
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 7443–7464

July 9-14, 2023 ©2023 Association for Computational Linguistics

Large Language Models Meet NL2Code: A Survey
Daoguang Zan1,2∗, Bei Chen3, Fengji Zhang3, Dianjie Lu4, Bingchao Wu1,

Bei Guan5, Yongji Wang5, Jian-Guang Lou3

1Cooperative Innovation Center, Institute of Software, Chinese Academy of Sciences
2University of Chinese Academy of Sciences;

3Microsoft Research Asia; 4Shandong Normal University
5Integrative Innovation Center, Institute of Software, Chinese Academy of Sciences

{daoguang@, bingchao2017@, guanbei@, ywang@itechs.}iscas.ac.cn;
{beichen, v-fengjzhang, jlou}@microsoft.com; Ludianjie@sdnu.edu.cn

Abstract

The task of generating code from a natural lan-
guage description, or NL2Code, is considered
a pressing and significant challenge in code in-
telligence. Thanks to the rapid development
of pre-training techniques, surging large lan-
guage models are being proposed for code,
sparking the advances in NL2Code. To facil-
itate further research and applications in this
field, in this paper, we present a comprehen-
sive survey of 27 existing large language mod-
els for NL2Code, and also review benchmarks
and metrics. We provide an intuitive compari-
son of all existing models on the HumanEval
benchmark. Through in-depth observation and
analysis, we provide some insights and con-
clude that the key factors contributing to the
success of large language models for NL2Code
are "Large Size, Premium Data, Expert Tun-
ing". In addition, we discuss challenges and
opportunities regarding the gap between mod-
els and humans. We also create a website
https://nl2code.github.io to track the lat-
est progress through crowd-sourcing. To the
best of our knowledge, this is the first survey of
large language models for NL2Code, and we
believe it will contribute to the ongoing devel-
opment of the field.

1 Introduction

Is it possible for novice programmers, even those
without any programming experience, to create
software simply by describing their requirements
in natural language? This is a long-standing fasci-
nating question, which poses challenges to research
areas like software engineering, programming lan-
guage, and artificial intelligence. Realizing this
scenario would have an unprecedented impact on
our lives, education, economy, and labour mar-
ket, as it would change the centralized software
development and operation paradigm. Due to its

∗ This work was done before October 2022 when the
author, Daoguang Zan, was an intern at Microsoft Research
Asia.

promising and intriguing future, natural-language-
to-code (NL2Code) has been proposed as a re-
search task that has attracted widespread interest in
both academia and industry, with the goal of gener-
ating code from natural language descriptions.

Early studies on NL2Code were mainly based on
heuristic rules or expert systems, such as probabilis-
tic grammar-based methods (Joshi and Rambow,
2003; Cohn et al., 2010; Allamanis and Sutton,
2014) and those focusing on domain-specific lan-
guages (de Moura and Bjørner, 2008; Gulwani,
2010; Jha et al., 2010), which are inflexible and
not scalable. Other studies utilized static lan-
guage models, like n-gram (Nguyen et al., 2013;
Raychev et al., 2014; Devanbu, 2012) and Hid-
den Markov (Sutskever et al., 2008), which have
sparse vector representations and cannot model
long-term dependencies. Subsequently, neural net-
works, including CNN (Liu et al., 2016; Sun et al.,
2018), RNN (Iyer et al., 2016; Wan et al., 2018),
and LSTM (Eriguchi et al., 2016; Yin and Neu-
big, 2017), were employed to model the relation-
ship between NL and code. In 2017, the Trans-
former (Vaswani et al., 2017) model was intro-
duced for machine translation and later applied to
the NL2Code task (Mastropaolo et al., 2021; Shah
et al., 2021). However, these deep learning models
require a significant amount of labelled pairs of NL
and code for training, and have limited capabilities
for the NL2Code task.

Recently, a growing number of large language
models (LLMs) with Transformer architecture have
been trained on large-scale unlabelled code cor-
pus. These models have the ability to generate
code in a zero-shot manner and have achieved
impressive results in the NL2Code task. As a
milestone, Codex (Chen et al., 2021) has shown
that an LLM with 12 billion parameters is able
to solve 72.31% of challenging Python program-
ming problems created by humans. More encourag-
ingly, Codex has been used to power a commercial

7443

https://nl2code.github.io


Problem
Description

CodeSolution

Test Cases

from collections import Counter
def MostCommon(lst):

'''
Find the most common element from lst.
'''
data = Counter(lst)
return data.most_common(1)[0][0]

def check():
assert MostCommon([1, 2, 1]) == 1
assert MostCommon([4, 0, 0]) == 0
...

Figure 1: A simple example of the NL2Code task. The
code blocks marked in grey, green, and yellow represent
the natural language problem description, the predicted
code solution, and the test cases, respectively.

product1 and improve coding efficiency in prac-
tice (Sobania et al., 2022a; Barke et al., 2023).
Following Codex’s success, various LLMs for the
NL2Code task have emerged, with model sizes
ranging from millions to billions of parameters. Ex-
amples include AlphaCode (Li et al., 2022b), which
aims to solve competitive-level programming prob-
lems, and InCoder (Fried et al., 2023), which sup-
ports filling code in arbitrary positions using bidi-
rectional contexts. Other models such as Code-
Gen (Nijkamp et al., 2023), PaLM-Coder (Chowd-
hery et al., 2022), PanGu-Coder (Christopoulou
et al., 2022), CodeGeeX (Zheng et al., 2023), and
SantaCoder (Allal et al., 2023) have also gained
great attention. As the model size increases, LLMs
have been shown to exhibit some emergent capa-
bilities such as human-like programming and de-
bugging (Zhang et al., 2022; Saunders et al., 2022;
Kang et al., 2023).

Large language models have kindled hope for the
NL2Code task due to their impressive power and
potential value. Despite the significant progress,
there are still numerous challenges and opportu-
nities, calling for more advanced and innovative
future work. Currently, considering the variety
of techniques and applications, there is a grow-
ing need for a comprehensive survey to provide
a systematic overview of this field and identify
critical challenges. To this end, in this paper,
we carefully investigate 27 advanced LLMs for
NL2Code (§2), and also review benchmarks and
metrics (§4). We conduct an intuitive comparison
of all the existing LLMs on the HumanEval bench-
mark, perform a thorough analysis, and eventu-
ally attribute the success of these LLMs to "Large
Size, Premium Data, Expert Tuning" (§3). This

1https://github.com/features/copilot

Model Size L. A. H. P.
Decoder

GPT-C (2020) 366M 24 16 1, 024 ×
CodeGPT (2021) 124M 12 12 768 ✓
GPT-Neo (2021) 125M~2.7B 32 20 2, 560 ✓
GPT-J (2021) 6B 28 16 4, 096 ✓
Codex (2021) 12M~12B 40 40 5, 140 ×
GPT-CC (2021) 125M~1.3B 24 16 2, 048 ✓
CodeParrot (2021) 110M~1.5B 48 25 1, 600 ✓
LaMDA (2022) 2B~137B 64 128 8, 192 ×
PolyCoder (2022) 160M~2.7B 32 32 2, 560 ✓
CodeGen (2023) 350M~16.1B 34 24 6, 144 ✓
InCoder (2023) 1.3B~6.7B 32 32 4, 096 ✓
GPT-NeoX (2022) 20B 44 64 6, 144 ✓
PaLM-Coder (2022) 8B~540B 118 48 18, 432 ×
PanGu-Coder (2022) 317M~2.6B 32 32 2, 560 ×
FIM (2022) 50M~6.9B 32 32 4, 096 ×
PyCodeGPT (2022b) 110M 12 12 768 ✓
CodeGeeX (2023) 13B 39 40 5, 120 ✓
BLOOM (2022) 560M~176B 70 112 14, 336 ✓
SantaCoder (2023) 1.1B 24 16 2, 048 ✓

Encoder-Decoder
PyMT5 (2020) 374M 12 16 1, 472 ×
PLBART (2021) 140M~406M 24 16 1, 024 ✓
CodeT5 (2021) 60M~770M 48 16 1, 024 ✓
JuPyT5 (2022a) 350M 12 16 1, 472 ×
AlphaCode (2022b) 284M~41.1B 64 128 6, 144 ×
CodeRL (2022) 770M 48 16 1, 024 ✓
CodeT5Mix (2022) 220M~770M 48 16 1, 024 ✓
ERNIE-Code (2022) 560M 24 12 768 ✓

Table 1: Summary of 27 existing LLMs for NL2Code.
We show L. (number of layers), A. (number of atten-
tion heads), H. (hidden dimensions), and P. (model
weights public or not) for the largest size version of
each model. Note that some models, such as GPT-Neo,
GPT-J, LaMDA, GPT-NeoX, FIM, and BLOOM, are
not exclusively trained for code.

means large model and data size, high-quality train-
ing data and expert hyper-parameter tuning. We
also discuss the challenges and opportunities re-
garding the ability gap between LLMs and Hu-
mans (§5). In addition, we have built a web-
site https://nl2code.github.io to keep track
of the latest progress and support crowd-sourcing
updates. To the best of our knowledge, this is the
first survey of LLMs for NL2Code2, and we hope
it will contribute to the ongoing development of
this exciting field.

2 Large Language Models for NL2Code

Given a natural language problem description, the
NL2Code task aims to automatically generate the
demanded code. To illustrate this task visually,
we provide a Python programming problem as an
example in Figure 1, while different NL2Code
benchmarks may vary in terms of language or

2We summarize the related surveys in Appendix A.

7444

https://github.com/features/copilot
https://nl2code.github.io


BLOOM
560M~176B

May Oct. Feb. Mar. May Jul. Sep. Oct. Nov. Jan. Feb. Mar. Apr. Jun. Jul. Sep. Dec.
2020 2021 2022

GPT-C
366M

PyMT5
374M

CodeGPT
124M

GPT-Neo
125M~2.7B

PLBART
140M~406M

GPT-J
6B

Codex
12M~12B

CodeT5
60M~770M

GPT-CC
125M~1.3B

CodeParrot
110M~1.5B

JuPyT5
350M

LaMDA
2B~137B

AlphaCode
284M~41.1B

PolyCoder
160M~2.7B

CodeGen
350M~16.1B

GPT-NeoX
20B

InCoder
1.3B~6.7B

PaLM-Coder
8B~540B

PanGu-Coder
317M~2.6B

CodeRL
770M

FIM
50M~6.9B

PyCodeGPT
110M

CodeGeeX
13B

ERNIE-Code
560M

SantaCoder
1.1B

100M

1B

10B

100B

CodeT5Mix
200M~770M

Figure 2: The timeline of LLMs for NL2Code, with only the largest model sizes plotted for visual clarity.

problem domain. Existing large language models
for the NL2Code task are usually based on Trans-
former (Vaswani et al., 2017) and are trained on
a large-scale code related unlabelled corpus. For
better code generation performance, most LLMs,
no matter encoder-decoder or decoder-only models,
employ the causal language modeling objective for
training, which is to predict the token following a
sequence of tokens. During inference, an LLM can
tackle NL2Code problems in a zero-shot manner
without fine-tuning its parameters. There are also
studies employing few-shot (Austin et al., 2021) or
in-context learning (Nijkamp et al., 2023) to further
boost the performance.

We conduct a comprehensive investigation of 27
representative LLMs for the NL2Code task. De-
tails of each model are summarized in Table 1,
where models vary in architecture, size, and acces-
sibility. For better visualization, we present these
models in chronological order in Figure 2, plot-
ting the largest model sizes. One trend observed is
that these large language models are consistently
growing in size as the research field advances. Ad-
ditionally, the decoder-only architecture is favoured
for pre-trained models with larger sizes.

Early works, such as GPT-C (Svyatkovskiy
et al., 2020), PyMT5 (Clement et al., 2020), and
PLBART (Ahmad et al., 2021), have relatively
small numbers of parameters and do not demon-
strate strong capabilities in zero-shot code genera-
tion. Conversely, large-scale models such as GPT-

Neo (Black et al., 2021) and GPT-J (Wang and Ko-
matsuzaki, 2021), despite their billion-level param-
eter scale, have been found to have limited power
in the NL2Code task due to the small amount of
code in their training corpus. Recently, a number of
powerful LLMs have been proposed for NL2Code,
such as Codex (Chen et al., 2021), AlphaCode (Li
et al., 2022b), and PaLM-Coder (Chowdhery et al.,
2022), which possess massive parameter scales and
high-quality training corpus with code. While they
show surprisingly good performance on NL2Code,
most of them are not readily accessible. At
present, a number of excellent open-source mod-
els have also been proposed, including CodePar-
rot (Huggingface, 2021), PolyCoder (Xu et al.,
2022), GPT-NeoX (Black et al., 2022), and San-
taCoder (Allal et al., 2023), which contribute to
the thriving of LLMs for NL2Code. Besides, re-
cent studies have proposed various approaches to
address specific NL2Code scenarios. For exam-
ple, JuPyT5 (Chandel et al., 2022a) is designed
to work within Jupyter Notebooks, while ERNIE-
Code (Chai et al., 2022), CodeGeeX (Zheng et al.,
2023), and BLOOM (Scao et al., 2022) are trained
to support multiple natural or programming lan-
guages. Additionally, InCoder (Fried et al., 2023),
FIM (Bavarian et al., 2022), and SantaCoder (Al-
lal et al., 2023) not only support left-to-right code
prediction, but also allow for infilling arbitrary re-
gions of code. As LLMs for NL2Code are evolving
rapidly, we created a website to keep up-to-date

7445



with the latest advances by crowd-sourcing. De-
tails of the website can be found in Appendix B.

These models are not only attractive in
academia (Chen et al., 2021; Nijkamp et al., 2023;
Li et al., 2022b), but also applied in real-world prod-
ucts to improve programming efficiency (Sobania
et al., 2022a; Barke et al., 2023). One example
is GitHub and OpenAI’s Copilot, a programming
assistance tool that utilizes Codex to provide real-
time code suggestions. Other notable products in-
clude CodeGeeX3 and CodeWhisperer4. A sum-
mary of 10 products can be found in Appendix Ta-
ble 5. Recent studies (Sobania et al., 2022b; Pearce
et al., 2022; Nguyen and Nadi, 2022) have shown
that these products can provide helpful recommen-
dations, while they also introduce minor bugs that
can cause issues for users. There is still room for
improvement before LLMs can be fully practical
and capable of coding like humans.

3 What makes LLMs successful?

We have summarized the existing large language
models for NL2Code. These LLMs vary in terms of
architecture, size, and other characteristics, making
it difficult to establish a completely fair comparison.
We evaluate these LLMs on the HumanEval bench-
mark (Chen et al., 2021) in a zero-shot manner to
provide an intuitive comparison. HumanEval, pro-
posed along with Codex, is one of the most popular
benchmarks for the NL2Code task and consists of
164 hand-written Python programming problems.
Test cases are provided for each programming prob-
lem to evaluate the correctness of generated code.
pass@k is used as the evaluation metric5, which
calculates the proportion of problems that can be
correctly answered with k tries. Table 2 shows the
results of different LLMs organized by the model
size. Implementation details and the evaluation on
the MBPP benchmark (Austin et al., 2021) can be
found in Appendix C.2.

It can be observed from Table 2 that the per-
formance of existing LLMs varies widely on Hu-
manEval, even for those with similar model sizes.
Specifically, Codex (Chen et al., 2021) holds the
leading position in various model sizes, while a
relatively small model, PyCodeGPT 110M (Zan
et al., 2022b), achieves comparable results to
Codex 85M. Other larger models such as Alpha-

3https://keg.cs.tsinghua.edu.cn/codegeex
4https://aws.amazon.com/cn/codewhisperer
5The details of pass@k can be found in Appendix C.1.

Model Size pass@k (%)

k=1 k=10 k=100

Model Size: ~100M
GPT-Neo 125M 0.75 1.88 2.97
CodeParrot 110M 3.80 6.57 12.78
PyCodeGPT 110M 8.33 13.36 19.13
PolyCoder 160M 2.13 3.35 4.88
Codex 12M 2.00 3.62 8.58
Codex 25M 3.21 7.1 12.89
Codex 42M 5.06 8.8 15.55
Codex 85M 8.22 12.81 22.40
AlphaCode(dec) 13M 1.5 3.6 8.6
AlphaCode(dec) 29M 3.4 5.8 11.2
AlphaCode(dec) 55M 4.2 8.2 16.9
AlphaCode(dec) 89M 4.3 12.2 20.0

Model Size: ~500M
CodeT5† 770M 12.09 19.24 30.93
PolyCoder 400M 2.96 5.29 11.59
JuPyT5 300M 5.40 15.46 25.60
BLOOM 560M 0.82 3.02 5.91
Codex 300M 13.17 20.37 36.27
Codex 679M 16.22 25.70 40.95
AlphaCode(dec) 302M 11.6 18.8 31.8
AlphaCode(dec) 685M 14.2 24.4 38.8
CodeGen-Mono 350M 12.76 23.11 35.19
PanGu-Coder 317M 17.07 24.05 34.55

Model Size: ~1B
GPT-Neo 1.3B 4.79 7.47 16.30
CodeParrot 1.5B 3.99 8.69 17.88
BLOOM 1.1B 2.48 5.93 9.62
BLOOM 1.7B 4.03 7.45 12.75
InCoder† 1.3B 11.09 16.14 24.20
AlphaCode(dec) 1.1B 17.1 28.2 45.3
SantaCoder 1.1B 18 29 49

Model Size: ~5B
GPT-Neo 2.7B 6.41 11.27 21.37
PolyCoder 2.7B 5.59 9.84 17.68
Codex 2.5B 21.36 35.42 59.50
PanGu-Coder 2.6B 23.78 35.36 51.24
BLOOM 3B 6.48 11.35 20.43
BLOOM 7.1B 7.73 17.38 29.47
CodeGen-Mono 2.7B 23.70 36.64 57.01
CodeGen-Mono 6.1B 26.13 42.29 65.82
GPT-J 6B 11.62 15.74 27.74
InCoder 6.7B 15.2 27.8 47.0

Model Size: >10B
Codex 12B 28.81 46.81 72.31
CodeGen-Mono 16.1B 29.28 49.86 75.00
GPT-NeoX 20B 15.4 25.6 41.2
LaMDA 137B 14.0 − 47.3
BLOOM 176B 15.52 32.20 55.45
PaLM-Coder 540B 36.0 − 88.4
code-cushman-001 − 33.5 54.3 77.4
code-davinci-001 − 39.0 60.6 84.1
code-davinci-002 − 47.0 74.9 92.1

Table 2: Performance on the HumanEval benchmark. †

denotes our reproduced results, while others are cited
from the original papers. AlphaCode(dec) means the
decoder-only version. We also compare the Codex mod-
els (code-cushman and code-davinci) provided by Ope-
nAI API. We exclude the models that cannot pass any
problem in the benchmark.

7446

https://keg.cs.tsinghua.edu.cn/codegeex
https://aws.amazon.com/cn/codewhisperer


0 5 10 15
Number of Parameters (billion)

0

5

10

15

20

25

30
pa

ss
@

1 
(%

)
CodeT5
GPT-Neo
CodeParrot
PolyCoder
Codex
AlphaCode(dec)
CodeGen-Mono
PanGu-Coder
InCoder
BLOOM

(a)

0 5 10 15
Number of Parameters (billion)

5

10

15

20

25

30

35

40

45

Sy
nt

ax
 E

rro
r R

at
e 

(%
)

GPT-Neo
CodeParrot
PolyCoder
CodeGen-Mono
InCoder
BLOOM

(b)

Figure 3: (a) pass@1 and (b) syntax error rates on the HumanEval benchmark with various model sizes.

Code (Li et al., 2022b), CodeGen-Mono (Nijkamp
et al., 2023), and PanGu-Coder (Christopoulou
et al., 2022) also exhibit impressive performance.
Notably, InCoder (Fried et al., 2023) and Santa-
Coder (Allal et al., 2023), which use the FIM train-
ing method (Bavarian et al., 2022), also obtain re-
markably decent results in the left-to-right gener-
ation setting. The significant variation in perfor-
mance leads us to the question: What makes LLMs
successful in NL2Code? Given the diversity of
these models in terms of design choices, we per-
form a thorough analysis and conclude the answer:
Large Size, Premium Data, Expert Tuning. That
is, large model and data size, high-quality data and
expert hyper-parameter tuning are the key factors
for the success of LLMs in the NL2Code task. In
this section, we detail our observations and insights
from the perspectives of model, data and tuning.

3.1 Large Model Size

As shown in Figure 2 and Table 2, recent LLMs
for NL2Code exhibit larger sizes and superior per-
formance. This is consistent with prior findings
that an increased number of model parameters can
enhance model capabilities (Radford et al., 2019;
Thoppilan et al., 2022; Chowdhery et al., 2022).
We further demonstrate the correlation between
model size and performance in Figure 3a, which
compares the pass@1 results of 10 representative
models on the HumanEval benchmark. It is clear
that larger models generally result in better per-
formance. Furthermore, we also find that current
models, regardless of size, still have the potential
for improvement through further increases in size.
Additional results on the HumanEval and MBPP
benchmarks can be found in Appendix Figure 7,

which also support this conclusion.
Additionally, we conduct an experiment on the

HumanEval benchmark to examine the syntax er-
ror rates of the code generated by different models
of varying sizes. Specifically, we make the mod-
els predict 10 code samples for each programming
problem, and then calculate the percentage of code
samples that have syntax errors. As shown in Fig-
ure 3b, results indicate that larger models tend to
have lower syntax error rates. It is noteworthy that
the largest version of the CodeGen-Mono model
exhibits a remarkably low rate of syntax errors, i.e.,
6%. However, as evidenced by Figure 3a and Ta-
ble 2, the CodeGen-Mono model with 16 billion
parameters still has unsatisfactory performance in
terms of pass@k , e.g., pass@1 to be 29%. This
highlights the fact that the current limitation for
large pre-trained models is the generation of se-
mantically correct code.

3.2 Large and Premium Data

As the sizes of LLMs increase in the field of
NL2Code, the scale of the corpus used for train-
ing also increases. This highlights the importance
of selecting and pre-processing high-quality data.
In this section, we will discuss various commonly
used data sources and pre-processing strategies that
are essential for training LLMs.

Early models were trained using manually an-
notated data pairs of NL and code, and the data
sources include CodeSearchNet (Husain et al.,
2019), CoST (Zhu et al., 2022b), and XL-
CoST (Zhu et al., 2022a). However, manual an-
notation is labour-intensive and time-consuming.
There are also models like GPT-3 (Brown et al.,
2020), GPT-Neo (Black et al., 2021), and GPT-

7447



J (Wang and Komatsuzaki, 2021) that are trained
on the Pile (Gao et al., 2020), a large-scale unsuper-
vised dataset. However, these models have not yet
demonstrated exceptional code generation capabili-
ties due to the limited number of code files in the
training corpus. More recently, with the emergence
of more powerful LLMs for NL2Code, larger-scale
unlabelled code datasets have been proposed, in-
cluding BigQuery (Google, 2016), CodeParrot’s
corpus (HuggingFace, 2021a), GitHub-Code (Hug-
gingFace, 2021b), and the Stack (HuggingFace,
2022), which are collected from general domain
open-source websites like GitHub6 and Stack Over-
flow7. Furthermore, there are also specialized
datasets proposed for different scenarios, for exam-
ple, using Jupyter Notebooks or competition pro-
gramming problems as a training corpus. Released
datasets include Jupyter (HuggingFace, 2021c),
JuICe (Agashe et al., 2019), APPS (Hendrycks
et al., 2021), and CodeNet (IBM, 2021).

In order to ensure the quality of the training cor-
pus, it is common for LLMs to perform data pre-
processing on the significant amount of code in
the collected data. We carefully review the data
pre-processing methods of five powerful LLMs, in-
cluding Codex (Chen et al., 2021), AlphaCode (Li
et al., 2022b), CodeGen (Nijkamp et al., 2023), In-
Coder (Fried et al., 2023), and PyCodeGPT (Zan
et al., 2022b), and identify several commonalities.
One is the removal of likely auto-generated or un-
finished code files, as they are deemed to be mean-
ingless. Additionally, specific rules are employed
to filter out uncommon code files. These rules in-
clude factors such as the repository star rating, the
file size, the line length, and the alphanumeric rate.
In summary, the goal of these pre-processing strate-
gies is to achieve a code corpus that is unduplicated,
complete, correct, clean, and general in nature.

3.3 Expert Tuning

Training an excellent model requires careful con-
sideration of various design choices and hyper-
parameters. After reviewing the existing 27 LLMs
(summary in Appendix Table 6), we have the
following findings. Firstly, these LLMs share
some common settings. For example, we ob-
serve that the optimizer of the current models is
almost all Adam (Kingma and Ba, 2014) or its
variants (Loshchilov and Hutter, 2017). We also

6https://github.com
7https://stackoverflow.com

0 5 10 15
Number of Parameters (billion)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Le
ar

ni
ng

 R
at

e 
(L

R)

1e 3
Codex
CodeGen-NL
CodeGen-Mono
FIM
PyCodeGPT
SantaCoder

Figure 4: Learning rate of six advanced LLMs in terms
of various model sizes.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Temperature

10

20

30

40

50

Pa
ss

@
k 

(%
)

CodeGen-Mono 2.7B pass@1
CodeGen-Mono 2.7B pass@10
CodeGen-Mono 2.7B pass@100
InCoder 1.3B pass@1
InCoder 1.3B pass@10
InCoder 1.3B pass@100

Figure 5: pass@k on the HumanEval benchmark with
different temperatures during model inference.

find that initializing with other natural language
models yields no noticeable gain compared to train-
ing from scratch, except for accelerating conver-
gence (Chen et al., 2021). Furthermore, there are
several hyper-parameters that require expert tun-
ing, such as learning rate, batch size, window size,
warmup steps, gradient accumulation steps, and
sampling temperature. For the learning rate, we
analyze its correlation with model size using six
powerful LLMs, as shown in Figure 4. We ob-
serve that the learning rate becomes smaller as the
model gets larger. To explore the effects of temper-
ature, in Figure 5, we report the performance of two
models using multiple temperatures on HumanEval.
One observation is that higher temperature leads
to lower pass@1 and higher pass@100, which sug-
gests that a higher temperature makes LLMs gen-
erate more diverse predictions and vice versa. Be-
sides, some studies (erman Arsenovich Arutyunov
and Avdoshin, 2022) have shown that window size
is a key factor. An interesting finding is that the

7448

https://github.com
https://stackoverflow.com


Benchmark Num. P. NL S. PL Data Statistics Scenario
T.N. P.C. P.L. S.C. S.L.

HumanEval (2021) 164 English Python 7.8 450.6 13.7 180.9 6.8 Code Exercise
MBPP (2021) 974 English Python 3.1 78.6 1.0 181.1 6.7 Code Exercise
APPS (2021) 5, 000 English Python 21.0 1743.4 41.6 473.8 21.4 Competitions
CodeContests (2022b) 165 English Multi. 203.7 1989.2 66.4 2239.3 92.1 Competitions
DS-1000 (2022) 1, 000 English Python 1.6 879.1 31.6 137.4 5.0 Data Science
DSP (2022b) 1, 119 English Python 2.1 756.9 17.8 226.3 7.6 Data Science
MBXP (2022) 974∗ English Multi. 3.1 419.9 14.8 − − Multilingual
MBXP-HumanEval (2022) 164∗ English Multi. 7.8 825.6 30.0 − − Multilingual
HumanEval-X (2023) 164∗ English Multi. 7.8 468.4 15.5 264.6 12.1 Multilingual
MultiPL-HumanEval (2022) 164∗ English Multi. 7.8 453.9 13.0 − − Multilingual
MultiPL-MBPP (2022) 974∗ English Multi. 3.1 181.2 5.4 − − Multilingual
PandasEval (2022b) 101 English Python 6.5 244.5 7.2 46.2 1.3 Public Library
NumpyEval (2022b) 101 English Python 3.5 222.9 7.0 29.9 1.1 Public Library
TorchDataEval (2022a) 50 English Python 1.1 329.0 8.6 50.7 1.3 Private Library
MTPB (2023) 115 English Python − 72.7 1.0 − − Multi-Turn
ODEX (2022c) 945 Multi. Python 1.8 26.6 2.0 50.4 1.9 Open-Domain
BIG-Bench (2022) 32 English Python 4.7 341.8 3.0 − − Code Exercise

Table 3: Summary of 17 benchmarks for NL2Code. Num. denotes the number of instances in the benchmark, P.NL
denotes Problem description’s Natural Language, S.PL denotes code Solution’s Programming Language, and T.N.
denotes the average Number of Test cases. P.C. and P.L. (S.C. and S.L.) stand for the average number of Characters
and Lines in Problem description (code Solution). ∗ denotes the number of instances per programming language.

small model with a large window size sometimes
outperforms the large model with a small window
size (details in Appendix D). In addition, power-
ful LLMs usually train a new tokenizer on code
corpus primarily using two techniques: Byte-level
Byte-Pair-Encoding (Radford et al., 2019) and Sen-
tencePiece (Kudo and Richardson, 2018). A new
tokenizer can be more effective and accurate in
splitting code content into tokens. These proven
tuning techniques will serve as valuable references
for training more powerful LLMs.

4 Benchmarks and Metrics

To evaluate the NL2Code task, high-quality bench-
marks and reliable metrics are fundamental and es-
sential. In this section, we provide a brief overview
of current benchmarks and metrics, as well as our
observations and the open challenges.

We summarize 17 well-studied NL2Code bench-
marks in Table 3, where we can find that each of
these benchmarks has its own characteristics re-
garding size, language, complexity, and scenario.
We observe that most benchmarks contain a limited
number of instances. For example, the widely used
HumanEval and MBPP have 164 and 974 instances,
respectively. This is because these benchmarks are
typically hand-written to ensure that LLMs have
not seen them during training. In the era of large
language models, it is crucial to avoid data leak-

age when creating new benchmarks. Additionally,
most current benchmarks have their problem de-
scriptions in English and code solutions in Python.
Recently, several multi-lingual benchmarks have
been proposed, such as MBXP (Athiwaratkun et al.,
2022), HumanEvalX (Zheng et al., 2023), and Mul-
tiPL (Cassano et al., 2022), which cover multi-
ple programming languages, and ODEX (Wang
et al., 2022c), which covers multiple natural lan-
guages. Details of multi-lingual benchmarks are
listed in Appendix Table 7. Furthermore, bench-
marks have been proposed for other practical sce-
narios, such as data science (Lai et al., 2022), pub-
lic library (Zan et al., 2022b), private library (Zan
et al., 2022a), multi-turn program synthesis (Ni-
jkamp et al., 2023), and code security (Siddiq and
msiddiq, 2022). For execution-based benchmarks,
comprehensive test cases with complete coverage
of the generated program can ensure the trustwor-
thiness of evaluation results. As a reference, the av-
erage number of test cases for each benchmark, as
well as the length statistics of the problem descrip-
tions and solutions are also provided in Table 3.

Manually evaluating the generated code is im-
practical, which calls for the need for automatic
metrics. The above mentioned benchmarks all
provide test cases for execution-based evaluation,
where metrics such as pass@k (Chen et al.,
2021), n@k (Li et al., 2022b), test case aver-

7449



age (Hendrycks et al., 2021), and execution ac-
curacy (Rajkumar et al., 2022) can be used. How-
ever, this approach has stringent requirements for
the quality of test cases and can only evaluate exe-
cutable code. For non-executable code, metrics like
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
and CodeBLEU (Ren et al., 2020) are used, while
they can not precisely evaluate the correctness of
the code. So far, there are many open challenges
in designing metrics to evaluate various aspects of
code, such as vulnerability, maintainability, clarity,
execution complexity, and stability.

5 Challenges and Opportunities

Our investigations have revealed that advances in
LLMs for NL2Code have a considerable impact on
both academia and industry. Despite this progress,
there are still numerous challenges that need to be
addressed, offering ample opportunities for further
research and applications. In this section, we ex-
plore the challenges and opportunities in terms of
the ability gap between LLMs and humans.

Understanding Ability The inherent flexibility
of natural language allows for a variety of expres-
sions to convey functional requirements. Humans
are able to understand various descriptions at differ-
ent levels of abstraction. In contrast, current LLMs
tend to be sensitive to the given context, which may
cause unexpected performance degradation (Wang
et al., 2022a). In addition, LLMs may struggle
when faced with complex problems that have nu-
merous conditions and requirements (Barke et al.,
2022; Imai, 2022). We believe exploring the un-
derstanding abilities of LLMs is a crucial research
direction. One potential solution is to break down
complex problems into multiple steps, as is com-
monly done in reasoning tasks (Wei et al., 2022).

Judgement Ability Humans have the ability to
determine whether they can solve a programming
problem or not. While current models will al-
ways return a solution even if there is no answer
to the problem, due to the fact that they are trained
by unsupervised causal language modeling objec-
tive. This can cause problems in practical applica-
tions. To improve the judgment ability of LLMs,
researchers have employed reinforcement learning
to leverage user feedback, as seen in models like
InstructGPT (Ouyang et al., 2022) and ChatGPT8.
However, collecting high-quality feedback for code

8https://chat.openai.com

is costly and challenging. There are also ongoing
studies (Chen et al., 2023; Key et al., 2022) ex-
ploring the possibility of self-validation for LLMs,
which is also a promising research direction.

Explanation Ability It is widely acknowledged
that human developers possess the ability to inter-
pret the meaning of the code they write, which is
crucial for educational purposes and software main-
tenance. Recent studies showed that LLMs have
the potential to automatically generate code expla-
nations. MacNeil et al. (2022a) proposed using
LLMs to generate code explanations for students
during their learning process, and MacNeil et al.
(2022b) proposed explaining numerous aspects of a
given code snippet using Copilot. Further research
and explorations are necessary to fully realize the
potential of LLMs in this regard.

Adaptive Learning Ability A fundamental dif-
ference between current large language models and
humans is their ability to adapt to new and updated
knowledge. Human developers possess a unique
ability to quickly search and learn new materials,
such as programming documentation, and adapt
to changes in APIs with relative ease. However,
re-training or fine-tuning LLMs requires signifi-
cant effort and resources. This issue has inspired a
number of recent studies, such as DocCoder (Zhou
et al., 2023) and APICoder (Zan et al., 2022a),
which utilize retrieval-based methods to provide
extra or updated knowledge during model infer-
ence. Despite these advancements, it remains an
open challenge to endow LLMs with the powerful
learning capabilities humans possess.

Multi-tasking Ability Large language models
have been applied to a variety of code-related tasks,
such as code repair (Joshi et al., 2022; Prenner and
Robbes, 2021), code search (Neelakantan et al.,
2022), and code review (Li et al., 2022c) as well as
non-code tasks that can be formatted in a code-like
manner, such as mathematics (Drori and Verma,
2021; Drori et al., 2021) and chemistry (Krenn
et al., 2022; Hocky and White, 2022). However,
there are differences between LLMs and human
abilities in terms of multi-tasking. Humans can
seamlessly switch between tasks, while LLMs may
require sophisticated prompt engineering (Liu et al.,
2023). Another evidence is that LLMs lack the
ability to quickly master multiple programming
languages (Zheng et al., 2023) as humans do. These
limitations highlight areas for future research.

7450

https://chat.openai.com


6 Conclusion

In this paper, we survey 27 existing large language
models for NL2Code, and draw a thorough analy-
sis of the underlying reasons for their success. We
also provide a detailed review of benchmarks and
metrics. Regarding the gap between models and
humans, we present ongoing challenges and oppor-
tunities. In addition, we have developed a website
to track the latest findings in this field. We hope this
survey can contribute to a comprehensive overview
of the field and promote its thriving evolution.

Limitations

In this paper, we thoroughly investigate the ex-
isting large language models for NL2Code, and
summarize them from diverse perspectives with
our own thinking. However, as this field is evolv-
ing so rapidly, there may be aspects that we have
overlooked, or some new works that we have not
covered. To mitigate this issue, we have created a
website to track the latest progress through crowd-
sourcing, hoping that it will continually contribute
to the development of the field. Besides, the exist-
ing LLMs possess their own characteristics in terms
of model size, architecture, corpus, pre-processing,
tokenizer, hyper-parameters, and training platforms.
Also, some of them are currently not publicly avail-
able, such as AlphaCode (Li et al., 2022b) and
PaLM-Coder (Chowdhery et al., 2022). Therefore,
it is almost impractical to conduct a completely fair
comparison. We tried our best to show a kind of
comparison on the popular HumanEval and MBPP
benchmarks, hoping that it can provide clues to
the differences in performance of different LLMs.
In addition, evaluating LLMs has a high cost in
computational resources. We thus have made all
files generated by the LLMs publicly available on
https://nl2code.github.io.

References
Rajas Agashe, Srinivasan Iyer, and Luke Zettlemoyer.

2019. JuICe: A large scale distantly supervised
dataset for open domain context-based code gener-
ation. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5436–5446.

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and
Kai-Wei Chang. 2021. Unified pre-training for pro-
gram understanding and generation. In Proceedings

of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2655–2668.

aiXcoder. 2018. aiXcoder. https://aixcoder.com.

Alibaba. 2022. Alibaba. https://github.com/
alibaba-cloud-toolkit/cosy.

Loubna Ben Allal, Raymond Li, Denis Kocetkov,
Chenghao Mou, Christopher Akiki, Carlos Muñoz
Ferrandis, Niklas Muennighoff, Mayank Mishra,
Alexander Gu, Manan Dey, Logesh Kumar Uma-
pathi, Carolyn Jane Anderson, Yangtian Zi, J. Poirier,
Hailey Schoelkopf, Sergey Mikhailovich Troshin,
Dmitry Abulkhanov, Manuel Romero, Michael Franz
Lappert, Francesco De Toni, Bernardo Garc’ia del
R’io, Qian Liu, Shamik Bose, Urvashi Bhattacharyya,
Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca,
Sourab Mangrulkar, David Lansky, Huu Nguyen,
Danish Contractor, Luisa Villa, Jia Li, Dzmitry Bah-
danau, Yacine Jernite, Sean Christopher Hughes,
Daniel Fried, Arjun Guha, Harm de Vries, and Le-
andro von Werra. 2023. SantaCoder: don’t reach for
the stars! ArXiv, abs/2301.03988.

Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu,
and Charles Sutton. 2018. A survey of machine learn-
ing for big code and naturalness. ACM Computing
Surveys (CSUR), 51(4):1–37.

Miltiadis Allamanis and Charles Sutton. 2014. Mining
idioms from source code. In Proceedings of the 22nd
acm sigsoft international symposium on foundations
of software engineering, pages 472–483.

Amazon. 2022. CodeWhisperer. https://aws.
amazon.com/cn/codewhisperer.

Anonymous. 2022. CodeT5Mix: A pretrained mixture
of encoder-decoder transformers for code understand-
ing and generation. In Submitted to The Eleventh In-
ternational Conference on Learning Representations.
Under review.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang,
Xiaopeng Li, Yuchen Tian, Ming Tan, Wasi Uddin
Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, Su-
jan Kumar Gonugondla, Hantian Ding, Varun Ku-
mar, Nathan Fulton, Arash Farahani, Siddharth Jain,
Robert Giaquinto, Haifeng Qian, Murali Krishna Ra-
manathan, Ramesh Nallapati, Baishakhi Ray, Parmin-
der Bhatia, Sudipta Sengupta, Dan Roth, and Bing
Xiang. 2022. Multi-lingual evaluation of code gener-
ation models. ArXiv, abs/2210.14868.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and
Charles Sutton. 2021. Program synthesis with large
language models. ArXiv, abs/2108.07732.

Shraddha Barke, Michael B. James, and Nadia Polikar-
pova. 2022. Grounded Copilot: How programmers
interact with code-generating models. Proceedings
of the ACM on Programming Languages, 7:85 – 111.

7451

https://nl2code.github.io
https://aixcoder.com
https://github.com/alibaba-cloud-toolkit/cosy
https://github.com/alibaba-cloud-toolkit/cosy
https://aws.amazon.com/cn/codewhisperer
https://aws.amazon.com/cn/codewhisperer
https://openreview.net/forum?id=VPCi3STZcaO
https://openreview.net/forum?id=VPCi3STZcaO
https://openreview.net/forum?id=VPCi3STZcaO


Shraddha Barke, Michael B James, and Nadia Po-
likarpova. 2023. Grounded copilot: How program-
mers interact with code-generating models. Pro-
ceedings of the ACM on Programming Languages,
7(OOPSLA1):85–111.

Mohammad Bavarian, Heewoo Jun, Nikolas A. Tezak,
John Schulman, Christine McLeavey, Jerry Tworek,
and Mark Chen. 2022. Efficient training of language
models to fill in the middle. ArXiv, abs/2207.14255.

Sid Black, Stella Biderman, Eric Hallahan, Quentin An-
thony, Leo Gao, Laurence Golding, Horace He, Con-
nor Leahy, Kyle McDonell, Jason Phang, Michael
Pieler, USVSN Sai Prashanth, Shivanshu Purohit,
Laria Reynolds, Jonathan Tow, Ben Wang, and
Samuel Weinbach. 2022. GPT-NeoX-20B: An open-
source autoregressive language model. In Proceed-
ings of the ACL Workshop on Challenges & Perspec-
tives in Creating Large Language Models.

Sid Black, Leo Gao, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, T. J. Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. Neural In-
formation Processing Systems, 33:1877–1901.

Federico Cassano, John Gouwar, Daniel Nguyen,
Sy Duy Nguyen, Luna Phipps-Costin, Donald Pinck-
ney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane An-
derson, Molly Q. Feldman, Arjun Guha, Michael
Greenberg, and Abhinav Jangda. 2022. A scalable
and extensible approach to benchmarking nl2code for
18 programming languages. ArXiv, abs/2208.08227.

Yekun Chai, Shuohuan Wang, Chao Pang, Yu Sun, Hao
Tian, and Hua Wu. 2022. ERNIE-Code: Beyond
english-centric cross-lingual pretraining for program-
ming languages. arXiv preprint arXiv:2212.06742.

Shubham Chandel, Colin B. Clement, Guillermo Ser-
rato, and Neel Sundaresan. 2022a. Training and
evaluating a jupyter notebook data science assistant.
ArXiv, abs/2201.12901.

Shubham Chandel, Colin B Clement, Guillermo Serrato,
and Neel Sundaresan. 2022b. Training and evaluat-
ing a jupyter notebook data science assistant. arXiv
preprint arXiv:2201.12901.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2023.
CodeT: Code generation with generated tests. In

The Eleventh International Conference on Learning
Representations.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde, Jared Kaplan, Harrison Ed-
wards, Yura Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Moham-
mad Bavarian, Clemens Winter, Philippe Tillet, Fe-
lipe Petroski Such, David W. Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel
Herbert-Voss, William H. Guss, Alex Nichol, Igor
Babuschkin, S. Arun Balaji, Shantanu Jain, Andrew
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew M. Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. ArXiv,
abs/2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, Parker Schuh, Kensen Shi, Sasha
Tsvyashchenko, Joshua Maynez, Abhishek Rao,
Parker Barnes, Yi Tay, Noam M. Shazeer, Vinod-
kumar Prabhakaran, Emily Reif, Nan Du, Benton C.
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier García,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pillai,
Marie Pellat, Aitor Lewkowycz, Erica Moreira, Re-
won Child, Oleksandr Polozov, Katherine Lee, Zong-
wei Zhou, Xuezhi Wang, Brennan Saeta, Mark Díaz,
Orhan Firat, Michele Catasta, Jason Wei, Kathleen S.
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. PaLM: Scaling language
modeling with pathways. ArXiv, abs/2204.02311.

Fenia Christopoulou, Gerasimos Lampouras, Milan
Gritta, Guchun Zhang, Yinpeng Guo, Zhong-Yi Li,
Qi Zhang, Meng Xiao, Bo Shen, Lin Li, Hao Yu,
Li yu Yan, Pingyi Zhou, Xin Wang, Yu Ma, Igna-
cio Iacobacci, Yasheng Wang, Guangtai Liang, Jia
Wei, Xin Jiang, Qianxiang Wang, and Qun Liu. 2022.
PanGu-Coder: Program synthesis with function-level
language modeling. ArXiv, abs/2207.11280.

Colin B. Clement, Dawn Drain, Jonathan Timcheck,
Alexey Svyatkovskiy, and Neel Sundaresan. 2020.
PyMT5: Multi-mode translation of natural language
and python code with transformers. In Conference on
Empirical Methods in Natural Language Processing.

CodedotAl. 2021. GPT Code Clippy: The Open Source
version of GitHub Copilot. https://github.com/
CodedotAl/gpt-code-clippy.

7452

https://arxiv.org/abs/2204.06745
https://arxiv.org/abs/2204.06745
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://github.com/CodedotAl/gpt-code-clippy
https://github.com/CodedotAl/gpt-code-clippy


Trevor Cohn, Phil Blunsom, and Sharon Goldwater.
2010. Inducing tree-substitution grammars. The
Journal of Machine Learning Research, 11:3053–
3096.

Leonardo Mendonça de Moura and Nikolaj S. Bjørner.
2008. Z3: An efficient smt solver. In International
Conference on Tools and Algorithms for Construction
and Analysis of Systems.

DeepGenX. 2022. CodeGenX. https://docs.
deepgenx.com.

Enrique Dehaerne, Bappaditya Dey, Sandip Halder, Ste-
fan De Gendt, and Wannes Meert. 2022. Code gener-
ation using machine learning: A systematic review.
IEEE Access.

Premkumar T. Devanbu. 2012. On the naturalness of
software. 2012 34th International Conference on
Software Engineering (ICSE), pages 837–847.

Iddo Drori and Nakul Verma. 2021. Solving lin-
ear algebra by program synthesis. arXiv preprint
arXiv:2111.08171.

Iddo Drori, Sarah Zhang, Reece Shuttleworth, Leonard
Tang, Albert Lu, Elizabeth Ke, Kevin Liu, Linda
Chen, Sunny Tran, Newman Cheng, Roman Wang,
Nikhil Singh, Taylor Lee Patti, J. Lynch, Avi Sh-
porer, Nakul Verma, Eugene Wu, and Gilbert Strang.
2021. A neural network solves, explains, and gener-
ates university math problems by program synthesis
and few-shot learning at human level. Proceedings
of the National Academy of Sciences of the United
States of America, 119.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2016. Tree-to-sequence attentional neural
machine translation. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 823–833.

erman Arsenovich Arutyunov and Sergey Avdoshin.
2022. Big transformers for code generation. Pro-
ceedings of the Institute for System Programming of
the RAS.

FauxPilot. 2022. FauxPilot. https://github.com/
moyix/fauxpilot.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Scott Yih,
Luke Zettlemoyer, and Mike Lewis. 2023. InCoder:
A generative model for code infilling and synthesis.
In The Eleventh International Conference on Learn-
ing Representations.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The Pile: An
800gb dataset of diverse text for language modeling.
arXiv preprint arXiv:2101.00027.

GitHub. 2021. GitHub Copilot. https://github.
com/features/copilot.

Google. 2016. GitHub on BigQuery: Analyze all the
open source code. https://cloud.google.com/
bigquery.

Google. 2022. Big-bench. https://github.com/
google/BIG-bench.

Sumit Gulwani. 2010. Dimensions in program synthe-
sis. In Proceedings of the 12th international ACM
SIGPLAN symposium on Principles and practice of
declarative programming, pages 13–24.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Xiaodong Song,
and Jacob Steinhardt. 2021. Measuring coding chal-
lenge competence with apps. In Neural Information
Processing Systems.

Glen M Hocky and Andrew D White. 2022. Natural
language processing models that automate program-
ming will transform chemistry research and teaching.
Digital discovery, 1(2):79–83.

HuggingFace. 2021a. CodeParrot Dataset.
https://huggingface.co/datasets/
transformersbook/codeparrot.

HuggingFace. 2021b. Github-Code. https:
//huggingface.co/datasets/codeparrot/
github-code.

HuggingFace. 2021c. GitHub-Jupyter. https:
//huggingface.co/datasets/codeparrot/
github-jupyter.

Huggingface. 2021. Training CodeParrot from Scratch.
https://huggingface.co/blog/codeparrot.

HuggingFace. 2022. The Stack. https://
huggingface.co/datasets/bigcode/the-stack.

Hamel Husain, Hongqi Wu, Tiferet Gazit, Miltiadis Al-
lamanis, and Marc Brockschmidt. 2019. CodeSearch-
Net Challenge: Evaluating the state of semantic code
search. ArXiv, abs/1909.09436.

IBM. 2021. CodeNet. https://github.com/IBM/
Project_CodeNet.

Saki Imai. 2022. Is github copilot a substitute for human
pair-programming? an empirical study. In Proceed-
ings of the ACM/IEEE 44th International Conference
on Software Engineering: Companion Proceedings,
pages 319–321.

Srini Iyer, Ioannis Konstas, Alvin Cheung, and Luke
Zettlemoyer. 2016. Summarizing source code using
a neural attention model. Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers).

Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and
Ashish Tiwari. 2010. Oracle-guided component-
based program synthesis. 2010 ACM/IEEE 32nd
International Conference on Software Engineering,
1:215–224.

7453

https://docs.deepgenx.com
https://docs.deepgenx.com
https://github.com/moyix/fauxpilot
https://github.com/moyix/fauxpilot
https://github.com/features/copilot
https://github.com/features/copilot
https://cloud.google.com/bigquery
https://cloud.google.com/bigquery
https://github.com/google/BIG-bench
https://github.com/google/BIG-bench
https://huggingface.co/datasets/transformersbook/codeparrot
https://huggingface.co/datasets/transformersbook/codeparrot
https://huggingface.co/datasets/codeparrot/github-code
https://huggingface.co/datasets/codeparrot/github-code
https://huggingface.co/datasets/codeparrot/github-code
https://huggingface.co/datasets/codeparrot/github-jupyter
https://huggingface.co/datasets/codeparrot/github-jupyter
https://huggingface.co/datasets/codeparrot/github-jupyter
https://huggingface.co/blog/codeparrot
https://huggingface.co/datasets/bigcode/the-stack
https://huggingface.co/datasets/bigcode/the-stack
https://github.com/IBM/Project_CodeNet
https://github.com/IBM/Project_CodeNet


Aravind Joshi and Owen Rambow. 2003. A formal-
ism for dependency grammar based on tree adjoin-
ing grammar. In Proceedings of the Conference on
Meaning-text Theory, pages 207–216. MTT Paris,
France.

Harshit Joshi, José Cambronero, Sumit Gulwani, Vu Le,
Ivan Radicek, and Gust Verbruggen. 2022. Repair is
nearly generation: Multilingual program repair with
llms. arXiv preprint arXiv:2208.11640.

Sungmin Kang, Bei Chen, Shin Yoo, and Jian-Guang
Lou. 2023. Explainable automated debugging via
large language model-driven scientific debugging.
arXiv preprint arXiv:2304.02195.

Darren Key, Wen-Ding Li, and Kevin Ellis. 2022. I
Speak, You Verify: Toward trustworthy neural pro-
gram synthesis. arXiv preprint arXiv:2210.00848.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Mario Krenn, Qianxiang Ai, Senja Barthel, Nessa
Carson, Angelo Frei, Nathan C Frey, Pascal
Friederich, Théophile Gaudin, Alberto Alexander
Gayle, Kevin Maik Jablonka, et al. 2022. Selfies
and the future of molecular string representations.
Patterns, 3(10):100588.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Scott Yih, Daniel
Fried, Si yi Wang, and Tao Yu. 2022. DS-1000: A
natural and reliable benchmark for data science code
generation. ArXiv, abs/2211.11501.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Sil-
vio Savarese, and Steven CH Hoi. 2022. CodeRL:
Mastering code generation through pretrained mod-
els and deep reinforcement learning. arXiv preprint
arXiv:2207.01780, abs/2207.01780.

Triet HM Le, Hao Chen, and Muhammad Ali Babar.
2020. Deep learning for source code modeling and
generation: Models, applications, and challenges.
ACM Computing Surveys (CSUR), 53(3):1–38.

Yaoxian Li, Shiyi Qi, Cuiyun Gao, Yun Peng, David
Lo, Zenglin Xu, and Michael R Lyu. 2022a. A closer
look into transformer-based code intelligence through
code transformation: Challenges and opportunities.
arXiv preprint arXiv:2207.04285.

Yujia Li, David H. Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom, Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, Thomas Hubert, Peter Choy, Cyprien de,

Masson d’Autume, Igor Babuschkin, Xinyun Chen,
Po-Sen Huang, Johannes Welbl, Sven Gowal,
Alexey, Cherepanov, James Molloy, Daniel Jaymin
Mankowitz, Esme Sutherland Robson, Pushmeet
Kohli, Nando de, Freitas, Koray Kavukcuoglu, and
Oriol Vinyals. 2022b. Competition-level code gener-
ation with alphacode. Science, 378:1092 – 1097.

Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh
Jannu, Grant Jenks, Deep Majumder, Jared Green,
Alexey Svyatkovskiy, Shengyu Fu, et al. 2022c. Au-
tomating code review activities by large-scale pre-
training. In Proceedings of the 30th ACM Joint Eu-
ropean Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering,
pages 1035–1047.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text summariza-
tion branches out, pages 74–81.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1–35.

Zhiqiang Liu, Yong Dou, Jingfei Jiang, and Jinwei Xu.
2016. Automatic code generation of convolutional
neural networks in fpga implementation. In 2016
International conference on field-programmable tech-
nology (FPT), pages 61–68. IEEE.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano,
Ming Gong, Ming Zhou, Nan Duan, Neel Sundare-
san, Shao Kun Deng, Shengyu Fu, and Shujie Liu.
2021. CodeXGLUE: A machine learning benchmark
dataset for code understanding and generation. ArXiv,
abs/2102.04664.

Lechanceux Luhunu and Eugene Syriani. 2017. Survey
on template-based code generation. In ACM/IEEE
International Conference on Model Driven Engineer-
ing Languages and Systems.

Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne
Kim, Sami Sarsa, Paul Denny, Seth Bernstein, and
Juho Leinonen. 2022a. Experiences from using code
explanations generated by large language models in
a web software development e-book. arXiv preprint
arXiv:2211.02265.

Stephen MacNeil, Andrew Tran, Dan Mogil, Seth Bern-
stein, Erin Ross, and Ziheng Huang. 2022b. Generat-
ing diverse code explanations using the gpt-3 large
language model. In Proceedings of the 2022 ACM
Conference on International Computing Education
Research-Volume 2, pages 37–39.

7454

https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012


Antonio Mastropaolo, Simone Scalabrino, Nathan
Cooper, David Nader Palacio, Denys Poshyvanyk,
Rocco Oliveto, and Gabriele Bavota. 2021. Study-
ing the usage of text-to-text transfer transformer to
support code-related tasks. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering
(ICSE), pages 336–347. IEEE.

Microsoft. 2019. IntelliCode. https://github.com/
MicrosoftDocs/intellicode.

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Rad-
ford, Jesse Michael Han, Jerry Tworek, Qiming Yuan,
Nikolas Tezak, Jong Wook Kim, Chris Hallacy, et al.
2022. Text and code embeddings by contrastive pre-
training. arXiv preprint arXiv:2201.10005.

Nhan Nguyen and Sarah Nadi. 2022. An empirical
evaluation of github copilot’s code suggestions. In
Proceedings of the 19th International Conference on
Mining Software Repositories, pages 1–5.

Tung Thanh Nguyen, Anh Tuan Nguyen, Hoan Anh
Nguyen, and Tien N Nguyen. 2013. A statistical se-
mantic language model for source code. In Proceed-
ings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, pages 532–542.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023. CodeGen: An open large language
model for code with multi-turn program synthesis. In
The Eleventh International Conference on Learning
Representations.

University of Oxford. 2020. Diffblue Cover. https:
//www.diffblue.com.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke E. Miller, Maddie Simens, Amanda Askell, Pe-
ter Welinder, Paul Francis Christiano, Jan Leike, and
Ryan J. Lowe. 2022. Training language models to
follow instructions with human feedback. ArXiv,
abs/2203.02155.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Dipti Pawade, Avani Sakhapara, Sanyogita Parab, Divya
Raikar, Ruchita Bhojane, and Henali Mamania. 2018.
Literature survey on automatic code generation tech-
niques. i-Manager’s Journal on Computer Science,
6(2):34.

Hammond Pearce, Baleegh Ahmad, Benjamin Tan,
Brendan Dolan-Gavitt, and Ramesh Karri. 2022.
Asleep at the keyboard? assessing the security of
github copilot’s code contributions. In 2022 IEEE
Symposium on Security and Privacy (SP), pages 754–
768. IEEE.

Julian Aron Prenner and Romain Robbes. 2021. Auto-
matic program repair with openai’s codex: Evaluat-
ing quixbugs. arXiv preprint arXiv:2111.03922.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah-
danau. 2022. Evaluating the text-to-sql capabil-
ities of large language models. arXiv preprint
arXiv:2204.00498.

Veselin Raychev, Martin Vechev, and Eran Yahav. 2014.
Code completion with statistical language models. In
Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion, pages 419–428.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. CodeBLEU: a method
for automatic evaluation of code synthesis. arXiv
preprint arXiv:2009.10297.

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills,
Long Ouyang, Jonathan Ward, and Jan Leike. 2022.
Self-critiquing models for assisting human evaluators.
arXiv preprint arXiv:2206.05802.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2022. BLOOM: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Meet Shah, Rajat Shenoy, and Radha Shankarmani.
2021. Natural language to python source code using
transformers. In 2021 International Conference on
Intelligent Technologies (CONIT), pages 1–4. IEEE.

Tushar Sharma, Maria Kechagia, Stefanos Georgiou,
Rohit Tiwari, and Federica Sarro. 2021. A survey on
machine learning techniques for source code analysis.
arXiv preprint arXiv:2110.09610.

Jiho Shin and Jaechang Nam. 2021. A survey of auto-
matic code generation from natural language. Jour-
nal of Information Processing Systems, 17(3):537–
555.

Mohammed Latif Siddiq and msiddiq. 2022. SecurityE-
val dataset: mining vulnerability examples to eval-
uate machine learning-based code generation tech-
niques. Proceedings of the 1st International Work-
shop on Mining Software Repositories Applications
for Privacy and Security.

Dominik Sobania, Martin Briesch, and Franz Rothlauf.
2022a. Choose your programming copilot: a compar-
ison of the program synthesis performance of github
copilot and genetic programming. In Proceedings of
the Genetic and Evolutionary Computation Confer-
ence, pages 1019–1027.

7455

https://github.com/MicrosoftDocs/intellicode
https://github.com/MicrosoftDocs/intellicode
https://www.diffblue.com
https://www.diffblue.com


Dominik Sobania, Martin Briesch, and Franz Rothlauf.
2022b. Choose your programming copilot: a compar-
ison of the program synthesis performance of github
copilot and genetic programming. In Proceedings of
the Genetic and Evolutionary Computation Confer-
ence, pages 1019–1027.

Zeyu Sun, Qihao Zhu, Lili Mou, Yingfei Xiong, Ge Li,
and Lu Zhang. 2018. A grammar-based structural
cnn decoder for code generation. In AAAI Confer-
ence on Artificial Intelligence.

Ilya Sutskever, Geoffrey E Hinton, and Graham W Tay-
lor. 2008. The recurrent temporal restricted boltz-
mann machine. Neural Information Processing Sys-
tems, 21.

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu,
and Neel Sundaresan. 2020. IntelliCode compose:
code generation using transformer. Proceedings of
the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foun-
dations of Software Engineering.

Eugene Syriani, Lechanceux Luhunu, and Houari
Sahraoui. 2018. Systematic mapping study of
template-based code generation. Computer Lan-
guages, Systems & Structures, 52:43–62.

tabnine. 2018. TabNine. https://www.tabnine.com.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam
Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al.
2022. LAMDA: Language models for dialog appli-
cations. arXiv preprint arXiv:2201.08239.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Neural Information Processing Systems,
30.

Yao Wan, Zhou Zhao, Min Yang, Guandong Xu,
Haochao Ying, Jian Wu, and Philip S Yu. 2018. Im-
proving automatic source code summarization via
deep reinforcement learning. In Proceedings of the
33rd ACM/IEEE international conference on auto-
mated software engineering, pages 397–407.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Shiqi Wang, Zheng Li, Haifeng Qian, Cheng Yang,
Zijian Wang, Mingyue Shang, Varun Kumar, Sam-
son Tan, Baishakhi Ray, Parminder Bhatia, Ramesh
Nallapati, Murali Krishna Ramanathan, Dan Roth,
and Bing Xiang. 2022a. ReCode: Robustness eval-
uation of code generation models. arXiv preprint
arXiv:2212.10264.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. 2021. CodeT5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 8696–8708.

Zhiruo Wang, Grace Cuenca, Shuyan Zhou, Frank F Xu,
and Graham Neubig. 2022b. MCoNaLa: a bench-
mark for code generation from multiple natural lan-
guages. arXiv preprint arXiv:2203.08388.

Zhiruo Wang, Shuyan Zhou, Daniel Fried, and Gra-
ham Neubig. 2022c. Execution-based evaluation
for open-domain code generation. arXiv preprint
arXiv:2212.10481.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

Frank F. Xu, Uri Alon, Graham Neubig, and Vincent J.
Hellendoorn. 2022. A systematic evaluation of large
language models of code. Proceedings of the 6th
ACM SIGPLAN International Symposium on Ma-
chine Programming.

Yichen Xu and Yanqiao Zhu. 2022. A survey on pre-
trained language models for neural code intelligence.
arXiv preprint arXiv:2212.10079.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
stack overflow. 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR),
pages 476–486.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
arXiv preprint arXiv:1704.01696.

Daoguang Zan, Bei Chen, Zeqi Lin, Bei Guan, Yongji
Wang, and Jian-Guang Lou. 2022a. When language
model meets private library. In Conference on Em-
pirical Methods in Natural Language Processing.

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin,
Minsu Kim, Bei Guan, Yongji Wang, Weizhu Chen,
and Jian-Guang Lou. 2022b. CERT: Continual pre-
training on sketches for library-oriented code genera-
tion. In International Joint Conference on Artificial
Intelligence.

Jialu Zhang, José Cambronero, Sumit Gulwani, Vu Le,
Ruzica Piskac, Gustavo Soares, and Gust Ver-
bruggen. 2022. Repairing bugs in python assign-
ments using large language models. arXiv preprint
arXiv:2209.14876.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan-
shan Wang, Yufei Xue, Zi-Yuan Wang, Lei Shen,
Andi Wang, Yang Li, Teng Su, Zhilin Yang, and
Jie Tang. 2023. CodeGeeX: A pre-trained model
for code generation with multilingual evaluations on
humaneval-x. ArXiv, abs/2303.17568.

7456

https://www.tabnine.com
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax


Shuyan Zhou, Uri Alon, Frank F Xu, Zhengbao JIang,
and Graham Neubig. 2023. DocCoder: Generating
code by retrieving and reading docs. In The Eleventh
International Conference on Learning Representa-
tions.

Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravin-
dran, Sindhu Tipirneni, and Chandan K. Reddy.
2022a. XLCoST: A benchmark dataset for cross-
lingual code intelligence.

Ming Zhu, Karthik Suresh, and Chandan K Reddy.
2022b. Multilingual code snippets training for pro-
gram translation.

7457

http://arxiv.org/abs/2206.08474
http://arxiv.org/abs/2206.08474


A Related Surveys

Previous surveys on the topic of code intelli-
gence (Allamanis et al., 2018; Le et al., 2020; Li
et al., 2022a; Xu and Zhu, 2022) and code gener-
ation (Pawade et al., 2018; Shin and Nam, 2021;
Dehaerne et al., 2022) have primarily focused on
early methodologies such as the use of program-
ming templates (Syriani et al., 2018; Luhunu and
Syriani, 2017), neural models based on CNN, RNN,
and LSTM architectures (Allamanis et al., 2018;
Sharma et al., 2021), and small-scale Transformer
models that require labelled data for training (Mas-
tropaolo et al., 2021; Shah et al., 2021). However,
with the advancement of model size, Transformer-
based models have demonstrated exceptional per-
formance in NL2Code tasks and have given rise to
the development of more capable code generation
models. In light of this, there exists a clear need for
a comprehensive survey of large language models
for NL2Code tasks to bridge this gap in knowledge.
This study endeavours to fulfill this need by pro-
viding a thorough analysis of the successful LLMs
and a detailed review of NL2Code benchmarks and
metrics. We also present the ongoing challenges
and opportunities regarding the ability gap between
LLMs and humans.

Finally, we would like to highlight some criteria
for our survey. First, we only refer to official papers
to investigate the size of the models. For example,
Codex reported the model with a maximum size of
12B in the paper, but later trained larger ones. In
this case, we only consider the 12B model as the
largest one. In addition, the publication dates of the
models in Figure 2 are taken from official papers
or blogs.

B An Online Website

To keep tracking the latest progress of LLMs for
NL2Code, we have developed an online real-time
update website at https://nl2code.github.io.
We have collected as many of the latest research
works as possible on this website. Everyone is
allowed to contribute to the website by pulling
requests on GitHub. This website also includes
features such as fuzzy search and custom tag cate-
gories, which will facilitate researchers to find the
papers they want quickly. We hope this website can
assist researchers and developers in related fields
and contribute to its advancement.

Model Size pass@k

k=1 k=10 k=100

Model Size: ~100M
GPT-Neo† 125M 0.26 2.15 7.96
CodeParrot† 110M 0.48 3.89 15.93
PyCodeGPT† 110M 9.39 28.37 48.71
PolyCoder† 160M 1.08 6.67 18.97

Model Size: ~500M
CodeT5† 770M 15.78 38.63 50.35
PolyCoder† 400M 1.31 7.98 21.55
BLOOM† 560M 0.26 2.04 8.90
CodeGen-Mono† 350M 15.44 42.50 64.40

Model Size: ~1B
GPT-Neo† 1.3B 3.77 16.26 29.51
CodeParrot† 1.5B 1.29 8.66 27.17
BLOOM† 1.1B 1.90 9.20 23.42
BLOOM† 1.7B 3.16 14.23 31.38
InCoder† 1.3B 10.00 34.02 55.50
SantaCoder† 1.1B 3.65 21.33 41.92

Model Size: ~5B
GPT-Neo† 2.7B 5.89 23.09 44.26
PolyCoder† 2.7B 4.39 17.99 38.17
BLOOM† 3B 2.25 13.58 32.08
BLOOM† 7.1B 1.01 7.91 24.12
CodeGen-Mono† 2.7B 28.80 60.73 75.41
CodeGen-Mono† 6.1B 33.70 62.70 70.25
GPT-J† 6B 11.30 35.62 53.63
InCoder 6.7B 21.3 46.5 66.2

Model Size: >10B
CodeGen-Mono 16.1B 42.4 65.8 79.1
cushman-001 − 45.9 66.9 79.9
davinci-001 − 51.8 72.8 84.1
davinci-002 − 58.1 76.7 84.5

Table 4: The performance of LLMs on the MBPP bench-
mark. † denotes our reproduced results, while others
are taken from Chen et al. (2023). We omit CodeGPT,
GPT-CC, and PLBART as their numbers are zero.

C Experimental Setup

In this section, we will first present the definition
of pass@k , followed by the details of the experi-
ments conducted on two benchmarks, namely Hu-
manEval (Chen et al., 2021) (results in Table 2) and
MBPP (Austin et al., 2021) (results in Table 4).

C.1 Definition of pass@k

We use pass@k as our metric for evaluation. For
each programming problem, we sample n candi-
date code solutions and then randomly pick k of
them. If any of the k code solutions pass the given
test cases, the problem can be regarded as solved.
So pass@k is the proportion of solved problems
in the benchmark (Chen et al., 2021). Formally,

7458

https://nl2code.github.io


assuming that the number of correct ones in k sam-
ples is c, pass@k = 1 if n − c < k; otherwise,
pass@k = 1 − ∏n

i=n−c+1(1 − k/i). We chose
pass@k as our primary evaluation metric because
it offers a completely precise evaluation of code
accuracy by executing test cases, while other met-
rics mentioned in Section 4 either originate from
pass@k or have lower precision.

C.2 Implementation Details

For HumanEval, we use the original benchmark9.
Most results in Table 2 are taken from the original
papers, while we reproduce the results of GPT-CC,
PLBART, CodeT5, and InCoder 1.3B by strictly
following the same experimental setup as the other
models. In detail, we set the sample number to 200,
the maximum length of newly generated tokens to
200, and top_p to 0.95. We set the temperature
from 0.1 to 1.0 with an interval of 0.1, and report
the best performance across these temperatures.

For MBPP, we use the version from Chen et al.
(2023)10. In Table 4, the results of InCoder 6.7B
and models larger than 10B are taken from Chen
et al. (2023), while we reproduced other results.
Specifically, we set the sample number to 100, the
maximum length of newly generated tokens to 200,
top_p to 0.95, and the temperature to 0.8.

For the two benchmarks above, we employ
the same post-processing strategy. Following
Codex (Chen et al., 2021), we terminate the sam-
pling process when one of the following sequences
is encountered in the generated code: ‘\nclass’,
‘\ndef’, ‘\n#’, ‘\n@’, ‘\nif’, and ‘\nprint’. In
our experiments, CodeT5 770M refers to the ver-
sion11 with the causal language modeling objective.
For good reproducibility and further research, we
have made our code and the generated results of the
LLMs on HumanEval and MBPP publicly available
on our website.

D Context Window vs. Performance

Recent work (erman Arsenovich Arutyunov and
Avdoshin, 2022) claimed that the size of the con-
text window plays a vital role in enhancing the
performance of LLMs for NL2Code. Specifi-

9https://github.com/openai/human-eval/blob/
master/data/HumanEval.jsonl.gz

10https://github.com/microsoft/CodeT/blob/
main/CodeT/data/dataset/mbpp_sanitized_for_code_
generation.jsonl

11https://huggingface.co/Salesforce/
codet5-large-ntp-py

Introductory Interview Competition
0%

1%

2%

3%

Av
er

ag
e 

Pa
ss

ed
 Te

st
 C

as
es

GPT-NeoX 165M 2K
GPT-NeoX 165M 4K
GPT-NeoX 165M 8K
GPT-NeoX 20B 2K

Figure 6: Performance of GPT-NeoX with different
model sizes (165M and 20B) and context windows (2K,
4K, and 8K) on the APPS benchmark.

cally, experiments are conducted on the APPS
benchmark (Hendrycks et al., 2021) with GPT-
NeoX (Black et al., 2022), and we visualize the
results in Figure 6. It is found that the 165M ver-
sion model with an 8, 000 context window is com-
parable to the 20B version model with a 2, 000
context window. This observation illustrates that
the context window also needs to be considered
when training the model.

7459

https://github.com/openai/human-eval/blob/master/data/HumanEval.jsonl.gz
https://github.com/openai/human-eval/blob/master/data/HumanEval.jsonl.gz
https://github.com/microsoft/CodeT/blob/main/CodeT/data/dataset/mbpp_sanitized_for_code_generation.jsonl
https://github.com/microsoft/CodeT/blob/main/CodeT/data/dataset/mbpp_sanitized_for_code_generation.jsonl
https://github.com/microsoft/CodeT/blob/main/CodeT/data/dataset/mbpp_sanitized_for_code_generation.jsonl
https://huggingface.co/Salesforce/codet5-large-ntp-py
https://huggingface.co/Salesforce/codet5-large-ntp-py


Products Model Supported PLs Supported IDEs

tabnine (2018) −

Python, Java, Javascript, TypeScript,
Go, Ruby, PHP, C#, C, C++, Swift,
Perl, Rust, CSS, Angular, Dart, React,
Haskell, HTML, Kotlin, Matlab, Sass,
NodeJS, Objective C, Scala,

VS Code, Visual Studio, IntelliJ IDE,
Neovim, Sublime, PyCharm, Rider,
WebStorm, Android Studio, Emacs,
Vim, PhpStorm, RubyMine, DataGrip,
Jupyter Notebook, JupyterLab, Clion,
AppCode, Eclipse, GoLand

aiXcoder (2018) − Python, Java, JavaScript, Typescript,
Go, PHP, C, C++

VS Code, IntelliJ IDEA, PyCharm,
STS3, WebStorm, Rider, Clion, STS4
Android Studio, PhpStorm, Eclipse,
GoLand

IntelliCode (2019) − Python, Java, JavaScript, TypeScript,
C#, C++, SQL Server, XAML

VS Code, Visual Studio

Diffblue Cover (2020) − Java IntelliJ IDEA, CLI Tool

Copilot (2021) Codex

Python, Java, JavaScript, TypeScript,
Go, Ruby, Julia, PHP, C#, C++, Swift,
Perl, PowerShell, R, Rust, CSS, SQL,
JSON, HTML, SCSS, Less, .NET,
Markdown, T-SQL

VS Code, Visual Studio, Neovim,
JetBrains IDE

Cosy (2022) − Java IntelliJ IDEA

CodeWhisperer (2022) − Python, Java, JavaScript, TypeScript,
C#

VS Code, JetBrains IDE, AWS Cloud9,
AWS Lambda

CodeGenX (2022) GPT-J Python VS Code

CodeGeeX (2023) CodeGeeX

Python, Java, JavaScript, TypeScript,
Go, PHP, C#, C, C++, Perl, Rust, CSS,
SQL, HTML, Kotlin, Shell, R, Cuda,
Objective C, Objective C++, Pascal,
Tex, Fortran, Lean, Scala

VS Code, IntelliJ IDEA, PyCharm,
WebStorm, Android Studio, Rider,
RubyMine, Clion, AppCode, Aqua,
DataGrip, GoLand, DataSpell

FauPilot (2022) CodeGen Python, Java, Javascript, Go, C, C++ −

Table 5: Summary of products powered by LLMs. PLs and IDEs refer to programming languages and integrated
development environments, respectively. The information for these products was recorded on December 27, 2022.

0 5 10 15
0

5

10

15

20

25

30

Hu
m

an
Ev

al
 p

as
s@

1 
(%

) CodeT5
GPT-Neo
CodeParrot
PolyCoder
Codex
AlphaCode(dec)
CodeGen-Mono
PanGu-Coder
InCoder
BLOOM

0 5 10 15
0

10

20

30

40

50

Hu
m

an
Ev

al
 p

as
s@

10
 (%

) CodeT5
GPT-Neo
CodeParrot
PolyCoder
Codex
AlphaCode(dec)
CodeGen-Mono
PanGu-Coder
InCoder
BLOOM

0 5 10 15
0

20

40

60

Hu
m

an
Ev

al
 p

as
s@

10
0 

(%
) CodeT5

GPT-Neo
CodeParrot
PolyCoder
Codex
AlphaCode(dec)
CodeGen-Mono
PanGu-Coder
InCoder
BLOOM

0 5 10 15
Number of Parameters (Billion)

0

10

20

30

40

M
BP

P 
pa

ss
@

1 
(%

)

CodeT5
GPT-Neo
CodeParrot
PolyCoder
CodeGen-Mono
InCoder

0 5 10 15
Number of Parameters (Billion)

0

10

20

30

40

50

60

M
BP

P 
pa

ss
@

10
 (%

)

CodeT5
GPT-Neo
CodeParrot
PolyCoder
CodeGen-Mono
InCoder

0 5 10 15
Number of Parameters (Billion)

0

20

40

60

80

M
BP

P 
pa

ss
@

10
0 

(%
)

CodeT5
GPT-Neo
CodeParrot
PolyCoder
CodeGen-Mono
InCoder

Figure 7: Performance of LLMs with varying parameter sizes on the HumanEval and MBPP benchmarks.

7460



D
ata

M
odelH

yper-param
eters

Training
M

odel
de.

token.
opti.

betas
eps

bs
w

s
gss

w
p

lr
w

d
decay

pr
init.

m
.

D
ecoder

G
PT-C

366M
×

B
B

PE
A

dam
−

−
−

1
,024

−
−

6
.25e-5

−
C

osine
−

Scratch
→

C
odeG

PT
124M

×
B

B
PE

A
dam

−
−

−
768

−
−

5e-5
−

−
−

G
PT-2

→
G

PT-N
eo

2.7B
−

B
B

PE
A

dam
0.9,0

.95
1e-8

−
2
,048

−
3,000

−
0.1

C
osine

−
Scratch

→
G

PT-J
6B

−
B

B
PE

A
dam

−
−

−
2
,048

16
3,000

−
0.1

−
B

F16
−

→
C

odex
12B

✓
B

B
PE

A
dam

0.9,0
.95

1e-8
2M

4
,096

−
175

1e-4
0
.1

C
osine

−
G

PT-3
→

G
PT-C

C
1.3B

✓
B

B
PE

A
daFa

−
−

−
1
,024

−
5,000

2e-5
0
.1

L
inear

−
G

PT-N
eo

→
C

odeParrot
1
.5B

✓
B

B
PE

A
dam

W
0.9,0

.999
1e-8

524K
1
,024

16
750

5e-5
0
.1

C
osine

−
Scratch

→
L

aM
D

A
137B

−
SP

−
−

−
256K

−
−

−
−

−
−

−
−

→
PolyC

oder
2.7B

✓
B

B
PE

A
dam

W
0.9,0

.999
1e-8

262K
2
,048

−
1,600

1
.6e-4

−
C

osine
−

Scratch
→

C
odeG

en
16

.1B
✓

B
B

PE
A

dam
0.9,0

.999
1e-8

2M
2
,048

−
3,000

0
.5e-4

0
.1

C
osine

−
−

→
InC

oder
6
.7B

✓
B

B
PE

A
dam

0.9,0
.98

−
−

2
,048

−
1,500

−
−

PN
−

Scratch
↔

G
PT-N

eoX
20B

✓
B

B
PE

Z
eR

o
0.9,0

.95
1e-8

3
.15M

2
,048

32
−

9
.7e-5

0
.01

C
osine

FP16
Scratch

→
PaL

M
-C

oder
54
0B

✓
SP

A
dafa.

−
−

−
2
,048

−
−

1e-2
−

−
−

PaL
M

→
PanG

u-C
oder

2
.6B

✓
SP

A
dam

0.9,0
.95

−
−

1
,024

−
−

−
0.01

C
osine

−
Scratch

→
FIM

6
.9B

✓
B

B
PE

A
dam

−
−

2M
2
,048

−
−

2
.4e-4

−
−

−
Scratch

↔
PyC

odeG
PT

11
0M

✓
B

B
PE

A
dam

W
0.9,0

.95
1e-8

480K
1
,024

4
1,000

5e-4
0
.1

C
osine

FP16
Scratch

→
C

odeG
eeX

13B
−

B
B

PE
Z

eR
o

0.9,0
.95

−
−

2
,048

−
−

−
0.1

C
osine

FP16
−

→
B

L
O

O
M

17
6B

✓
B

B
PE

A
dam

0.9,0
.95

−
−

2
,048

−
−

6e-5
0
.1

C
osine

B
F16

Scratch
→

SantaC
oder

1
.1B

✓
B

B
PE

A
dam

0.9,0
.95

1e-8
−

−
−

−
2e-4

0
.1

C
osine

FP16
Scratch

↔
E

ncoder-D
ecoder

PyM
T

5
374M

✓
B

B
PE

A
dam

0.9,0
.98

1e-6
−

2
,200

−
5,000

9
.1875e-5

0
.01

IS
FP16

−
→

PL
B

A
R

T
406M

×
SP

A
dam

−
,0.98

1e-6
−

768
−

−
5e-5

−
L

inear
FP16

−
→

C
odeT

5
77
0M

×
B

B
PE

A
dam

W
−

−
−

−
−

1,000
2e-4

0
.05

L
inear

FP16
Scratch

→
JuPyT

5
350M

✓
B

B
PE

A
dam

0.9,0
.98

1e-6
−

2
,200

−
5,000

9
.1875e-5

0
.01

IS
FP16

PyM
T

5
→

A
lphaC

ode
41.1B

✓
SP

A
dam

W
0.9,0

.95
−

−
6
,144

−
1,000

1e-4
0
.1

C
osine

B
F16

−
→

C
odeR

L
770M

−
B

B
PE

A
dam

W
−

−
−

−
−

−
−

−
PN

−
C

odeT
5

→
C

odeT
5M

ix
770M

✓
B

B
PE

A
dam

W
−

−
−

−
−

−
−

0.1
L

inear
FP16

Scratch
→

E
R

N
IE

-C
ode

560M
×

SP
A

daFa
−

−
−

1
,024

15
1,000

1e-4
−

L
inear

B
F16

m
T

5
→

Table 6: The details of LLMs for NL2Code. We list the full names of these abbreviations: de-duplication (de.),
tokenizer (token.), optimizer (opti.), batch size (bs), window size (ws), gradient accumulation steps (gss), warmup
steps (wp), learning rate (lr), weight decay (wd), decay schedule (decay), precision floating point (pr), model
initialization (init.), left-to-right (→), fill-in-the-middle (↔), byte-level byte-pair-encoding (BBPE), SentencePiece
(SP), polynomial (PN), and inverse square (IS).

7461



Benchmark Originate From Multilingual
MCoNaLa (2022b) CoNaLa (2018) English, Spanish, Japanese, Russian

ODEX (2022c)
CoNaLa (2018)
MCoNaLa (2022b)

English, Spanish, Japanese, Russian

MBXP (2022) MBPP (2021)
Python, Java, JavaScript, TypeScript, Go, Ruby,
Kotlin, PHP, C#, Scala, C++, Swift, Perl

MBXP-HumanEval (2022) HumanEval (2021)
Python, Java, JavaScript, Ruby, Kotlin, PHP, Scala,
Swift, Perl,

MultiPL-MBPP (2022) MBPP (2021)
Python, Java, JavaScrpt, TypeScript, Go, Ruby,
Julia, PHP, C#, Scala, C++, Swift, Perl, D, Bash,
Racket, Lua, R, Rust

MultiPL-HumanEval (2022) HumanEval (2021)
Python, Java, JavaScrpt, TypeScript, Go, Ruby,
Julia, PHP, C#, Scala, C++, Swift, Perl, D, Bash,
Racket, Lua, R, Rust

HumanEval-X (2023) HumanEval (2021) Python, Java, JavaScript, Go, C++

Table 7: Details of multilingual NL2Code benchmarks. Here we also list MCoNaLa and CoNaLa, which have no
test case for evaluation.

7462



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

7: Limitations

� A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
0: Abstract 6: Conclusion

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Appendix C: Experimental Setup

�3 B1. Did you cite the creators of artifacts you used?
Appendix C: Experimental Setup

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Not applicable. Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
4: Benchmarks and Metrics

C �3 Did you run computational experiments?
3

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
3

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

7463

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Appendix C: Experimental Setup

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Appendix C: Experimental Setup

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Not applicable. Left blank.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

7464


