to
T , perturbing the initial distribution eventually into a Gaussian noise distribution. As for supervised contrastive
learning, we treat the perturbed samples with small noise conditions as positive pairs, and the samples with different
labels and their small perturbations as negative pairs, which are marked by the solid and dashed lines respectively.

sampling point x0 ∼ π(x), the Langevin process
recursively updates the following function:

xt ← xt−1 +
ε

2
∇x log p(xt−1) +

√
εzt (2)

where zt ∼ N (0, I). Welling and Teh (2011)
proves that under some restrictions xT becomes an
exact sample from p(x) when ε → 0 and T → ∞.

Although the original score matching is a sound
theory, Vincent (2011) points out that due to a very
computationally complex term in the original train-
ing objective, it is difficult to be effective in high-
dimensional data. Therefore, the author introduces
denoising score matching (DSM) to eliminate the
hard computing terms. The idea of this approach
is to add an easily computable noise to the origi-
nal distribution and then estimate the score func-
tion under noise perturbation. The advantage of
this approach is that it makes the training target
easier to compute, and the score function approx-
imates the original target when the noise is small
enough. The author proposes the use of Gaussian
noise pσ(x̃|x) = N (x̃|x, σ2I), then DSM mini-
mizes the following objectives:

1

2
Ep(x)pσ(x̃|x) ‖sθ(x̃)−∇x̃ log pσ(x̃|x)‖22 (3)

Note that the optimal score network sθ�(·) which
minimizes Eq. 3, Vincent (2011) indicates that at
this point sθ�(x) almost converge to ∇x log pα(x).
Denoising score matching using Gaussian noise
inspires a series of later work (Song and Ermon,
2019; Song et al., 2021), and this technique has
become an important milestone in the field of score-
based image generation (Yang et al., 2022).

4 Methodology

In a nutshell, we hope to train a class-aware score
network that estimates the gradient of log-density
data distribution and separates the adversarial sam-
ples by the drift value of the sample distribution
during the reverse denoising process. In §4.1, we
will introduce the application of denoising score
matching function and supervised contrastive learn-
ing to train the class-aware score network. By per-
forming the denoising process on all samples using
the score network, the drift distance of the samples
before and after denoising can be calculated as an
adversarial confidence score (§4.2).

4.1 Training Class-Aware Score Network
As shown in Fig. 1, the score network estimates the
gradient of the log-density distribution of the text
hidden states. The left side of the figure indicates
that we first use a supervised learning encoder E
to obtain the hidden representation h of text x, i.e.
h = E(x), h is used as input to the scoring network.
On the right is the training process of the score
network, which uses multi-level noise perturbation
and supervised contrastive learning for training.

Given a Gaussian noise perturbation pα(h̃|h) =
N (h̃|√αh, (1−α)I), and let α be part of the input,
Eq.3 will reduce to the following loss function:

l(θ;α) =
1

2
Ep(h)pα(h̃|h)

∥∥∥∥∥sθ(h̃, α) +
h̃−√

αh

1− α

∥∥∥∥∥

2

(4)
where α is a positive real number, p(h) is the dis-
tribution of h. The size of the noise perturbation
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is difficult to choose, large noise will affect the ac-
curate estimation and small perturbation will make
the Langevin dynamics ineffective. We address
this problem through multi-level noise perturba-
tions proposed by Song and Ermon (2019). Let T
denote a positive integer, a set of positive real num-
bers {αi}Ti=1 decreasing from 1 to 0, a linear com-
bination of Eq. 4 is constructed for all α ∈ {αi}Ti=1

to get a unified objective:

L(θ)α =
1

T

T∑

i=1

(1− αi)l(θ;αi)T (5)

Nevertheless, the score network trained accord-
ing to Eq. 5 is still imperfect. This training ob-
jective actually trains the data distribution under
unconditional likelihood, but in fact, the data for
different labels are conditionally distributed (Ho
and Salimans, 2023). We need to approximate the
conditional data distributions, so that the Langevin
dynamics can operate on the correct manifold with-
out jumping repeatedly on manifolds with different
labels. Since the correct labels of the adversar-
ial samples cannot be known before detection, we
cannot utilize conditional score generation tech-
niques (Dhariwal and Nichol, 2021) with explicit
input labels. Therefore, we propose to use super-
vised contrastive learning (Khosla et al., 2020) to
increase the anisotropy of differently labeled data
and force the score network to implicitly model the
conditional data distributions.

The key to contrastive learning is constructing
positive and negative sample pairs. As shown on
the right side of Fig. 1, within a batch of data,
we select the original representation and its noise
perturbation as the positive sample pair and all
representations that differ from its label (with or
without noise perturbations) as the corresponding
negative samples. Then, the contrastive loss can be
calculated as:

L(θ)cons = −
∑

i∈I

sim(hi, h̃i)∑
a∈A(i) sim(hi, ha) + sim(hi, h̃a)

,

(6)

where I denotes the index of batch data, A(i) =
{a ∈ I|yi 
= ya} is the set of sample indexes whose
labels are different from data i. The similarity
between each representation is calculated using the
cosine value after averaging it, i.e., sim(x, y) =
cos < sθ(x)

mean, sθ(y)
mean >.

Finally, we combine the Eq. 5 and Eq. 6 as a
multi-task learning loss (Eq. 7) with λ as coeffi-

cient:
L(θ) = L(θ)α + λL(θ)cons (7)

The specific training parameters will be detail dis-
cussed in Appendix A.1.

4.2 Detection via Denoising Process
Given a sentence x and the corresponding encoder
representation h, a conventional detection approach
is to conduct adversarial purification through the
denoising process (Yoon et al., 2021; Nie et al.,
2022), then classify the denoised representations
and detect the adversarial samples based on label
inversions. In order to better improve the qualify of
the denoising process, we take advantage of recent
work (Song et al., 2021) that understands denois-
ing score matching from the Stochastic Differential
Equations (SDE) perspective. It indicates that the
quality of generative modeling via Langevin dy-
namics can be further improved if the solution of
the SDE equation is added. Therefore, our algo-
rithm alternates between the reverse SDE solver
and Langevin dynamics.

Let hi denote the text representations of differ-
ent time points, sθ�(·) be a trained score network
via minimized Eq. 7, the parameters βi and εi are
related to {αi}Ti=1 in Eq. 5. We replace the regular
Langevin dynamics of Eq. 2 with the following
predictor-corrector (Song et al., 2021) form:

score ← 1

2
βi+1sθ�(hi+1, βi+1)

hi ← (2−
√
1− βi+1)hi+1 + score

hi ← hi + εisθ�(hi, βi) +
√
2εiz

(8)

Although label flipping is an effective detection
method, this method relies too much on the denois-
ing results of Langevin dynamics, and it fails when
the adversarial perturbations cannot be eliminated.
To avoid the catastrophic consequences of failing to
eliminate adversarial perturbations, we propose to
focus on the kinetic qualities of Langevin dynamics.
Since the Langevin dynamics eventually converge
to the target distribution, the drift distance of the
denoised adversarial samples should be larger than
that of the normal ones.

The cosine similarity could reflect the shift dis-
tance of the representation, with larger values im-
plying a smaller shift. We calculate the cosine
similarity between the current and starting repre-
sentations at each step of the denoising process and
use the cumulative sum as the final adversarial con-
fidence score. Assume the hstart denotes the text
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representations at the initial denoising point, when
the time step i ranges from start to 0, the update
is performed using Eq. 8 and confidence value is
accumulated as:

confidence+ = cos < hmean
i , hmean

start >, (9)

where hi denotes the text representations of the
current moment, the superscript “mean” indicates
that we calculate a token level averaging. After
obtaining the confidence score of each sample, we
filter the adversarial samples using the threshold
method. The calculation of confidence scores will
be shown in Algorithm 1, and the whole detection
process will be detail discussed in Appendix A.2.

5 Experimental Settings

Considering the attack algorithms on text classifi-
cation models, we selected three representative text
classification datasets to verify the effectiveness
of the proposed method. They are SST-2 (Socher
et al., 2013), IMDB (Maas et al., 2011) and AG-
NEWS (Zhang et al., 2015). The first two datasets
are both for binary sentiment analysis. In SST-2,
most sentences are short texts, while in IMDB, they
are long. AGNEWS is a four-category topic clas-
sification dataset that includes the world, sports,
business, and sci/tech.

5.1 Baselines
We compare our method with five recent text ad-
versarial detection approaches. Four of these meth-
ods, DISP, FGWS, RDE and MDRE have already
been introduced in §2.2. We also add a detection
method, MD, which simultaneously detects out-
of-distribution and adversarial samples (Lee et al.,
2018). It first calculates the class-conditional Gaus-
sian distribution of the features and then gives the
adversarial confidence score of the samples by Ma-
halanobis distance.

5.2 Textual Attacks
We use four attack algorithms to generate adversar-
ial samples. BAE (Garg and Ramakrishnan, 2020)
replaces or inserts tokens in important parts of the
text by masking them and then rejuvenating the
pre-training task of BERT to generate alternatives.
PWWS (Ren et al., 2019) determines the word
substitution order by word salience and classifica-
tion probability, which greatly improves the attack
success rate and maintains a very low word substi-
tution rate. TextFooler (Jin et al., 2020) evaluates

the importance of words in the sentence and then
replaces them with synonyms that have semantic
and syntactic constraints. TextFooler-adj (Morris
et al., 2020a) further constrains the similarity of
words and sentences before and after perturbation,
which makes adversarial samples less detectable.

5.3 Implementation Details

We fine-tune two pre-trained language models,
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019), as the sentence encoder. We use the
general text classification paradigm of the two pre-
trained models, i.e., the encoder followed by the
linear classifier with hyperparameters consistent
with the original paper. For the three datasets, we
use 90% of the original training set for training and
the remaining 10% as the validation set. Following
previous works, the attack algorithms will attack
3000 text samples to generate a balanced detection
set. Since the original SST has only 872 labeled
validation samples, we attack the full validation
set. The XLNET (Yang et al., 2019) is adopted as
the backbone of the score network with sentence
encoder representations as input. All the attack
algorithms are implemented by TextAttack (Morris
et al., 2020b) framework and use the default set-
tings. More details can be found in Appendix A.3.

6 Experimental Results

In this section, we compare the detection perfor-
mance of some strong baseline approaches and ex-
plore the effects of denoising process on representa-
tions. Some findings of hyperparameter’s selection
and analytical experiments are also presented.

6.1 Detection Performance

Following the work of Yoo et al. (2022), we di-
vide the detection of adversarial samples into two
scenarios. Scenario 1 will detect all adversarial
samples, regardless of whether the model output
is successfully changed or not. Scenario 2 only
requires the detection of samples that actually fool
the model. Realistic attackers cannot guarantee the
success of every attack, but this does not mean that
these failed adversarial samples are harmless. In
fact, the failed samples can guide the attacker to
further optimize the attacking process, which is the
strategy adopted by most attack algorithms. There-
fore, we believe Scenario 1 is more realistic, and
we will show the performance of each detection
algorithm in Scenario 1 in the main text and put the
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Dataset Method
TextFooler-adj BAE TextFooler PWWS

F1 AUROC ACC F1 AUROC ACC F1 AUROC ACC F1 AUROC ACC

SST-2

DISP 58.9 − 79.2 66.1 − 76.1 72.3 − 76.0 73.3 − 77.4
MDRE 63.2 − 63.3 69.5 − 69.0 74.1 − 74.8 70.2 − 70.8
FGWS 68.2 69.9 64.3 68.9 69.5 64.6 71.7 73.9 68.2 74.2 79.2 70.8

MD 70.3 68.6 63.8 74.7 74.5 70.1 78.6 78.4 74.8 77.2 75.3 72.6
RDE 72.3 77.1 69.3 78.8 84.1 78.3 82.9 88.5 82.1 79.6 85.5 77.1

Ours (CASN) 80.8 89.1 80.3 97.2 98.9 97.1 99.3 99.8 99.3 99.1 99.9 99.1

IMDB

DISP 67.3 − 68.0 67.6 − 66.3 67.4 − 66.0 65.3 − 64.3
MDRE 82.2 − 80.8 84.3 − 82.8 85.5 − 84.3 82.6 − 81.6
FGWS 80.9 87.1 78.9 81.3 87.7 80.2 81.2 87.7 80.2 80.5 87.3 79.1

MD 81.4 83.1 79.0 83.7 85.5 81.6 83.7 85.5 81.7 82.4 83.7 79.7
RDE 82.2 88.3 80.7 84.6 90.2 83.2 84.7 90.1 83.7 82.5 86.7 80.1

Ours (CASN) 97.8 99.7 97.8 98.4 99.8 98.4 98.3 99.8 98.3 91.2 96.6 90.9

AGNEWS

DISP 61.5 − 85.8 80.8 − 86.3 88.4 − 89.1 84.1 − 87.3
MDRE 57.1 − 61.6 73.0 − 75.5 80.2 − 81.2 74.5 − 76.5
FGWS 74.6 73.2 69.8 75.1 75.9 73.3 77.6 78.4 75.5 81.9 84.3 82.4

MD 67.2 62.3 52.8 71.5 76.1 65.0 75.2 80.8 73.3 71.8 76.8 70.0
RDE 67.7 67.0 55.1 77.1 85.0 75.9 85.3 92.3 85.6 77.8 85.4 77.3

Ours (CASN) 90.0 95.8 89.7 99.8 99.9 99.8 99.9 99.9 99.9 99.9 99.9 99.9

Table 1: Performance of adversarial detection. The best results are marked in bold. Following previous works,
Accuracy (ACC), F1, and Area Under the Receiver Operating Characteristic (AUROC) are used for metrics. We use
BERT as the victim model, while the detection results of RoBERTa are put in Appendix B.1.

performance of Scenario 2 in Appendix B.2.

Table 1 reports the detection performance of our
method and compared baselines. We summarize
the results as follows: 1) The AUROC metric can-
not be calculated for DISP and MDRE, because
they are threshold-independent detection methods.
DISP performs very well on AGNEWS, which may
be due to the synonyms replaced by these attack al-
gorithms do not preserve the semantics of the orig-
inal sentences well. 2) Consistently with Yoo et al.
(2022), FGWS works badly in the face of more
subtle attacks, such as BAE and TextFooler. 3)
Both RDE and MD are feature density-based meth-
ods, and in general, RDE works better than MD.
However, their performance degrades dramatically
against TextFooler-adj, as the overlap of the feature
space increases due to the quality improvement of
adversarial samples. 4) Taking advantage of the
denoising process to depict the feature changes of
data avoids the drawbacks of density estimation
methods, thus performing well on the TextFooler-
adj attack. Our method not only greatly surpasses
the other approaches, but also achieves almost
100% detection performance for the other three
attacks.

6.2 Analysis

To better understand our method, we analyze some
hyperparameter choices in the training and infer-
ence phase, as well as the correlation between fea-
ture purification and detection performance in the
denoising process.

Effects of coefficients We explore the optimal
coefficient λ in Eq. 7 by varying the value in the
intervals of 0.025 from 0.025 to 0.3, as seen in
Fig. 2. In general, the performance trends are not
consistent across the datasets. For SST-2 and AG-
NEWS, the performance has been oscillating with
increasing λ and it is difficult to tell a concise trend.
For IMDB, the AUROC values are all close to 100
percent, which indicates that detection on IMDB
is not sensitive to hyperparameter change. How-
ever, in the interval range of 0.15 to 0.2, our CASN
performs well on all the datasets. The reason is
that with small values, the model will lose the label
information and eventually degrade to the original
conditional denoising objective. A larger coeffi-
cient would force the model to focus on the loss of
contrastive learning and ignore the noise perturba-
tions, which is also detrimental to accurate gradient
estimation.
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(a) SST-2 (b) IMDB (c) AGNEWS

Figure 2: Detection performance of different coefficients λ in Eq. 7 for four attack methods. We increase the
coefficients at intervals of 0.025 and use AUROC as the evaluation metric.

(a) SST-2 (b) IMDB (c) AGNEWS

Figure 3: The distribution differences of different denoising steps k, where both normal and adversarial samples
go through the denoising process. The Gaussian kernel density is used to measure the distribution.

Dataset Steps AUROC ACC-clean ACC-adv

SST-2

0 − 92.1 4.8
30 80.2 92.1 5.4
60 97.6 92.2 6.8
90 99.8 92.2 8.0

IMDB

0 − 93.4 20.8
30 99.5 93.5 28.5
60 99.7 93.6 34.8
90 99.8 93.9 39.3

AGNEWS

0 − 94.4 12.8
30 99.9 94.4 16.5
60 99.9 94.5 21.7
90 99.9 94.4 24.5

Table 2: The purification results of all samples with
different denoising steps, where ACC-clean and ACC-
adv denote the accuracy of clean and adversarial sam-
ples after the denoising process, respectively.

Denoising steps As discussed in §4.2, the choice
of the denoising starting point k is essential to suc-
cessful detection. Under different starting points,
we use Gaussian kernel density (Parzen, 1962) to
calculate the distributions of pre-post denoising
sentence similarity of all samples. It can be seen
from Fig. 3 that, the overlapping area of solid and

dashed lines of the same color is gradually decreas-
ing as the number of steps increases. The increase
in the number of steps causes the adversarial sam-
ples to deviate more significantly in the semantic
space, thus separating them from the normal sam-
ples. However, it is not recommended to increase
the number of steps consistently. On the one hand,
the computational overhead is not worth it when
the detection performance is good enough. On the
other hand, more denoising steps mean that the de-
noising starting distribution is further away from
the true sample distribution, leading to inaccurate
score estimation for all samples and thus causing a
decrease in detection performance.

Adversarial Purification Table 2 shows the clas-
sification accuracy of normal and adversarial sam-
ples after denoising. Referring to the setup of ad-
versarial purification (Nie et al., 2022; Yoon et al.,
2021), we reclassify the denoised sentence repre-
sentations using the previously fine-tuned linear
classifier. Consistent with these adversarial purifi-
cations in the field of computer vision research, the
denoising process is able to remove a portion of the
adversarial perturbations. Although the improve-
ment is weaker compared to defensive methods that
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Sentence FGWS RDE CASN

Schaeffer (frank) has to find some hook (pull) on which to hang his persistently inconsequential
flick (useless movies), and it perils (might) as allright (well) be the resuscitation of the middle-aged
character.

While it ’s genuinely cool to hear characters talk about early rap (music) records (show) (sugar hill
gang , etc.) , the constant referencing (references) of hip-hop arcana (secrect) can consign (alienate)
(charge) even the savviest audiences.

Further proof that the coeur (epicenter) of neat (cool) , hermosa (beautiful), thought-provoking
foreign cinema is smack-dab (pat) in the middle of dubya’s (bush’s) axis of evil.

Table 3: Examples showing the sensitivity to subtle semantic gaps. The words replaced by the attack algorithm
are underlined and followed by the original word in parentheses. For the proposed low-frequency word substitutions
in FGWS, we write them in brackets after the original text using red color. “ & ” mean positive and negative.

improve model robustness such as adversarial train-
ing, our method not only calibrates the semantic
features of the adversarial samples to improve the
classification accuracy but also ensures the model
performance of the original samples.

6.3 Case Study

Detection results of TextFooler-adj in Table 1 show
that CASN is more sensitive to subtle semantic
gaps. To further improve this claim, we select the
SST-2 dataset under this attack and analyze some
representative samples. As shown in Table 3, we
can tell that: FGWS needs a large number of low-
frequency word substitutions for correct classifica-
tion, but the substitutions often do not correspond
correctly to the correct ones, so the attacking al-
gorithm only needs stronger synonym constraints
to disable it. The third example illustrates that
RDE fails in the face of adversarial samples with
stronger sentence semantic constraints. This may
be due to the RDE’s assumption that the semantic
space of the adversarial samples is far away from
the normal samples.

7 Ablation Study

To better illustrate the key components in CASN,
we perform an ablation study by removing super-
vised contrastive learning and the solution of the
SDE equation in the inference period. The test
results are in Table 4. We can observe that: 1) Re-
moving supervised comparative learning will sig-
nificantly damage model performance. It would fall
back to the original conditional denoising model,
thus blurring the differences in distribution between
different classes of samples, which is detrimental
to the denoising process. 2) Without the SDE equa-
tion as the solution of the first step, this is not

Dataset Method F1 AUROC Purified ACC

SST-2
CASN 93.7 97.3 65.5

w/o SCL 69.2 71.0 65.4
w/o SDE 91.3 97.5 63.7

IMDB
CASN 97.7 99.7 57.0

w/o SCL 75.0 80.4 51.2
w/o SDE 97.4 99.6 54.5

AGNEWS
CASN 92.4 96.9 82.2

w/o SCL 66.7 22.7 82.0
w/o SDE 92.3 97.4 80.0

Table 4: Ablation results of two major components.
SCL and SDE denote supervised contrastive learning
and the solution of the SDE equation, respectively. Sim-
ilar to the metrics in Table 2, Purified ACC is the accu-
racy after reclassifying the denoised representation.

conducive to better correcting the semantics of the
adversarial samples, although sometimes the detec-
tion performance is not decreased.

8 Conclusion

In this paper, we propose a nearly-perfect solution,
CASN, to detect adversarial samples in text classi-
fication tasks. This framework is based on a noise
conditional score network and utilizes label infor-
mation to better estimate the data log-density gradi-
ent. Extensive experiments show that our method
greatly outperforms the strong baseline method.
Moreover, this approach, which exploits sample
feature changes during denoising process, is exper-
imentally shown to be more sensitive to semantic
gaps of adversarial samples. We also show that a
simultaneous denoising process for all samples is
effective in maintaining the semantics of clean text
while calibrating the adversarial ones.
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Limitations

In this work, we propose to use the denoising score
matching function to estimate the gradient of log-
density distribution, then describe the differences
between the adversarial and normal samples by
the denoising process of Langevin dynamics. Al-
though our method achieves very good detection
performance (nearly 100% under various settings),
the actual denoising process requires multi-step it-
erative updates, resulting in a very slow inference
speed compared to previous methods. In addition,
the trained score network is highly correlated with
the domain data, which makes it difficult to achieve
good generalization across multiple domains at the
same time.

Ethics Statement

We take ethical considerations very seriously and
strictly adhere to ACL’s ethics policy. The focus
of this paper is on improving adversarial instance
detection, which is studied using publicly available
datasets and models, and has been widely adopted
by researchers. Our research aims to improve the
security of real-world AI systems, which is objec-
tively informative on topics such as privacy protec-
tion and content censorship. We ensure the authen-
ticity of our experimental results and the objectivity
of our empirical conclusions.
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A Implementation Details

This section introduces the implementation details
of the training and inference phases. It includes
the selection of hyperparameters for training the
CASN and the denoising process for inference. In
addition, there are some other settings such as the
choice of the adversarial algorithm and the fine-
tuning strategy of the agent model.

A.1 Training CASN
The training method is greatly inspired by previ-
ous work on denoising diffusion models (Ho et al.,
2020; Sohl-Dickstein et al., 2015) and denoising
score matching from SDE perspective (Song et al.,
2021). In fact, we are able to describe the original
denoising score function (Eq.3) and the diffusion
model uniformly using SDE.

We bring each αi ∈ {αi}Ti=1 into Eq.4 individu-
ally, while recording the noise perturbation feature
in αi as hi with h0 as the initial feature. It can
be seen that at this point, Eq.4 is optimizing the
score function under the following Gaussian noise
perturbation:

pαi(hi|h0) = N (hi;
√
αih0, (1− αi)I) (10)

Noticing that the coefficient αi decreases from 1
to 0 as i increases from i = 0 to T , the noise
perturbed distribution (Eq.10) will approach a pure
Gaussian noise distribution as i increases to T . Due
to the independence between the individual Gaus-
sian perturbation distributions, we can consider the
features with different levels of noise perturbed as a
Markov process in the generation of the time series.
According to Eq.10, the Markov process can be
written as:

pβi
(hi|hi−1) = N (hi;

√
1− βihi−1, βiI) (11)

where αi :=
i∏

j=1

(1− βi)

This Markov process is a classical denoising
diffusion model (Ho et al., 2020). At this point, the
parameters α ∈ {αi}Ti=1 in Eq.4 for different noise
levels are converted to Gaussian noise coefficients
β ∈ {βi}Ti=1 in the diffusion model. We refer to
the previous work (Song et al., 2021) to calculate
the parameters β ∈ {βi}Ti=1,

βi =
βmin

T
+

i− 1

T (T − 1)
(βmax − βmin) (12)

where βmin = 0.1,βmax = 20 and T = 1000.

Once we bring the parameters αi :=
i∏

j=1
(1−βi)

into Eq.4, we can calculate the loss of the denoising
score matching. Noting that the final training objec-
tive, Eq.7, needs to add the supervised contrastive
learning loss function, the choice of hyperparam-
eter λ is crucial to make the trade-off. We list the
selection of this parameter on different datasets and
models in Table 5.

Models Datasets λ start(k)

BERT
SST-2 0.15 120
IMDB 0.1 90

AGNEWS 0.2 90

RoBERTa
SST-2 0.2 120
IMDB 0.1 90

AGNEWS 0.1 90

Table 5: The two main hyperparameters of CASN dur-
ing training and inference on different datasets and mod-
els. The λ is the coefficient in the training objective
(Eq.7) and start(k) denotes the start point of denoising
process.

In addition, we use XLNET (Yang et al., 2019)
as the backbone of the class-aware score network.
For all datasets and victim models, we train the
score network 20 epochs using AdamW optimizer
with 2e−5 as learning rate, 0.1 as dropout prob-
ability, 64 as batch size, 42 as the random seed.
Regardless of how large the loss calculated by Eq.7
is, we use the network saved in the last round as
the final scoring network.

A.2 Detection via Denoising Process
By revisiting the Markov process represented by
Eq.11 , we write the changes of text representation
at each time point in the following form:

hi =
√

1− βihi−1 +
√
βizi−1, i = 1, ...T (13)

where zi ∼ N (0, I), i = 0, ...T − 1. Song
et al. (2021) indicate that Eq.13 will converge
to a stochastic differential equation (SDE) when
T → ∞. In the limit of T → ∞, {βi}Ti=1 becomes
a function {β(t)}1t=0, zi becomes {z(t)}1t=0, and
the Markov process of {hi}Ti=1 becomes a continu-
ous stochastic process {h(t)}1t=0, where t ∈ [0, 1]
is a continuous time variable.

Noticing that for all SDE equations in the fol-
lowing form:

dx = f(x, t)dt+G(t)dw (14)
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where w is the standard Wiener process (a.k.a.,
Brownian motion), there is a deterministic ordi-
nary differential equation (ODE) solution with
{pt(h)}Tt=0 as the marginal distribution (Maoutsa
et al., 2020). We can use the following ODE solu-
tion to generate data in probability flow sampling.

dx = [f(x, t)− 1

2
G(t)G(t)T∇h log pt(h)]dt

(15)

Due to the presence of the ∇h log pt(h) term in
the ODE equation, it is natural to use the score func-
tion to replace ∇h log pt(h) and generate samples
by iteratively updating the probability flow ODE in
discrete time steps.

We first write Eq.13 in the SDE form under the
assumption that T → ∞:

dh = −1

2
β(t)dt+

√
β(t)dw (16)

After that we write the corresponding discrete form
of ODE function based on the solution given in
Eq.15, using the trained score network sθ�(·) as a
replacement for the ∇h log pt(h).

hi = (2−
√

1− βi+1)hi+1 +
1

2
βi+1sθ�(hi+1, αi+1)

(17)

In the process of denoising generation, alter-
nately using the numerical form of ODE equation
and Langevin dynamics could improve the quality
of the generation while reducing the number of
sampling steps (Song et al., 2021). Therefore, we
also use this approach to update the data representa-
tion at each time step in the denoising process. The
process of generating the adversarial confidence is
shown in Algorithm 1.

As mentioned earlier, the hyperparameters
{βi}Ti=1 in the inference time satisfy Eq.12. In
addition, {ε}Ti=1 in Langevin dynamics requires
the following calculation:

εi = 2 · ε · αi ·
||z||

||Sθ(x, αi)||
(18)

where ε = 0.01 and z are sampled from the stan-
dard normal distribution. The denoising starting
points for different datasets and attacked models
can be found in Table 5.

Algorithm 1 Detection Algorithm via Denoising
Process.
Input:

Sentence level representation, h
Class-aware score network, sθ(·)
Denoising start point, k
Hyperparameters {βi}Ti=1 and {εi}Ti=1

Output:
Initialize hk ← h, score ← 0, c ← 0

1: for i = k to 0 do
2: score ← 1

2βi+1sθ(hi+1, βi+1)

3: hi ← (2−
√
1− βi+1)hi+1 + score

4: hi ← hi + εisθ(hi, βi) +
√
2εiz

5: c = c+ cos < hmean
i , hmean

k >
6: end for
7: return c as adversarial confidence;

A.3 Other Details

We fine-tune the BERT-base-uncased and
RoBERTa-base model as the victim models,
the main hyperparameters are listed in Table 6.
According to the general paradigm, we connect
a linear classifier after the encoder which is
initialized with pre-trained weights. In the training
period for CASN, we keep the encoder frozen
and trained the score network using encoder
representations on the clean dataset. In the
detection phase, the encoder would produce
sentence representation h for each sentence, no
matter if it is adversarial or not. The parameters for
a CASN are about one million float32 type floating
point numbers, and it takes about 3 hours to train
20 epochs on the IMDB dataset using a single
NVIDIA A100 GPU, and 1 hour to predict 3000
samples. For the three datasets, SST-2 has 67,349
training data and 872 validation data. IMDB has
both 25,000 training and test data. AGNEWS has
120,000 training data and 7,600 test data.

Hyperparameters Values

Optimizer Adamw(Loshchilov and Hutter, 2019)
Learning rate 2× 10−5

Dropout 0.1

Weight decay 1× 10−2

Batch size 64

Gradient clip (−1, 1)

Epochs 3

Bias-correction True

Table 6: Hyperparameters used for fine-tuning the
BERT-base-uncased and RoBERTa-base model.
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B More Experimental Results

This section complements the experimental results
in the main text. Firstly, in §B.1, we present the
performance of CASN when using the RoBERTa
as the victim model for detection under scenario
1. Secondly, we will post the detection perfor-
mance of the two victim models under scenario
2 (only detect the adversarial samples that success-
fully change the model output). Finally, we will
show the performance of CASN for non-domain
detection, illustrating some disadvantages of this
approach.

B.1 Detection Scenario 1

The experimental results are consistent with Ta-
ble 1. Under scenario 1 which requires detect-
ing all samples generated by the adversarial algo-
rithm, RDE is the state-of-art (SOTA) performance
among the previous methods, while the proposed
method significantly outperforms RDE under all
datasets and attack algorithms. Although in de-
tecting TextFooler-adj attack, CASN only has F1

values of 79.5 and 91.6 on SST-2 and IMDB, re-
spectively, it performs very well in the rest of the
adversarial detection.

B.2 Detection Scenario 2

In scenario 2, we only require the detection al-
gorithm to identify those adversarial samples that
have successfully changed the model output. The
comparison between Table 1 and Table 8 shows
that, except for the detection performance on
IMDB, both the feature density-based estimation
method RDE and the low-frequency word detec-
tion method FGWS have significant performance
improvements in this scenario. Moreover, the im-
provement of our method is much greater under the
reduced difficulty setting, since the three datasets
achieved an average of 6.6 F1 value improvement
under TextFooler-adj detection.

B.3 Transfer Detection

To verify whether the proposed method can be used
as a universal detection method without relying on
domain data, we perform transfer detection exper-
iments on score network trained on domain data.
As shown in Table 9, the score network, after being
trained on the features of the Source dataset, acts
as an external detection component for the Target
dataset, processing the output features of the Tar-
get dataset and detecting the adversarial samples.

The experimental results show that the CASN still
has some generalization ability regarding the de-
tection within similar domains. For example, on
the transfer detection from IMDB to SST-2, except
for the detection of TextFooler-adj attack, other
detections still have all AUROC values of over 94.
However, on non-domain data, such as the bidirec-
tional migration of AGNEWS and the remaining
two datasets, it is almost impossible to detect any
adversarial samples. This suggests that our ap-
proach relies greatly on domain data features and
does not generalize well across domains.
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Dataset Method
TextFooler-adj BAE TextFooler PWWS

F1 AUROC ACC F1 AUROC ACC F1 AUROC ACC F1 AUROC ACC

SST-2

DISP 53.3 − 78.0 52.6 − 70.0 61.7 − 69.5 64.2 − 72.0
MDRE 69.6 − 68.8 70.0 − 71.1 80.0 − 79.4 76.0 − 75.6
FGWS 68.0 68.8 64.6 67.9 65.9 59.1 70.5 69.4 63.7 72.3 76.8 69.6

MD 68.9 64.0 59.2 72.1 69.8 65.5 75.2 73.9 69.5 74.3 70.3 67.6
RDE 72.1 76.4 71.3 78.5 83.8 77.5 82.7 88.8 81.2 81.8 86.4 80.1

Ours (CASN) 79.5 88.3 76.5 95.5 99.3 95.5 99.8 99.9 99.8 93.8 98.6 93.8

IMDB

DISP 61.0 − 59.6 69.7 − 64.2 71.7 − 65.6 68.3 − 62.5
MDRE 70.2 − 69.8 71.3 − 70.8 72.8 − 72.1 70.3 − 70.0
FGWS 77.5 83.2 76.1 79.6 84.5 77.5 80.7 85.9 78.9 82.2 88.6 81.2

MD 74.9 75.5 70.1 77.1 79.5 73.0 77.8 80.7 73.9 76.4 78.1 72.1
RDE 80.5 86.9 78.8 86.0 92.2 85.1 87.4 93.5 86.4 85.2 90.7 84.0

Ours (CASN) 91.6 97.0 91.5 97.3 99.6 97.3 98.3 99.8 98.3 96.6 99.4 96.6

AGNEWS

DISP 61.0 − 86.2 77.7 − 85.9 88.2 − 89.1 86.0 − 89.0
MDRE 62.4 − 66.3 71.6 − 73.8 80.3 − 81.2 75.8 − 77.3
FGWS 79.1 80.5 78.8 76.3 76.5 74.3 79.1 80.5 78.8 85.2 86.9 86.5

MD 68.8 68.2 58.0 75.0 79.7 71.3 79.2 85.7 78.1 76.5 82.4 74.3
RDE 69.2 70.7 62.0 79.2 85.0 78.1 86.0 92.2 85.9 81.4 87.3 80.1

Ours (CASN) 95.3 99.1 95.1 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

Table 7: Performance of adversarial detection using RoBERTa as the victim model.

Dataset Method
TextFooler-adj BAE TextFooler PWWS

F1 AUROC ACC F1 AUROC ACC F1 AUROC ACC F1 AUROC ACC

SST-2
FGWS 76.5 75.6 78.0 74.8 75.0 70.6 73.9 75.6 68.3 78.0 82.5 75.5
RDE 82.7 88.0 85.1 83.7 86.4 82.2 85.9 90.4 84.2 82.9 89.6 83.9

Ours (CASN) 93.9 98.6 93.9 97.9 99.7 97.9 99.5 99.9 99.3 99.4 99.8 99.4

IMDB
FGWS 83.5 90.0 81.1 81.6 88.8 81.0 81.6 88.6 81.0 80.7 89.4 81.0
RDE 86.2 92.1 84.9 85.6 92.9 84.5 85.9 91.7 85.2 82.9 88.0 80.8

Ours (CASN) 98.8 99.8 98.7 99.1 99.9 99.9 99.2 99.7 99.1 99.5 99.8 99.7

AGNEWS
FGWS 82.4 83.9 84.6 83.0 84.2 80.0 85.8 89.2 85.2 87.9 84.2 83.0
RDE 83.6 93.7 90.6 84.6 94.9 89.5 89.2 95.7 90.2 84.3 93.9 87.9

Ours (CASN) 95.7 98.8 99.7 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

Table 8: The results of detecting only the adversarial samples of successful attacks, i.e., scenario 2. We use
BERT as the victim model, keeping the evaluation metrics consistent with the previous experiments.

Source Target
TextFooler-adj BAE TextFooler PWWS

F1 AUROC ACC F1 AUROC ACC F1 AUROC ACC F1 AUROC ACC

SST-2
IMDB 79.6 83.1 75.9 78.3 81.8 74.5 77.8 81.1 73.8 79.4 82.7 75.6

AGNEWS 67.7 59.6 54.3 70.3 71.3 62.8 72.1 76.6 64.2 75.2 75.9 68.0

IMDB
SST-2 79.2 87.3 79.1 87.1 94.1 87.2 92.1 97.8 92.1 87.6 94.4 87.7

AGNEWS 66.7 46.8 50.0 70.5 72.4 64.3 71.4 74.9 65.7 66.7 59.6 50.0

AGNEWS
SST-2 66.9 66.8 54.0 73.5 78.2 71.2 70.2 71.8 64.1 69.8 70.3 63.8
IMDB 72.2 77.5 69.7 75.8 81.7 74.3 77.4 82.8 76.3 70.6 76.3 70.2

Table 9: The transfer detection experiments for CASN. The Source and Target denote domain and non-domain
datasets, respectively. We train the score network on the Source dataset and subsequently utilize it for adversarial
detection on the Target dataset.
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