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Abstract

Recent task-oriented dialog systems obtained
great successes in building personal assistants
for high resource language such as English, but
extending these systems to a global audience is
challenging due to the need for annotated data
or machine translation systems in the target lan-
guage. An alternative approach is to leverage
existing data in a high-resource language to en-
able cross-lingual transfer in low-resource lan-
guage models. However, this type of transfer
has not been widely explored in natural lan-
guage response generation. In this research, we
investigate the use of state-of-the-art multilin-
gual models such as mBART and T5 to facil-
itate zero-shot and few-shot transfer of code-
switched responses. We propose a new adapter-
based framework that allows for efficient trans-
fer by learning jointly the task-specific, source
and target language representations. Our frame-
work is able to successfully transfer language
knowledge even when the target language cor-
pus is limited. We present both quantitative
and qualitative analyses to evaluate the effec-
tiveness and limitations of our approach1.

1 Introduction

Recent task-oriented dialog systems (ToD) have
achieved great success in intelligently communicat-
ing with humans in natural languages (Chen et al.,
2017; Bohus and Rudnicky, 2009). They are de-
signed to fully assist users with widely heralded
applications such as music playing, ticket ordering,
or customer servicing (Zhang et al., 2020c). How-
ever, most ToD systems are primarily established
for English due to its ubiquity and the abundance
of high-quality human annotations (Serban et al.,
2015). Extending these services to global users
may take tremendous efforts, especially in low-

∗This work was done during an internship at Meta Reality
Labs.

1Code available at https://github.com/waynewu6250/
zero-shot-multilingual-transfer-ACL-2023

resource languages where the collection of training
corpus is labor-intensive.

On the other hand, given a sizeable English di-
alog corpus with standard dialog features shared
across other languages, it is possible to transfer
the knowledge and logic between languages via
machine translation or cross-task alignments. Data-
driven approaches (Schuster et al., 2019; Xiang
et al., 2021) perform standard supervised training
with translated dialogs, known as Translate-Train.
Different pseudo-data pairs could be leveraged to
enhance the multilingual model’s robustness. Nev-
ertheless, a fine-grained machine translation system
may not exist in an extremely low-resource lan-
guage. The translation errors of entities in ground
truth annotations (e.g. Indian could be translated
in Chinese either to an adjective of Indian or In-
dian people in different contexts.) can drastically
influence how model is supervised. This primar-
ily happens in dialog tasks like dialog state track-
ing (DST) or natural language response generation
(NLG) with language-sensitive outputs.

Another line of approaches instead investigates
cross-lingual transfer directly in pretrained mul-
tilingual language models (Tang et al., 2021;
Gritta et al., 2022). In particular, the multilingual
sequence-to-sequence model family (mSeq2seq),
which learns to encode the hidden representation
of a given input and generates relevant outputs, can
achieve promising multi-task performance in differ-
ent languages. Pretraining a multilingual encoder
with machine translation (Schuster et al., 2019),
mask context learning (Colombo et al., 2021) or
learning a word alignment matrix (Liu et al., 2019)
could possibly transfer knowledge between lan-
guages. These methods mostly share language-
agnostic outputs (Shrivastava et al., 2021) for typi-
cal classification tasks to avert off-target problem,
i.e., models (partially) translate its prediction into
the wrong language during zero-shot transfer due to
spurious correlation (Gu et al., 2019; Zhang et al.,
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Figure 1: Examples of data formats for multilingual ToD systems. Each system response will come with a system
act with different forms depending on use cases. 1⃝ E&E setting will have English sentences with English entities
and dialog acts. 2⃝ F&E setting will still have entire English dialog acts but foreign responses with English entities
embedded. 3⃝ F&F will have all foreign responses but with code-switched dialog acts.

2020a). However, the cross-lingual performance
of mSeq2seqs in more challenging response gen-
eration with language-specific or code-switched
outputs remains mysteriously unexplored.

Herein, we present a study on the cross-lingual
transferability of mSeq2seqs and quantify how well
these models could adapt to reasonable multilin-
gual response generation under meager availabil-
ity of dialog annotation in a target language (few-
shot). Given a pair of designed input-output se-
quences, we propose Cross-lingual Dialog Fusion
(XDFusion) that employs mSeq2seqs to quickly
adapt to downstream NLG tasks in target low-
resource languages by inserting denoising-trained
language adapters and a knowledge fusion module.
In particular, we first fine-tune mSeq2seq models
with the English dialog generation task. Then we
insert both pretrained source and target language
adapters and an additional fusion module within the
fine-tuned models to merge the language-specific
knowledge and fine-tune with target languages. We
conduct our experiments on a multilingual multi-
domain ToD dataset: GlobalWOZ (Ding et al.,
2022). It is a multilingual extension of an English
ToD dataset for DST, MultiWoZ (Budzianowski
et al., 2018). Both quantitative and qualitative re-
sults show that our proposed adapter-based frame-
work benefits from multilingual pretraining power
and abundant English resources as it outperforms
several baselines with deficient target language
availability.

To this end, our contributions are the following:

1. We investigate and benchmark the transferabil-
ity of large multilingual pretrained models in
the low-resource dialog generation task.

2. We propose an adapter-based learning frame-
work that shows large improvements in BLEU
and the slow error rate by preserving English
entities in a code-switched foreign language re-
sponse.

3. The proposed method allows quick adaptation
of training a new fusion module to support a
new language while ameliorating the limited
parameter capacity of pretrained models.

2 Problem Formulation

2.1 Data Format
We mainly follow Madotto et al. (2021) to model
ToD systems as a Seq2seq generation module using
annotated formats in existing ToD dialog datasets
that can generate natural responses in an allocated
target language. As shown in Figure 1 of a data
sample, each dialog will contain several turns of
user utterances (USER) and system utterances (SYS).
We first define the dialog history H as the concate-
nation of the alternating utterances from the user
and system turns, respectively, without the last sys-
tem utterance which we denote as S. Each system
utterance comes with a system dialog act SACT

denoted as the concatenation of the intent I and
slot-value pairs (s, v) as follows:

SACT = I(s1 = v1, . . . , sk = vk) (1)

Without loss of generality, we define the modu-
larized system response generation task as input-
output pairs to benchmark the transferability per-
formance of mSeq2seqs:

H + I(s1 = v1, . . . , sk = vk)︸ ︷︷ ︸
SACT

→ S (2)
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SACT could be empty sometimes where the task
becomes a direct mapping between dialog history
to the ideal system response H → S.

We first refer the dataset of English sentences
with English entities as E&E. Due to frequent code-
switching phenomena, besides English-only sen-
tences, the GlobalWOZ dataset also provides two
additional use cases for other foreign dialogs: For-
eign sentences with foreign local entities (F&F)
and foreign sentences with local English entities
(F&E). The key discrepancy lies in whether local
name entities in the sentences remain in English,
which will determine a language-agnostic/specific
SACT , as shown in Figure 1. E&E and F&E will
have language-agnostic acts while F&F will have
language-specific acts which is considered more
challenging in cross-lingual transfer.

2.2 Seq2seq Model & Setting
Based on the input-output definition in Section
2.1, we can prepare the dialog dataset as DK =
{(x(i), y(i))}Ni=1, where (x(i), y(i)) is a pre-defined
input-output pair from one of the three settings in
consideration (E&E, F&F, F&E) and K is the
language of a dataset (e.g., Chinese). In this pa-
per, we mainly employ mSeq2seqs (e.g., mBART
(Tang et al., 2021), mT5 (Xue et al., 2020)), which
provide suitable parameter initialization to model
the new conditional distribution. Given the input
text sequence x(i) = (x

(i)
1 , ..., x

(i)
L ) with length L,

we leverage the Seq2seq encoder-decoder architec-
ture to maximize the conditional log-likelihood
log pθ(y|x) where y(i) = (y

(i)
1 , ..., y

(i)
T ) with

length T is the output text sequence:

LMLE(θ) =
N∑

i=1

T∑

t=1

log pθ(y
(i)
t |y

(i)
<t, x

(i)) (3)

pθ(y
(i)
t |y

(i)
<t, x

(i)) = softmax(Wh
(i)
t + b) (4)

h
(i)
t = g(y

(i)
t−1, f(x

(i); θ); θ) (5)

Following the standard taxonomy for Zero-shot
cross-lingual transfer and Few-shot cross-lingual
transfer setting (Ding et al., 2022), we investigate
the model transfer capability based on the avail-
able resources during training. In zero-shot setting,
we are only given a high-quality set of human-
annotated English ToD dataDEn. We directly train
the Seq2seq model with the defined input-output
pairs, including English data and data translated
from English using a machine translation system.
In few-shot setting where we have further access

to a small budget of foreign ToD data DFo during
training to induce few-shot learning. Particularly,
we include a small set (100 dialogs) of foreign ToD
data in a target language during training and eval-
uate multilingual models’ performance on NLG
tasks. In summary, we mainly have three experi-
mental settings (Train data→ Test data) for bench-
marking based on different language datasets to
use († indicates only 100 dialogs available):

• Zero-shot F&F: DEn → DF&F
Fo

• Few-shot F&F: DEn +DF&F †
Fo → DF&F

Fo

• Few-shot F&E: DEn +DF&E†
Fo → DF&E

Fo

3 Model Adaptation for Cross-lingual
Dialog Transfer

3.1 Structural Fine-tuning
In the last section, we describe how we induce
cross-lingual transfer by directly fine-tuning large
mSeq2seqs on labeled data of response generation
task in English and very few in a target language.
However, models trained with extremely imbal-
anced data distribution may fail to generate rea-
sonable target language responses and suffer from
spurious correlation to source language (Gu et al.,
2019). How to adequately extract relevant source
language knowledge while preserving spaces for
target language adaptation becomes crucial and
challenging, more than just simple fine-tuning.

We instead split the training steps into separate
phases that allows more exclusive parameter up-
dates on source and target languages independently.
In the first phase, we care more about learning the
task-centralized knowledge agnostic of languages.
We retain the original fine-tuning step of training
large mSeq2seqs with English data only that can
explicitly performs well on generating high-quality
responses in English.

3.2 Language Adapters
Since the emphasis is on target language adap-
tation as well as avoiding catastrophic forgetting
of the multilingual and task knowledge acquired
from Section 3.1, adapter module is a great fit for
parameter-efficient and quick fine-tuning to new
tasks and domains (Rebuffi et al., 2017). Following
MAD-X (Pfeiffer et al., 2020c) for cross-lingual
transfer, we employ a recent efficient adapter struc-
ture to learn language-specific information for each
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Figure 2: The overview of our proposed cross-lingual transfer framework: XDFusion. We first fine-tune parameters
of large pretrained mSeq2seq models with English dialogs to learn syntactic information. Additional language
adapters are trained via BART/T5 denoising task while the pretrained multilingual model is kept frozen. Finally,
we insert both English (En) and Foreign (Fo) language adapters in the fine-tuned Seq2seq models from Structural
Fine-tuning while training the new inserted fusion module only on target language dialogs.

language, independent from the original large fine-
tuned model. Each adapter module contains a sim-
ple down- and up-projection combined with a resid-
ual connection:

Adapterl(hl, rl) = Ul(ReLU(Dl(hl))) + rl (6)

where hl is the hidden representation of subsequent
layer normalization output after feed-forward layer
in the transformer layer l, Ul and Dl are up- and
down-projection matrices, rl is the hidden state di-
rectly from feed-forward layer. During training, we
insert the language adapters into original large pre-
trained multilingual models and update their param-
eters only with others kept fixed. However, instead
of training language adapters using MLM tasks
like Pfeiffer et al. (2020c), to better align the origi-
nal pretraining objective and learn Seq2seq-fashion
language knowledge, we train them on unlabeled
data of a language using the BART denoising task.

3.3 Target Language Adaptation
With fine-tuned Seq2seq model from Section 3.1
as well as both source and target language adapters
from Section 3.2, we could perform task- and
language-specific learning to boost the perfor-
mance of a specific target language with very few
annotations available. To achieve the knowledge
sharing between languages, we fix the parameters
of large fine-tuned model Θ and source/target lan-

guage adapters ϕs, ϕt, we additionally introduce an
AdapterFusion module (Pfeiffer et al., 2020a) with
parameters Ψ to combine two language adapters
with cross attention and facilitate dynamic knowl-
edge allocation to the downstream task by training
target language data Dt.

Ψt ← argmin
Ψ
Lt(Dt; Θ, ϕs, ϕt,Ψ) (7)

By employing two phases of knowledge extraction
and composition, we only train the AdapterFusion
layer which averts catastrophic forgetting on task-
related knowledge reserving from large fine-tuned
models and interference between separate language
tasks and target-language adaptation. The use of
parameter-efficient structure is language agnostic
and seamlessly extendable to other low-resource
languages by efficiently training a lightweight tar-
get language adapter and a fusion module with
easily fetched unlabeled data (bitext pairs are not
required). It can allow fast alignment with other
languages without much parameter updating.

4 Experimental Settings

4.1 Dataset
We conduct our experiments on GlobalWOZ
dataset (Ding et al., 2022), a large-scale multilin-
gual ToD dataset globalized from an English-based
ToD benchmark: MultiWoZ (Budzianowski et al.,
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2018) with four different multilingual use cases,
based on the tongue of speakers and countries they
travel. We mainly adopt three of all four Global-
WOZ settings: an English speaker in an English
country (E&E), a Foreign speaker in an English
country (F&E) and a Foreign speaker in a Foreign
country (F&F), described in Section 2.1 and Figure
1. There are 10,437 dialogs for each language use
in GlobalWOZ. To better compare the observations
in GlobalWoZ (Ding et al., 2022) experiments, we
follow Ding et al. (2022) to choose English as the
high-resource source language and other three lan-
guages: Chinese (Zh), Spanish (Es), Indonesian
(Id) as the low-resource target (foreign) languages.
In each of four languages, we split 10,437 dialogs
into train/validation/test sets with ratio 8:1:1 and
we further subsample 100 dialogs from Zh, Es, Id
train sets for few-shot training. Finally we remain
Zh, Es, Id test sets untouched during training and
only for testing purpose.

4.2 Baselines
In our first set of experiments, we explore the fol-
lowing zero-shot baselines and strategies for train-
ing models in Chinese (Zh), Spanish (Es), Indone-
sian (Id) given a large amount of English training
data:

• E&E: Fine-tune mSeq2seq with E&E training
data only.

• Translate-Train (Ding et al., 2022): Translate
E&E data with label sequence translation in Ding
et al. (2022) using an external machine transla-
tion system.

• Translate-Back: Directly translate response out-
puts predicted from English-trained model back
into the target language.

• Adapter (Pfeiffer et al., 2020c): Insert and fine-
tune adapter modules both at encoder and de-
coder side only.

• Freeze-Decoder (Chi et al., 2019): Freeze the
decoder part and fine-tune encoder side only.

• Multi-task learning: NMT & Denoise (Liu
et al., 2020): Include external out-of-domain cor-
pus to perform NMT or Denoising task training
simultaneously with the main dialog response
generation task.

Then we consider the following few-shot baselines
by adding a small amount of Zh, Es, Id training
data along with English training data.

• F&F: Fine-tune mSeq2seq with few F&F train-
ing data (100 dialogs) only.

• E&E + F&F: Fine-tune Seq2seq model with
both E&E and few F&F training data.

• SPImpMem (Chen et al., 2019): Insert shared
and private memory modules within Seq2seq
model to induce cross-lingual transfer.

• Adapter (Pfeiffer et al., 2020c): Fine-tune
Seq2seq model with E&E training data; then
insert and fine-tune adapter modules both at en-
coder and decoder side only.

• XDFusion: Our proposed approach to insert
Adapter cross-lingual fusion module which com-
bines pretrained language adapters together.

4.3 Experimental Details

Task Our experiments are mainly conducted
on Natural Language Response Generation task
(NLG), a critical component in a ToD system to ac-
curately generate relevant system responses given
the dialog history and system acts, where large
pretrained models serve an ideal purpose.
mBART-50-large-NMT We choose mBART as
our base Seq2seq pretrained model with 590M pa-
rameters from HuggingFace with a hidden_size =
1,024, which is also first fine-tuned on 50-language
translation tasks (mBART-50-large-NMT) (Tang
et al., 2021). We then employ the defined data for-
mat to train base models in few-shot and zero-shot
setting depicted in Section 2.2.
Evaluation We use sacreBLEU to evaluate the
overall n-gram match between generated and
ground truth responses and Slot Error Rate (SER)
to measure the percentage of correct predicted slots
in a generated response.
Implementation details We implement our frame-
work and all baselines within the Transformers
(Wolf et al., 2019) and Adapter-Transformers
(Pfeiffer et al., 2020b) library. We mainly
use mBART (mBART-large-50, mBART-50-large-
NMT) and mT5 (mT5-small, mT5-base) for our
base pretrained multilingual models. For fine-
tuning via mBART denoising task on unlabelled
data for language adapters, we train the same
amount of mC4 dataset (Xue et al., 2020) from
the public Common Crawl web scrape as Global-
WOZ training data of the corresponding language
for 10 epochs, with a batch size of 6 and learning
rate 5e− 5. For fine-tuning pretrained models with
large training dialog corpus, we train each model
for 10 epochs with a batch size of 16 and learn-
ing rate 1e − 4. Finally, in few-shot training, we
train the final model for 60 epochs with the same
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Task NLG

Metrics sacreBLEU (%) ↑ SER (%) ↓
ID Model Setting zh es id avg zh es id avg

1⃝ E&E (Tang et al., 2021) Zero-shot 4.44 7.34 11.00 7.59 51.94 33.02 30.97 42.48
2⃝ Translate-Train (Ding et al., 2022) Zero-shot 10.80 11.81 12.40 11.67 42.32 38.61 37.12 39.35
3⃝ Translate-Back Zero-shot 14.89 14.10 16.70 15.23 44.19 34.79 29.24 36.07

4⃝ F&F (Tang et al., 2021) Few-shot 22.56 15.86 20.03 19.48 17.50 30.11 16.91 21.51
5⃝ 1⃝ + 4⃝ (Tang et al., 2021) Few-shot 22.76 19.47 22.34 21.52 17.31 20.69 17.00 18.33

6⃝ 5⃝ + SPImpMem (Chen et al., 2019) Few-shot 6.78 8.51 4.31 6.53 78.77 75.31 83.04 79.04
7⃝ 5⃝ + Adapter (Pfeiffer et al., 2020c) Few-shot 23.82 21.28 23.22 22.77 15.78 21.69 15.62 17.70
8⃝ 7⃝ + Fusion (XDFusion) Few-shot 26.71 21.39 23.78 23.96 9.76 18.46 12.51 13.58

Table 1: SacreBLEU and Slot Error Rate (SER) of different cross-lingual methods in NLG task of three target
languages. Best scores are highlighted in bold. ↑ indicates the higher the better while ↓ indicates the lower the
better. avg implies the average result of three languages.

batch size and learning rate. For zero-shot baseline
(Multi-task NMT), we include CCMatrix dataset
(Schwenk et al., 2021) for additional NMT training.
We choose the best checkpoint for evaluation based
on validation performance. We use the Adam op-
timizer for all parameter optimization. We follow
the hidden size of pretrained models with dimen-
sionalities of 512 (mt5-small), 768 (mt5-base), and
1024 (mBART-large-50). We run each experiment
with three random seeds and take the average as
the results on 8 NVIDIA A100 40GB GPUs.

5 Results & Discussion

5.1 Main Results

In Table 1, we demonstrate the main results of
cross-lingual transfer capability by fine-tuning
mBART on the GlobalWOZ response generation
task. The inferior performance of multilingual
mBART in zero-shot setting 1⃝ reflects the off-
target problem where generated outputs are un-
desirably code-switched and missing accurate slot
values. Although Translate-Train ameliorates the
problem by training models with pseudo-labeled
translated data, noisy machine-translated entities
without context-aware translation still deteriorates
its performance on generating accurate local en-
tities. From 3⃝, we found sacreBLEU increases
which alludes that multilingual encoders could im-
plicitly learn to encode language-agnostic repre-
sentations that are reasonable to decode even the
decoder messes up the target language generation.

For few-shot setting, we observe that the perfor-
mance increases significantly if we introduce even
a small set of annotated foreign dialogs 4⃝. Co-
training with English data directly that transfers

Model sacreBLEU (%) ↑ SER (%) ↓
zh es id avg zh es id avg

mT5-small 15.4 7.7 8.7 10.6 38.9 51.4 56.2 48.8
w/ XDFusion 19.1 9.8 11.8 13.6 25.4 39.8 42.9 36.0

mT5-base 13.0 11.2 14.2 12.8 37.6 36.7 33.9 36.1
w/ XDFusion 23.0 14.1 16.5 17.9 14.2 29.5 28.0 23.9

mBART-50-large 24.6 17.9 22.4 21.6 13.6 17.6 14.7 15.3
w/ XDFusion 26.8 20.0 24.0 23.6 9.8 17.5 12.8 13.3

mBART-50-large-NMT 22.8 19.5 22.3 21.5 17.3 20.7 17.0 18.3
w/ XDFusion 26.7 21.4 23.8 24.0 9.8 18.5 12.5 13.6

Table 2: Comparison of using different pretrained mod-
els for F&F testing dataset in three languages. Best
scores are highlighted in bold.

Model sacreBLEU (%) ↑ SER (%) ↓
zh es id avg zh es id avg

mT5-small 5.6 7.6 7.6 6.9 59.5 47.4 45.6 50.8
w/ XDFusion 8.9 9.8 7.7 8.8 41.9 38.5 40.6 40.3

mT5-base 9.2 11.4 8.2 9.6 46.4 29.8 51.0 42.4
w/ XDFusion 14.5 15.4 16.0 15.3 35.4 31.9 25.3 30.9

mBART-50-large 18.8 15.0 21.8 18.5 24.2 26.9 7.5 19.5
w/ XDFusion 21.6 22.4 23.4 22.5 23.3 16.3 14.0 17.9

mBART-50-large-NMT 17.8 20.2 22.8 20.2 24.7 13.1 8.3 15.4
w/ XDFusion 16.3 21.0 23.5 20.3 21.1 11.3 10.4 14.3

Table 3: Comparison of using different pretrained mod-
els for F&E testing dataset in three target languages.
Best scores are highlighted in bold.

English knowledge 5⃝ will be more useful for the
same Indo-European language family like Spanish.
SPImpMem 6⃝ does not exhibit its power in disen-
tangling language agnostic/specific information in
our case with an extremely imbalanced dataset. The
additional private memory is not well-trained with
only few foreign dialogs. Eventually, our proposed
adapter framework 8⃝, beats all above baselines
including introducing a single adapter 7⃝, by effi-
ciently manipulating denoising-trained adapters to
quickly adapt language models to a target language
without sacrificing much task-specific knowledge
learned in the previous phase. We also found that
our approach shows larger improvements in Chi-
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Figure 3: Performance difference of varying available foreign data amount for training. Dashed lines are the results
of using all available foreign dialogs in GlobalWOZ of a target language, which are considered as the upper bound.

nese data, which indicates our treatment in disen-
tangling structure and language learning is more
important when source and target languages lin-
guistically share less common.

5.2 Comparison to pretrained language
models

Table 2 and 3 summarize the results of our pro-
posed framework performance with different base
models against the baseline in 5⃝ of Table 1. Non-
surprisingly, using mT5-small with fewer param-
eters have limited capacity to learn complicated
structures of the fine-tuning task which leads to
unsatisfying results. Interestingly, using mBART
is more effective than mT5-base while they have
similar amount of parameters. We conjecture that
the use of special language tokens in mBART may
induce better model awareness of language-specific
knowledge in few-shot setting. The effectiveness
of Pretraining mBART with the machine transla-
tion task has alternative trends in three languages
which may conclude that it will highly depend on
the domain intimacy between machine translation
corpus and downstream dialogs. For F&E setting,
overall we have poorer sacreBLEU (code-switched
response quality) and SER (predicting English enti-
ties) than F&F setting where we could deduce that
code-switched phenomena make the models harder
to generalize between two languages especially
with extremely imbalanced datasets. However, we
still observe a larger improvement by adopting our
proposed framework in F&E setting.

5.3 Further Analyses

Data variation. In Figure 3, we vary the num-
ber of foreign dialogs to train in the final phase
of language adaption. We observe each language

Model sacreBLEU (%) ↑ SER (%) ↓
zh es id avg zh es id avg

Baseline 4.4 7.3 11.0 7.6 51.9 33.0 31.0 42.5

Adapter 2.3 5.5 8.4 5.4 54.7 39.3 42.1 45.3
Freeze-Decoder 7.1 6.5 9.5 7.7 44.3 35.6 30.3 36.8
NMT 1.7 5.4 9.9 5.7 54.1 40.5 34.1 42.9
Denoise 7.2 6.8 9.4 7.8 44.2 33.2 28.3 35.2

Translate-Back 14.9 14.1 16.7 15.2 44.2 34.8 29.2 36.1

Table 4: Comparison of using different zero-shot ap-
proaches for F&F testing dataset in three target lan-
guages.

saturates around 1k dialogs where the dashed lines
are the upper bound of performance when we in-
clude all foreign dialogs for training. It demon-
strates a good few-shot performer of our model by
fine-tuning the adapter fusion module that could en-
hance the overall performance in the low-resource
language setting.

Zero-shot observation. Table 4 summarizes our
extended experiment results of mBART-50-large-
NMT performance on zero-shot transfer to under-
stand the effects of some common techniques. Di-
rectly applying English-trained model to testing
low-resource languages has the lowest BLEU and
SER. Since the problem mainly rises from the catas-
trophic forgetting on the decoder side, we have pro-
posed different additional approaches to mitigate.
However, we found neither of them work better
except a slight increase in decoder freezing and
denoising (row 3 and 5). Special input-output for-
matting seems to require more efforts for adapters
to digest and transform where limiting parameter
updates will restrict such capability and still suffer
from off-target problem. We then focus our con-
tributions in unfreezing our limited budget where
extremely few foreign dialog annotation is accept-
able.
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Figure 4: Examples of generated system responses from different models, along with its corresponding input and
ground truth responses. The first example is sampled from MultiWOZ F&E Chinese (Zh) test dataset and the other
is from F&F. Red words indicate the correct local entities (F&E has English entities; F&F has Foreign entities).
Orange words indicate wrong code-switched responses. Green words indicate wrong foreign entities.

Qualitative analysis. Figure 4 shows the gener-
ated response examples from different models on
the F&E and F&F test sets. We first observe that if
we directly employ mSeq2seq models trained with
only E&E data to low-resource language tasks,
we can see the off-target problem causes models
to generate English responses where the target lan-
guage indicator is omitted. Instead, Translate-Train
method generates Chinese correctly except the en-
tities are erroneous due to wrong-translated entities
from model supervision. Both XDFusion and the
few-shot baseline (E&E + F&F) generate reason-
able responses that correctly follow the given sys-
tem acts. The results further elucidate XDFusion’s
high flexibility to generalize to new target language
with very limited training data, by generating more
fruitful responses with consistent local entities.

6 Related Work

Response generation is one of critical components
in ToD systems. Extensive works have proposed to
enhance response quality with RNNs (Wen et al.,
2015), large pretrained models (Zhang et al., 2020b;
Peng et al., 2020), augmentation (Xu et al., 2021)
or new learning objectives (Mi et al., 2019; Zhu,
2020). They are either dealing with monolingual
data or still require large amounts of annotated data
which cannot allow few-shot foreign language gen-
eration – a vast majority of existing multilingual

systems mostly consider language-agnostic task
outputs like semantic parsing or ignore real code-
switched sentences in real cases (Ding et al., 2022).
Instead, DeltaLM (Ma et al., 2021) pretrains inter-
leaved multilingual decoders for text summariza-
tion and question generation and CSRL (Wu et al.,
2022) learns language-agnostic structure-aware rep-
resentations for semantic role labeling. Often, due
to the high cost of collecting low-resource task-
oriented dialog annotations, data-based (Yi and
Cheng, 2021; Xiang et al., 2021; Li et al., 2021)
and model-based transfer approaches (Schuster
et al., 2019; Colombo et al., 2021) are popular to
take advantage of high-resource language corpus
for cross-lingual transfer. Nevertheless, few-shot
response generation is yet largely unexplored to
induce cross-lingual transfer. The most related
prior work is Chen et al. (2019) which extends
the Seq2seq models for response generation with
private and local memory to accommodate new
languages, which nevertheless cannot learn good
memory modules when language data is highly im-
balanced. Our work continues to explore the pos-
sibility of cross-lingual response generation with
large Seq2seq models under low-resource language
constraint more effectively.
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7 Conclusion

In this paper, we explore the pretrained mSeq2seq’s
capability to induce high-resource language dialog
knowledge for low-resource language response gen-
eration. By introducing a few foreign high-quality
annotated dialogs, we observe that it is possible
to learn a dynamic adapter fusion module to fuse
all related knowledge in a single large multilin-
gual model, while preserving multilingual power
from high-resource language fine-tuning. We have
shown that by fine-tuning on very few dialogs of
a target language, our proposed model-agnostic
framework is capable of producing reasonable re-
sponses and more effective than several common
baselines, which could quickly adapt to a new tar-
get language without further parameter.

Limitations

While we observe marked improvements in the pro-
posed multilingual language transfer with adapters,
we recognize that there are several limitations still
in the experiments. The first limitation is that the
entity translation remains difficult, which is espe-
cially severe in the generated responses in the E&E
setting. We think that name-entity translation is it-
self a task to be explored in-depth for future works.
On the other hand, we think that while knowledge
of language is one aspect for the transfer, the struc-
tural information of the semantic representation is
also another important aspect – models need to ac-
quire the important semantic structural information
on top of the language-specific syntactic informa-
tion. We think that this would further improve the
resulting performance.
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