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Abstract

State-of-the-art poetry generation systems are
often complex. They either consist of task-
specific model pipelines, incorporate prior
knowledge in the form of manually created con-
straints, or both. In contrast, end-to-end models
would not suffer from the overhead of having
to model prior knowledge and could learn the
nuances of poetry from data alone, reducing the
degree of human supervision required. In this
work, we investigate end-to-end poetry genera-
tion conditioned on styles such as rhyme, meter,
and alliteration. We identify and address lack
of training data and mismatching tokenization
algorithms as possible limitations of past at-
tempts. In particular, we successfully pre-train
ByGPT5, a new token-free decoder-only lan-
guage model, and fine-tune it on a large custom
corpus of English and German quatrains anno-
tated with our styles. We show that ByGPT5
outperforms other models such as mT5, ByT5,
GPT-2 and ChatGPT, while also being more
parameter efficient and performing favorably
compared to humans. In addition, we analyze
its runtime performance and demonstrate that
it is not prone to memorization. We make our
code, models, and datasets publicly available.1

1 Introduction
End-to-end fine-tuning of pre-trained language mod-
els like GPT-2 (Radford et al., 2019) or T5 (Raf-
fel et al., 2020a) on downstream tasks has been
an immensely popular training paradigm for text-
generation in the last few years (Li et al., 2021). End-
to-end models learn to complete a task by directly
learning all steps, without intermediary algorithms
such as hand-crafted rules or post-processing. This
approach has proven to be highly effective on a wide
range of problems such as dialog generation (Sun
et al., 2022; Yang et al., 2021), summarization (Zhu
et al., 2021; Zhong et al., 2021; Huang et al., 2021),
and machine translation (Farinha et al., 2022; Tran

1https://github.com/potamides/uniformers

The sweet wild strain, the sudden start, A

Which shakes the perfumed altar’s flame, B

To make its shrine a sacred name, B

And sing its praise in every heart. A
— ByGPT5

Figure 1: Generated quatrain with ABBA rhyme scheme,
high amount of alliterations (green), and iambic meter,
i.e., unstressed syllable ( ) follows stressed syllable ( ).

et al., 2020). Nevertheless, all these applications
have in common that they only concern themselves
with the generation of prosaic texts. Generating
formal verse poetry on the other hand, with strict
constraints on aesthetic style such as rhyme scheme,
meter and alliteration, remains a difficult problem.
Attempts to employ end-to-end solutions in this con-
text have so far been unsuccessful (Wöckener et al.,
2021), with some authors even concluding that
language models cannot pick up such constraints
from data alone (Popescu-Belis et al., 2022). As a
consequence, state-of-the-art poetry generation sys-
tems rely on human guidance by (i) injecting prior
knowledge2 in the form of hard-coded constraints
to filter model outputs or modify probability dis-
tributions or (ii) breaking the whole process down
into sophisticated task-specific model pipelines.

Tian and Peng (2022), for example, propose a son-
net generation framework with four distinct pipeline
steps: content planning, rhyme pairs generation,
polishing for aesthetics, and finally sketch-to-sonnet
generation. Further, they incorporate prior knowl-
edge such as pronunciation dictionaries, knowledge
bases, and lexically constrained decoding. Simi-
larly, Hopkins and Kiela (2017) use Weighted Finite
State Transducers to monitor whether their poetry
generation system meets metric constraints and roll

2We define incorporating prior knowledge as “Any form of
influence on model decisions not learned by the model itself.”
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back its state in case of a violation.
Such forms of human supervision lead to ram-

ifications that an end-to-end solution would not
face. Pipelines are susceptible to errors in early
modules that propagate and are amplified in sub-
sequent modules; an effect known as cascading
of errors (Castro Ferreira et al., 2019). Similarly,
incorporating prior knowledge depends on the clev-
erness and intent of the modeler and generally
becomes more difficult when heterogeneous con-
straints are involved or the number of constraints
increases (Garbacea and Mei, 2022). Furthermore,
standard text-generation architectures do not lend
themselves well for manually applying constraints.
Due to the autoregressive generation of tokens from
left to right, constraints at arbitrary positions cannot
be implemented easily or only with additional trade-
offs (Garbacea and Mei, 2022). For example, end
rhymes, which come at the end of a verse, cannot
be constrained in isolation due dependencies on
previously generated tokens. A commonly applied
work-around for this problem is to generate each
verse in reverse (Lau et al., 2018; Jhamtani et al.,
2019; Van de Cruys, 2020; Xue et al., 2021a).

In this work, we thus aim to reduce the amount of
human supervision in poetry generation and explore
viable end-to-end solutions. We hypothesize that
failing to do so far has the following root causes:
(i) lack of available training data. Poetry corpora
labeled with aesthetic styles are few and far be-
tween and we speculate that they do not suffice
to train a generalized model. (ii) Unfavorable to-
kenization algorithms. Aesthetic styles of poetry
such as rhyme, meter, and alliteration are often
expressed at the character-level while most avail-
able off-the-shelf pre-trained models operate at the
subword-level (Kudo and Richardson, 2018). Xue
et al. (2022) showed that character-level models
(also known as token-free models) excel at other
character-level tasks so we assume that they would
perform similarly well at poetry generation. Our
key contributions are as follows:

(i) We pre-train ByGPT5, to our knowledge the
first decoder-only transformer for character-
level language modeling.

(ii) We create QuaTrain, a large machine-labeled
poetry corpus of quatrains in German and
English.

(iii) By fine-tuning ByGPT5 on QuaTrain, we
show that it learns character-level styles better

than subword-based systems, such as GPT-2
and mT5, as well as other token-free models
like ByT5, while being more parameter effi-
cient and also faring well compared to humans.

(iv) We further demonstrate that ByGPT5 exhibits
few memorization problems, understands po-
etry better than GPT-2 and ChatGPT, and
also performs well on tasks that do not operate
at the character-level.

2 Background
In formal verse poetry, poems have to follow strict
patterns and rules of language which we term styles.
Our goal is to train an end-to-end poetry generation
system which learns to adhere to specified styles by
itself. We refer to this as style-conditioned poetry
generation. In our work, we focus on generating
quatrains and conditioning on the following defining
styles of formal verse poetry (cf. Figure 1):

Rhyme A rhyme is the repetition of the same
or similar sounds in the final accented syllables
of words, which must be preceded by differing
consonants (Harmon et al., 2000). If all conditions
are met, we speak of perfect rhymes, and if some
of them are violated, for example, because the
final sounds are different or the words are identical,
we speak of imperfect rhymes. In a quatrain with
ABAB rhyme scheme, the first and third line endings
rhyme, as do the second and fourth lines.

Meter Meter refers to the rhythmic pattern within
a verse. In modern poetry, this rhythm is usu-
ally accented-syllabic, that is, the succession of
stressed ( ) and unstressed syllables ( ) occurs at
regular intervals (Harmon et al., 2000). The rhyth-
mic unit is also known as a foot and the meter of a
verse can thus be described as a sequence of feet.
In English poetry, common feet are iambic ( ),
trochaic ( ), anapestic ( ), and dactylic (
). For conditioning on meter, we consider all met-

ric feet appearing in our datasets (cf. Appendix A).

Alliteration Harmon et al. (2000) define allitera-
tion as the repetition of the same consonant sounds
or any vowel sounds at the beginning of words or
syllables that are close together in a verse. In formal
verse, alliteration is secondary to rhyme and meter,
follows less strict constraints, and is therefore not
as easily classified. In this work, we thus consider
the level of alliteration instead, which we classify
as either low, medium, or high (cf. §5).
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Name Size Params Enc/Dec Token-free

ByGPT5
small 73.5m Decoder ✓
base 139.2m Decoder ✓
medium 289.1m Decoder ✓

GPT-2 base 124.4m Decoder ✗
medium 354.8m Decoder ✗

ByT5 small 300m Enc-Dec ✓

mT5 small 300m Enc-Dec ✗

Table 1: Pre-trained models we fine-tune. ByGPT5 is a
new model developed by us. The German GPT-2 model
we use does not exist in medium size Minixhofer (2020),
which is why we only use a base model there.

3 Models

We induce a range of end-to-end poetry generation
systems for English and German by fine-tuning pre-
trained transformer models (Vaswani et al., 2017).
For conditioning on style, we consider two architec-
tural variants—encoder-decoder transformers (Xue
et al., 2021b, 2022) and decoder-only transform-
ers (Radford et al., 2019; Brown et al., 2020). As
explained in §1, we focus on token-free models, but
also consider subword-level models for compari-
son. We do not experiment with models with more
than 400 million parameters since they exceed the
capacity of our available GPU resources.

Encoder-Decoder For encoder-decoder models,
we initialize the encoder with a joint triple of rhyme
scheme, meter, and, alliteration level and generate
a quatrain with the decoder. We represent each
style by a special token which we add to the model
vocabulary. We use ByT5 (Xue et al., 2022), a
token-free pre-trained encoder-decoder model, as
a baseline. For comparison with subword-level
approaches, we fine-tune mT5 (Xue et al., 2021b).

Decoder-only As the input for encoder-decoder
models is a relatively short sequence of styles, this
could lead to an underutilization of the encoder.
We thus hypothesize that a decoder-only model,
with styles supplied as a prompt string, would be
better suited for our task. On the subword-level,
multiple models, such as GPT-2 (Radford et al.,
2019), are readily available. However, to our best
knowledge, no such model exists at the character-
level yet, which is why we train our own. Since our
new model shares some similarities with the GPT
family of models, but has its origin in ByT5 (see
§4), we refer to it as ByGPT5. An overview of all
models we use can be seen in Table 1.
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Figure 2: Perplexity on the training data when pre-
training ByGPT5 for English and German.

4 ByGPT5
For pre-training our own token-free decoder-only
model ByGPT5, we start by modifying the architec-
ture of ByT5 and discard its encoder component.
We then initialize the weights with the decoder of
ByT53 to warm-start the training process (Rothe
et al., 2020; Tang et al., 2022). We repeat this for the
three smallest variants of ByT5. Because ByT5 has
an asymmetrical architecture, the resulting models
retain only 25% of its parameters. We refer to their
model sizes as small, base, and medium.

As training data, we use OpenWebText2 (Gao
et al., 2021) for English and cc100 (Conneau et al.,
2020) for German. For hyper-parameters, we follow
Radford et al. (2019) and Brown et al. (2020) and use
Adam with a weight decay of 0.1, a batch size of 512,
varying learning rates depending on model size, and
train on a causal language modeling objective for
50k steps following Lester et al. (2021). We provide
loss curves in Figure 2. As might be expected, the
perplexity of larger models is generally lower than
that of smaller counterparts.

5 Datasets
We collect a range of labeled and unlabeled datasets
of English and German poetry (cf. Table 2). As
shown, we were able to procure labeled corpora for
rhyme and meter, but they are far too small to train a
poetry generation system. Instead, we use the bigger
unlabeled corpora, as training data, by labeling them
automatically (Belouadi and Eger, 2023). To make
full use of the data, we use not only real quatrains but
also pseudo-quatrains (any consecutive sequence

3By referring to this process as weight initialization (rather
than continued pre-training), we adopt the terminology of
Rothe et al. (2020). This is intuitively sensible as we reuse
only a subset of weights in a very different architecture. Conse-
quently, our model experiences considerably less exposure to
training data compared to its competitors during pre-training.
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Dataset Language Verses R M A
EPG64 English 1k ✓ ✓ ✗
Prosodic English 2k ✗ ✓ ✗
FORB English 1k ✓ ✓ ✗
Chicago English 95k ✓ ✗ ✗
Anti-K German 4k ✓ ✓ ✗
GRC German 41k ✓ ✗ ✗

EPG English 2.8m ✗ ✗ ✗
DLK German 2.8m ✗ ✗ ✗

QuaTrain English 2.7m∗ ✓ † ✓ † ✓ †

German 5.9m∗ ✓ † ✓ † ✓ †

∗ Verses may occur in multiple pseudo-quatrains.
† Labels are obtained from classifiers.

Table 2: Available poetry datasets for rhyme (R), meter
(M), and alliteration (A). Unlabeled corpora (middle) are
orders of magnitude larger than labeled corpora (top),
and we label them automatically (bottom). Further
information can be found in Appendix A.

of four lines), amounting to over 660k quatrains
for English and 1.4m for German. We refer to this
new dataset as QuaTrain, with further statistics
in Appendix A. In the following, we explain the
labeling process for each style.

For automatically labeling rhyme and meter, we
leverage the available labeled data and train a range
of classifiers. We evaluate them on held-out gold
data and subsequently use the best performing clas-
sifier for each style (cf. Appendix A). Meter classi-
fication is a multiclass classification problem with
a single verse as input, while rhyme classification
is a binary classification problem with two verses
separated by a special token as input. We classify
the meter of a quatrain by choosing the dominant
meter among the verses4, and the rhyme scheme by
determining which verses rhyme and which do not.

As no readily available poetry datasets include
labels for alliteration, we approach the problem in
a different way. The quantification of the level of
alliteration in a document is a long known research
problem (Skinner, 1939; Leavitt, 1976; Blain, 1987;
Benner, 2014). Let 𝑣𝑖 be the atomic units of sound
in verse 𝑣, Blain (1987) quantify alliteration as

allit(𝑣) =
∑ |𝑣 |

𝑖=1
∑ |𝑣 |

𝑗=𝑖+1
f (𝑣𝑖 ,𝑣 𝑗 )

𝑗−𝑖∑ |𝑣 |
𝑖=1

∑ |𝑣 |
𝑗=𝑖+1

1
𝑗−𝑖

, (1)

where f (·) is a similarity function of two sounds;
the default simply testing for equality. Intuitively,
allit(·) counts alliterative sounds in a verse, applies

4Since in formal verse poetry, a meter is maintained through-
out a poem, this procedure is meaningful.

a distance penalty, and normalizes the score to
[0, 1]. To get a score for quatrains, we average
the alliteration level of all verses. We consider
initial phonemes of words, as well as all further
stressed phonemes as atomic sound units 𝑣𝑖 , and to
determine phonemes and stress, we use a grapheme-
to-phoneme conversion model (Zhu et al., 2022).
Further, we conduct an internal study to determine
several intensity thresholds based on a sample of
quatrains. We classify the alliteration level of a
quatrain as low if the score is below 0.05, medium if
the score is below 0.1, and high if it is above that.

6 Experiments

For fine-tuning, we use the same hyperparameters
as in §4 for all models, but reduce the batch size
to 128 (for efficiency reasons). We induce separate
models for each language in QuaTrain and train for
10 epochs.5 We conduct both automatic (§6.1) and
human evaluation (§6.2). Examples of generated
quatrains can be found in Appendix D.

6.1 Automatic Evaluation
For automatic evaluation, we select four com-
mon rhyme schemes (AABB, ABAB, ABBA, and
ABCB), the most popular meters per language
(iambus, trochee, anapest, and dactyl for English;
iambus, trochee, and alexandrine for German), and
all levels of alliteration to create 75 poems per
model for each possible combination. To find out if
styles are properly reflected in generated quatrains
we reuse the classifiers from §5, i.e., we use them
to classify the generated poems and see if the styles
match. We define the following metrics:

Rhyme Score computes the recall of verses that
should rhyme in a quatrain, as well as the
recall of verses that should not and takes their
arithmetic average.

Alliteration Score is 1 if a quatrain has the correct
alliteration level, else 0.

Meter Score is the fraction of verses with correctly
classified meters.

Coherence uses BERT for next sentence predic-
tion (Devlin et al., 2019) to assess discourse re-
lations of verses (Duari and Bhatnagar, 2021;
Shi and Demberg, 2019). The score is the
fraction of consecutive verse pairs that are
correctly classified to come after one another.
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Figure 3: Automatic evaluation results for all models on English and German.

We provide the scores for each model averaged
over all generated quatrains (2700 for German and
3600 for English) in Figure 3. Although all models
manage to learn to follow aesthetic styles to some
degree, there are noticeable score differences.

On rhyme, all ByGPT5 variants collectively out-
perform all GPT-2 models on both languages by
5%-20%. Similarly, ByT5 consistently outperforms
mT5 by ~5%. This supports our theory that token-
free models are better suited for character-level
styles. Further, ByGPT5 (small) performs 2%-15%
better than ByT5 (small) which means we can dis-
card the encoder while still improving performance.
Surprisingly though, base ByGPT5 and GPT-2
achieve higher scores than their medium variants.
While this may initially suggest that larger decoders
prioritize (meaningful) content, whereas smaller
decoders focus on style, the high coherence seen
across all models weakens this hypothesis. Instead,
we speculate that this may be an overfitting problem.
In particular, smaller models, up to base size, may
be better suited for generating shorter texts such
as quatrains. Another surprising finding is that
ByT5 (small) performs worse than GPT-2 (base)
on English. We investigate this further in §6.2.

In terms of meter, all models perform very similar
to one another. Whereas ByGPT5 (small) performs
best on English by a small margin, it is outperformed

5All models converge within the designated number of
epochs, and throughout each epoch, the ordering of the sys-
tems remains consistent with our final results from automatic
evaluation.

by mT5 (small) on German. This result is not
surprising. Since meter is a syllable-level style,
subword-level language models also manage to pick
it up reasonably well (Lau et al., 2018). Interestingly
though, on English the scores are much lower overall
than on German. A reason for this may be that the
occurrence of different meters is much more evenly
distributed in German QuaTrain (cf. Table 6 in
the appendix). While in German only about 60%
of all meters are iambs, in English it is over 80%,
making it difficult for models to learn other meters.
We identify further reasons in §6.2.

Alliteration is the style that all models are the
worst at. Our formulation of alliteration levels may
make it difficult for models to pick up its semantics.
Still, ByGPT5 (base) performs the best on English,
and ByGPT5 (small) and ByT5 (small) perform the
best on German, suggesting that token-free models
have an advantage on this style.

In general, small and base ByGPT5 perform the
best on all three styles in English and on two of them
in German. It appears that they have an advantage
in terms of tokenization algorithms (outperforming
subword-level GPT-2 and mT5), architecture (out-
performing encoder-decoder ByT5), and size (the
medium variant performs worse).

6.2 Human Evaluation
To further validate the effectiveness of our models,
we conduct a human evaluation campaign using
best-worst scaling (BWS) as a means of annota-
tion (Louviere et al., 2015). BWS is a variant of
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Figure 4: Distributions of BWS scores for rhyme, human likeness, and meter annotations through kernel density
estimation. Scores range from -1 (very bad) to 1 (very good). The “•” markers denote expected values.

comparative annotation that produces high-quality
results while keeping the number of required an-
notations low (Kiritchenko and Mohammad, 2016,
2017). Annotators are presented with tuples of 𝑛
items (usually 𝑛 = 4) and asked to identify the best
and worst item based on a specified property. By
subtracting the fraction of times an item is chosen
as the best from the fraction of times it is chosen as
the worst, real-valued scores ranging from -1 (bad)
to 1 (good) can be obtained (Orme, 2009).

In our annotations, we consider three proper-
ties: rhyme, meter, and human likeness, i.e., the
likelihood of a poem being written by a human.
We exclude alliteration to reduce the workload on
our annotators. Similarly, we exclusively evalu-
ate on English (cf. Appendix B for a small-scale
evaluation in German) and only consider the top-
performing model within each model class based
on the results of automatic evaluation. The mod-
els in question thus are ByGPT5 (base), GPT-2
(base), ByT5 (small), and mT5 (small). Further-
more, we only choose from three rhyme schemes
(AABB, ABAB and ABBA), two meters (iambus
and trochee), and one level of alliteration (medium),
and create four poems per system for each possible
combination. In addition, we also randomly sam-
ple human quatrains from our datasets that match
the constraints and create 120 4-tuples from the
combined set of quatrains.

Four annotators then annotate rhyme and human
likeness, whereas meter is evaluated by a single
expert annotator only (cf. Appendix B). Since we
have multiple annotators working on rhyme and hu-
man likeness we use the split-half reliability (SHR)
measure (Kiritchenko and Mohammad, 2017) to
assess their consistency. SHR is calculated by split-
ting the annotations into two sets, computing scores

for each set, and then computing their Spearman
rank correlation coefficient.

Figure 4 displays a kernel density estimate for
each property, with distributions shifted to the right
indicating better performance. On rhymes, we
obtain an SHR of 𝜌 = 0.77 which demonstrates
a high agreement between annotators. Human
rhymes are ranked the highest overall, whereas
ByGPT5 comes in as a close second, followed by
ByT5. mT5 and GPT-2 perform the worst. This is
a bit different from our findings during automatic
evaluation where GPT-2 (base) was ranked higher
than ByT5 (small) on English. An analysis of GPT-
2 generated quatrains revealed a predominance of
imperfect rhymes as a likely cause. As our rhyme
classifier is trained on binary labels it is unable to
detect this, but human annotators perceive this kind
of rhyme as worse.

With 𝜌 = 0.54, the SRH of human likeness is
noticeably lower than for rhyme. On the one hand,
this suggests that this task could be more subjective;
on the other hand, the generated quatrains must
be sufficiently human-like for subjectivity to be a
factor. Indeed, although humans rank higher than
ByGPT5 which in turn ranks higher than GPT-2,
they all perform noticeably more similar than for
rhyme. Nonetheless, we can observe that ByT5, and
especially mT5 rank a bit lower. Both models were
pre-trained on corrupted spans and have thus never
seen truly natural text during pre-training (Zhu
et al., 2022; Raffel et al., 2020b; Lester et al., 2021)
which we believe could be a possible cause.

The distributions for meter have large variances
for all models, and also humans. This is surprising,
as it implies that our annotator does not think that
humans are superior, even though the automatic
evaluation of English models was not particularly
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Figure 5: Automatic evaluation of low-resource models.

strong on meter. We hypothesize that even among
real English poets, there is a significant amount of
poetry that does not strictly adhere to metric con-
straints, so language models only learn to follow
them freely as well. Nonetheless, we can still see
that, among models, ByGPT5 is rated highest, fol-
lowed by GPT-2, mT5, and lastly ByT5, reflecting
our findings of automatic evaluation. Interestingly,
ByGPT5 also ranks higher than humans.

Overall, our human evaluation suggests that
ByGPT5 performs best across all properties evalu-
ated, which is consistent with our automatic evalu-
ation. Moreover, ByGPT5 has shown the ability to
perform at a level comparable to humans, and even
surpass human performance in the meter property.

7 Analysis

We continue with a deeper analysis and look into
low-resource training (§7.1), quantify memoriza-
tion (§7.2), evaluate the performance of token-free
models on non-character-based, high-level tasks
(§7.3), introspect the models’ understanding of
style when predicting tokens (§7.4), and compare
ByGPT5 with ChatGPT (§7.5).

7.1 Low-resource Training
We hypothesized that a large training corpus is an
important factor in successfully training an end-to-
end poetry generation system. We examine this
hypothesis by selecting a 5% subset of English Qua-
Train (33k quatrains) and re-training our models
using the same hyperparameters as in §6. Figure 5
shows how well these new low-resource models
adhere to style constraints, similar to the automatic
evaluation of full training in Figure 3.

Compared to full training, all low-resource mod-

Memorization Emotion
Model English German German

ByGPT5 (small) 0.0% 0.0% 0.676
ByGPT5 (base) 0.0% 0.04% 0.680
ByGPT5 (medium) 0.0% 0.81% 0.659

GPT-2 (base) 0.39% 1.81% 0.676
GPT-2 (medium) 3.64% — —

ByT5 0.0% 0.0% 0.691

mT5 0.0% 0.0% 0.696

Table 3: Extractive memorization rates (English &
German) and recall on emotion generation (German).

els are noticeably worse at adhering to style. Specif-
ically, the performance drops by 15%-40% for
rhyme, 5%-20% for meter, and 5%-10% for al-
literation. In addition, the overall performance
difference between all models is much smaller than
in §6.1. While these findings support our hypothe-
sis that training on large datasets is essential, they
also reveal that ByGPT5 demonstrates the largest
improvements as the dataset size increases (cf. Fig-
ure 3). We therefore theorize that larger datasets
lead to substantial performance gains in poetry gen-
eration only when coupled with architectures that
excel at character-level tasks.

Nevertheless, even in low-resource scenarios,
ByGPT5 (base) outperforms the other models in
all categories except rhyme, where a few other
systems perform similarly. This suggests that the
conclusions drawn in §6.1 hold to some extent even
when the available training data is limited.

7.2 Extractive Memorization

A common problem of language models, known
as extractive memorization (EM), is generating
verbatim copies from the training data during in-
ference (Carlini et al., 2022; Raunak and Menezes,
2022; Meehan et al., 2020). According to Carlini
et al. (2022) EM occurs when a language model’s
continuation of a string is part of the data it was
trained on. Since the inputs to our language models
are strings of style, this formulation lends itself
well to our case: to detect memorization we simply
have to check if generated poems appear in Qua-
Train. In Table 3, we compute the EM rates of the
quatrains generated in §6.1. To account for negligi-
ble variations, we do not compare raw strings, but
calculate the Ratcliff-Obershelp similarity (Ratcliff
and Metzener, 1988), and assume that two strings
are equivalent if their similarity exceeds 0.7.
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As can be seen, GPT-2 suffers from memoriza-
tion the most. On English, over 3% of all outputs of
GPT-2 (medium) are copied. While ByGPT5 also
copies quatrains to an extent, it is much less affected
in comparison. On English, ByGPT5 (medium)
does not copy anything and on German only 0.81%
of all outputs. As a general trend, we can see
that bigger models tend to copy more data than
smaller ones—a finding shared by others (Carlini
et al., 2022). Interestingly, the encoder-decoder
models ByT5 and mT5 do not seem to be affected
by this problem at all, most likely because styles are
not used as a prompt, but are fed into the encoder
separately.

7.3 Higher-level Styles
We also explore how token-free models perform
on higher-level styles which are not character- or
subword-level phenomena. In particular, we focus
on emotion using Po-Emo (Haider et al., 2020), a
dataset of eight aesthetic emotions in poetry (cf.
Appendix A). By conditioning our models on these
emotions, we can assess their ability to understand
and depict emotion in poetry.

As in §5, we leverage automatic labeling. To that
end, we train a classifier on German Po-Emo as in
Haider et al. (2020) and reproduce the results. We
then classify emotions in German QuaTrain and
retrain our systems by conditioning them on all emo-
tions in a quatrain. To evaluate how well the models
can discriminate emotions, we condition them on
every possible tuple of two distinct emotions and
generate 100 poems each (2800 in total), and report
the recall of correctly classified emotions. The re-
sults in Table 3 show that encoder-decoder models
score highest, with mT5 performing best. During
training, conditioning inputs can be long and vari-
able in size, a scenario for which encoder-decoders
may be better suited. Still, decoder-only models
are not far behind. Especially ByGPT5 fares well
against GPT-2, suggesting that token-free models
are also competitive on higher-level tasks.

7.4 Token-level Attributions
To introspect the decision-making processes of our
models, we visualize their token-level attributions
when generating a quatrain. Token-level attribu-
tions explain to which degree each token in the input
is involved in determining the next output token of
a model, allowing us to reason about what a model
has learned. To this end, Ferrando et al. (2022)
decompose the attention blocks of transformers

<ABBA>
<iambus>
<high>

I hold it true, whate’er bef all;
I f eel it when I sorrow most;
’Tis better to have loved and lost
Than never to have loved at all.

<ABBA>
<iambus>
<high>

I hold it true, whate’er bef all;
I f eel it when I sorrow most;
’Tis better to have loved and lost
Than never to have loved at all.

Figure 6: A famous stanza by Tennyson (1850) with
visualized attention from ByGPT5 (top) and GPT-2
(bottom) when generating the last syllable.

into a sum of vectors and define a new measure for
visualizing token-to-token interactions based on the
distance of each vector to the output (Kobayashi
et al., 2021). We apply this measure on generative
language models and visualize token-level attribu-
tions for ByGPT5 and GPT-2 when generating the
last syllable in a quatrain. Since we have observed
reoccurring trends, we use a single visualization
in Figure 6 as a leading example. We provide
additional examples in German in Appendix C.

We can see that ByGPT5 puts a big emphasis
on the current verse, as well as the styles it was
conditioned on. Further, possibly in response to
the ABBA rhyme scheme, it also heavily stresses
the ending of the first verse. Since the model
also places a moderate amount of attention on the
last consonants in verse three, it also seems to be
aware of which sounds it should not generate in
order maintain the rhyme scheme. Interestingly,
it heavily emphasizes the letter v in the last two
verses. We assume that this corresponds to what
ByGPT5 understands by alliteration, in which case
it would not have understood well at which position
in a word the same sounds must occur.

Unlike ByGPT5, GPT-2 does not put any visible
emphasis on input style tokens, which suggests that
it does not understand how to handle them very
well. Nevertheless it stresses similar aspects to
ByGPT5, although, due to the subword vocabulary,
at a different level of granularity.

7.5 Comparison with ChatGPT
ChatGPT (OpenAI, 2022) is a conversational large
language model which specializes in dialogue. It
has attracted attention for its detailed and expressive
answers, raising the question of how well it per-
forms in generating poetry. In a small-scale study,
we thus ask ChatGPT to generate quatrains with
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various rhyme schemes (AABB, ABAB, ABBA,
and ABCB) using its web interface,6 and similarly
generate poems using ByGPT5. We then construct
random pairs of quatrains of each model and want
to find out which poem adheres better to rhyme con-
straints. Since we know the quatrains of ChatGPT
beforehand, we use our rhyme scorer of §6.1 for
unbiased scoring. Only in 15% of cases does our
scorer prefer poems of ChatGPT over ByGPT5.
Manual investigation showed that ChatGPT tends
to generate rhymes at arbitrary positions, rather than
adhering to specified rhyme schemes, even when
giving examples in the prompt. Our verdict is that
ChatGPT is a viable approach for poetry generation
but not style-conditioned poetry generation.

8 Related Work
As indicated in §1, competing poetry generation
systems usually consist of model pipelines and/or
inject prior knowledge. Zhang and Lapata (2014),
for example, propose a system for modeling qua-
trains consisting of three components: one model
encodes previous verses, a second one reduces them
to a single context vector, and a third one generates
verses, one at a time. During decoding, phrases
which violate style constraints are discarded. Simi-
larly, Deep-speare (Lau et al., 2018) consists of a
language model that generates a set of sample verses
in reverse order, a model that reinitiates sampling
as long as rhyme constraints are not met, and a final
model that ranks the samples according to how well
they adhere to iambic pentameter. Van de Cruys
(2020) also induce prior knowledge into a generic
language model, but they do it by modifying output
probability distributions directly. Jhamtani et al.
(2019) put their focus on actually learning rhyme
and train a sonnet and limerick generator through
adversarial training. The model is hierarchical, i.e.,
it first generates a sequence of line endings which
are subsequently completed in reverse. While the
model manages to learn the meaning of rhyme to an
extent, the authors still filter outputs using pronun-
ciation dictionaries. More in line with our research,
Hopkins and Kiela (2017) train a model on the
phonetic representation of poetry using the Interna-
tional Phonetic Alphabet (IPA) as a character-level
vocabulary. During inference, a second model trans-
lates sounds back to human-readable text. Although
promising, the model did not generalize well, and

6After experimenting with prompt engineering and in-
context learning, we settled on a straightforward template:
“Generate a quatrain with <pattern> rhyme scheme.”

an additional model enforces rhythmic constraints
in their final approach. Ormazabal et al. (2022)
target unsupervised poetry generation by training
a system on prosaic text only and conditioning it
on structural information such as line endings and
syllable counts. During inference, the system can
generate poetry when conditioned on rhyming line
endings and metric syllable counts. Nonetheless,
since this information must be crafted manually, it
is still supervised in a slightly different sense. In
contrast, our model is supervised during training
as it requires poetry to learn from, but unsuper-
vised during inference as it is able to independently
incorporate poetic elements.

9 Conclusion
In this work, we implement end-to-end style-
conditioned poetry generation systems for quatrains
in English and German. Unlike other work, our
systems are able to generate poetry without the
need for human supervision, except for the use
of poetic training data. In particular, we present
ByGPT5, a novel token-free decoder-only language
model, and show that fine-tuning it on a custom
poetry corpus outperforms other models, such as
GPT-2, mT5, and ByT5, on average, while also
performing favorably against human poets in our
constrained setting. Our key findings are that (i)
tokenization algorithms matter, i.e., token-free lan-
guage models generally perform better at generating
character-level styles than subword-level transform-
ers, and (ii) large datasets are crucial for successful
training. We further show that bigger models do
not necessarily perform better and that decoder-
only architectures work best, i.e., we can discard
the encoder of ByT5 (75% of parameters) while
still improving downstream performance. We also
demonstrate that token-free transformers perform
competitively on tasks not tied to character-level
styles, and are less susceptible to memorization
of the training dataset. In addition, we conduct a
visual analysis of token-level attributions during
quatrain generation that is consistent with human
perception of styles.

In future work, we want to to extend our system
to other poetic forms such as sonnets, limericks, or
villanelles.

10 Limitations
A well-known shortcoming of transformers is the
computational complexity in self-attention lay-
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Figure 7: Inference times for generating a single quatrain
(with 177 characters) on an A6000 GPU.

ers (Vaswani et al., 2017). Since the number
of required calculations grows quadratically with
the length of the input, transformers become pro-
hibitively slow on very long sequences. An unfortu-
nate side effect of processing inputs at the character-
level is that internal sequences become much longer,
so token-free transformers run into these efficiency
problems much earlier than subword-based models.
Figure 7 illustrates this problem by contrasting the
runtime of all poetry generation systems when gen-
erating a single quatrain. Even ByGPT5 (small), the
smallest model in terms of number of parameters
(cf. Table 1) and the fastest token-free transformer,
is only marginally faster than GPT-2 (medium),
which is almost five times larger. Tay et al. (2022)
propose a solution to this problem for transformer
encoder blocks by applying a neural pooling oper-
ation over input embeddings before feeding them
into the model, which could be extended to decoder
blocks in future work. Alternatively, Libovický et al.
(2022) propose a two-stage decoding architecture in
which the transformer decoder operates on character
blocks that an additional LSTM model (Hochreiter
and Schmidhuber, 1997) decodes into individual
characters.

Another shortcoming is that our poetry genera-
tion systems can only generate a single poetic form,
i.e., quatrains. In general, poetry is a very diverse
form of language and stanzas can be of arbitrary
length, so this is a serious limitation. In future
work, we thus plan to extend our implementation

of style-conditioning to variable length poems. In
particular, one could encode a rhyme scheme not
as a single special token, but as an arbitrary series
of letters indicating which verses rhyme with each
other. Alternatively, our current systems could be
used to generate longer stanzas through a sliding
window approach, i.e., generating one verse at a
time with the last three verse as context.

Further, our human evaluation has limitations
due to its relatively small scope. We only have a
limited number of annotators and only consider a
subset of all style combinations. Nevertheless, we
have achieved moderately high to high agreement
on all tasks, and we have an additional human
evaluation of German poetry in Appendix B, which
points to the same conclusion.

Lastly, QuaTrain is limited in that it consists
of pseudo-quatrains, which are not real quatrains
and often have missing contexts. Nonetheless, as
can be seen in Appendix D, models trained on
QuaTrain are still able to generate meaningful
poetry. In future work, we plan to improve the
quality of our dataset by obtaining real quatrains
from additional sources such as the Eighteenth-
Century Poetry Archive (Huber, 2022).
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Meter Symbol
iambus
trochee
amphibrach
anapest
dactyl
alexandrine

Table 4: Meters in our dataset we consider for our
experiments. An alexandrine consists of iambic feet
with a caesura after the sixth syllable.

Model Rhyme Meter
Canine-C 98.05 58.49
XLM-R 97.22 54.65
mBERT 97.17 49.01

Table 5: F1-Score on classifying rhyme and meter.

A Additional poetry corpus statistics
The poetry corpora we collect are English Project
Gutenberg (EPG) and Deutsches Lyrik Korpus
(DLK) (Haider, 2021) for unlabeled poetry, and
Prosodic7, Chicago Rhyme Corpus (Chicago)8,
For-better-for-verse (FORB) (Tucker, 2011), Ger-
man Rhyme Corpus (GRC) (Haider and Kuhn,
2018), as well as EPG64 and Anti-K (Haider,
2021) for labeled poetry. We map meters which
appear less than 25 times in our labeled corpora to
the special label other. The final list of meters we
consider can be found in Table 4.

The performance of the meter and rhyme clas-
sifiers we train can be seen in Table 5. For each
style, we perform a 90/5/5 train-valid-test split and
fine-tune a range of encoder-only transformers with
classification heads jointly on both languages, as
this improves performance (de la Rosa et al., 2021;
Haider and Kuhn, 2018). We test subword-level
mBERT and XLM-R, as well as character-level
Canine-C (Clark et al., 2022). Since character-level
Canine-C outperforms both mBERT and XLM-R
on both tasks, we use it as our final classifier.

During automatic labeling, when the rhyme
scheme cannot be clearly determined (e.g., accord-
ing to the classifier the first verse rhymes with the
second, the second with the third but the first and
the third do not rhyme) or no dominant meter exists,
we discard the quatrain. Frequencies of automatic
labels inside QuaTrain can be seen in Table 6.
By limiting QuaTrain to quatrains, we not only
reduce the burden on poetry generation systems

7https://github.com/quadrismegistus/prosodic
8https://github.com/sravanareddy/rhymedata

by considering only a single poetic form, but also
ease the labeling process. As the length of poems
increases, the number of verse pairs that have to
be classified for rhyme grows super-exponentially,
which quickly becomes intractable.

The eight emotions in Po-Emo we train our
classifier on are beauty / joy, sadness, uneasiness,
vitality, awe / sublime, suspense, humor, and an-
noyance. Since an additional emotion, nostalgia,
almost never occurs, we follow Haider et al. (2020)
and omit it from our experiments.

B Annotator Demographics
Our human annotators are fluent in English at a C1
or higher level according to the Common European
Framework of Reference for Languages (CEFR).
The annotators for rhyme and human likeness are
one male faculty member, two male PhD students,
one female undergraduate student, and three female
volunteers from other departments, amounting to
seven distinct annotators who are all proficient in
English but may have limited knowledge of poetry.
To get four sets of annotations per style, we have one
PhD student annotate both styles. For meter, we hire
a professional female teacher who is specialized in
English and music.

Since none of our annotators speak English as
a native language, we have one PhD student and
one faculty member conduct a small-scale com-
parative study in their native language, German,
annotating 30 BWS tuples for rhyme and human
likeness. The results in Table 7 confirm the trends
we saw in human-evaluation in §6.2. In terms of
rhyme, humans perform best, followed by ByGPT5,
ByT5, mT5, and finally GPT-2. On human likeness
ByGPT5 is outperformed by humans but performs
similar to GPT-2. The encoder-decoder models
mT5 and ByT5 perform the worst, likely for similar
reasons outlined in §6.2.

C German Token-level Attributions
Figure 8 shows token-level attribution scores for
German quatrains. By and large, we observe the
same trends as in §7.4 on English, i.e., GPT-2
places less attention on style and the emphasized
parts of the text are less granular.

D Example Quatrains
In Table 8 we list additional example quatrains
in German and English, generated with ByGPT5
(base).
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Rhyme Meter Alliteration
Language label freq. label freq. label freq.

German
ABCD 19.73% iambus 61.66% low 50.95%
ABAB 15.60% alexandrine 18.06% medium 39.23%
AABB 13.07% trochee 17.05% high 9.81%

English
AABB 19.17% iambus 83.96% medium 54.92%
ABCD 16.40% anapest 7.61% low 28.94%
ABBC 13.07% trochee 4.13% high 16.14%

Table 6: Distribution of alliteration levels, as well as most frequent meters and rhyme schemes in QuaTrain.

Model Rhyme Human Likeness
Human 0.84 0.89
ByGPT5 0.57 0.55
GPT-2 0.35 0.55
ByT5 0.45 0.19
mT5 0.28 0.32

Table 7: Min-max normalized and averaged
BWS scores annotated by two native German
speakers. The SHR is 𝜌 = 0.83 for rhyme and
𝜌 = 0.61 for human likeness.

<ABBA>
<trochee>
<medium>

Frühling läßt sein blaues Band
Wieder f lattern durch die Lüf te;
Süße, wohlbekannte Düf te
Streif en ahnungsvoll das Land.

<ABBA>
<trochee>
<medium>

Frühling läßt sein blaues Band
Wieder f lattern durch die Lüf te;
Süße, wohlbekannte Düf te
Streif en ahnungsvoll das Land.

Figure 8: A well-known stanza by Mörike (1832) with
visualized attention from ByGPT5 (top) and GPT-2
(bottom) when generating the last syllable.

German English

Ein Reiter steht am Hafen, A
Der schaut die Flut nicht an, B
Er hört die Schiffer schlafen A
Im stillen Ozean. B

With languid smile, the stealing tear retires, A
And the slow fading light on trembling fires! A
Now she receives the golden circlet round, B
And fills the woven chambers with a sound; B

Schweigend stehn die Burgen nieder, A
Und die Lüfte sind verhallt, B
Und die Trommeln klingen wider, A
Und die Büchsen knallen halt. B

The first who learned the lesson there A
Had learned to scoff and scorn to sneer, A
And that the learned might have been B
A shameless woman and a queen. B

Der Greis erbebt, die Hand erstarrt, A
Die Kinder schauern vor dem Sterben; B
Die Stimme bricht, die Thräne fallt, C
Sie sieht ihm nach mit nassem Beben. B

Then came the labour of the day within, A
The gray beginning of the week, B
And down we went with hope and terror sin, A
And not a word to say and speak. B

Die Strömung wiederum durch alle Glieder dringt, A
Und alles, was da lebt und wallt und leuchtet, singt. A
Da steigt ein Palmenstrauch aus dem erhabnen Lichte, B
Er schwimmt auf einer Fluth und singet in Gedichte. B

For the stars are in the sky; A
And the stars have gone to die A
With their songs of joy and fear, B
With their music and their cheer. B

Table 8: Additional example poems generated with ByGPT5 (base) in German and English.
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