
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 7564–7580

July 9-14, 2023 ©2023 Association for Computational Linguistics

One Network, Many Masks:
Towards More Parameter-Efficient Transfer Learning

Guangtao Zeng∗ Peiyuan Zhang∗ Wei Lu
StatNLP Research Group

Singapore University of Technology and Design
guangtao_zeng@mymail.sutd.edu.sg, {peiyuan_zhang, luwei}@sutd.edu.sg

Abstract

Fine-tuning pre-trained language models for
multiple tasks tends to be expensive in terms
of storage. To mitigate this, parameter-efficient
transfer learning (PETL) methods have been
proposed to address this issue, but they still re-
quire a significant number of parameters and
storage when being applied to broader ranges
of tasks. To achieve even greater storage re-
duction, we propose PROPETL, a novel method
that enables efficient sharing of a single PETL
module which we call prototype network (e.g.,
adapter, LoRA, and prefix-tuning) across layers
and tasks. We then learn binary masks to select
different sub-networks from the shared proto-
type network and apply them as PETL modules
into different layers. We find that the binary
masks can determine crucial information from
the network, which is often ignored in previous
studies. Our work can also be seen as a type of
pruning method, where we find that overparam-
eterization also exists in the seemingly small
PETL modules. We evaluate PROPETL on var-
ious downstream tasks and show that it can
outperform other PETL methods with approxi-
mately 10% of the parameter storage required
by the latter.1

1 Introduction

With the release and wide application of numerous
pre-trained language models (PLMs) (Devlin et al.,
2019; Liu et al., 2019), pre-training and subse-
quently fine-tuning them becomes prevalent in nat-
ural language processing (NLP). This yields good
performance in many downstream tasks. However,
such a paradigm requires the entire model to be up-
dated and saved after fine-tuning. As PLMs grow in
size, traditional fine-tuning becomes costly in stor-
age, limiting the application to multi-task scenarios.
In order to ameliorate this issue, many Parameter-
Efficient Transfer Learning (PETL) methods have

*The first two authors contributed equally.
1Our code is available at https://github.com/

ChaosCodes/ProPETL.

Attention

Feed Forward

Attention

Feed Forward

Attention

Feed Forward

…
…

Shared 
PrototypeMask1

Shared 
PrototypeMaskl

Shared 
PrototypeMaskN

Figure 1: An illustration of our PROPETLAdapter model.
Note that PROPETL is orthogonal to the specific PETL
architectures. LoRA and prefix-tuning are also imple-
mented in our framework.

been proposed (Houlsby et al., 2019; Li and Liang,
2021; Hu et al., 2022). Rather than fine-tuning
the entire model, they introduce new parameters
and only fine-tune those additional parameters on
downstream tasks, which drastically reduces the
storage of the parameters required by each task.
However, they still require a significant number of
parameters when more tasks are considered.

In this paper, we continue this line of research
and target using even less storage per task. We
observe that recent advancements in the field of
PETL focus on finding better ways to apply the
additional parameters, such as the adapter module
after each feed-forward layer (Houlsby et al., 2019;
Pfeiffer et al., 2021), or the low-rank matrices in
the query and value projection of the self-attention

7564

https://github.com/ChaosCodes/ProPETL
https://github.com/ChaosCodes/ProPETL


networks (Hu et al., 2022). However, limited works
examine the impact of sub-network structure and
integrate pruning methods with PETL methods. In
fact, studies in network pruning have shown that
the modeling ability of neural networks relies not
only on the parameters but also on the sub-network
structures that are decided by the pruning masks.
For instance, Zhou et al. (2019) discovered that
the sub-network of an untrained model can yield
great performance without any parameter update.
In light of this, we seek to incorporate the struc-
tural information of sub-networks into PETL. We
believe that when enough structural information
is injected into the network, we no longer need
that many parameters in PELT modules and further
improve the parameter efficiency.

To this end, we propose a novel PETL method
dubbed PROPETL that enables efficient sharing of
a single prototype adapter, prefix, or LoRA across
layers and tasks. When sharing the prototype net-
work, PROPETL learns binary masks to prune dif-
ferent sub-networks in different layers and tasks
(Figure 1). The connections of the prototype net-
work pruned in one layer can be used in another
with a different pruning mask. In this way, a pa-
rameter can be used multiple times across differ-
ent modules, achieving higher parameter efficiency.
Previous methods (He et al., 2022b; Ma et al., 2022)
only consider simply discarding (pruning) the use-
less parameters, while we focus on the structural
information in masks by strategically dispatching
the parameters in the single prototype network to
different modules. We evaluate PROPETL on var-
ious downstream tasks, including GLUE (Wang
et al., 2018), XSum (Narayan et al., 2018), and
WMT16 Ro-En (Bojar et al., 2016). Experiments
show that PROPETL achieves better performance
than other PETL methods while using significantly
fewer parameters.

Our contributions are summarized as follows:

• We propose PROPETL, a highly parameter-
efficient transfer learning method that injects
structural information into PELT and allows
for efficient sharing of a single prototype net-
work across layers and tasks.

• Experiments show PROPETL is able to dra-
matically reduce the storage of the parameters
while achieving better performance than con-
ventional PETL methods.

• PROPETL offers an alternative view for net-

work pruning and sharing, where we use bi-
nary masks to decide when to discard or share
the parameters. We hope to inspire more in-
triguing explorations in this direction.

2 Related Work

In this section, we briefly survey ideas that are
related to our work from three fields: parameter-
efficient transfer learning, pruning methods, and
multi-task learning.

2.1 Parameter-Efficient Transfer Learning

Recently, as the pre-trained language models get
larger and larger, some parameter-efficient trans-
fer learning methods that only update a few ex-
tra parameters while freezing the PLM backbone
have been proposed. Adapter-tuning (Houlsby
et al., 2019) fine-tuned adapter modules inserted
after each attention and feed-forward layer. Prefix-
tuning (Li and Liang, 2021) placed an addi-
tional trainable prefix to the keys and values ma-
trix in the attention module. LoRA (Hu et al.,
2022) injected tunable rank decomposition matri-
ces into each Transformer layer. Based on these
parameter-efficient transfer learning methods, He
et al. (2022a) gave a unified framework that al-
lows for the transfer of design elements across
various PETL approaches. However, when ap-
plied to larger PLMs and a broader range of tasks,
these methods still require a large storage space
because the number of extra parameters is directly
proportional to the number of layers and tasks. In-
spired by the parameter-sharing techniques of AL-
BERT (Lan et al., 2020a), we propose sharing the
additional parameters in PETL modules across lay-
ers and tasks. Our method can thus obtain higher
parameter-efficient efficiency with a significantly
smaller portion of additional storage than existing
PETL methods.

2.2 Pruning Methods

Pruning is one of the most popular methods to re-
duce unnecessary weights from over-parameterized
neural networks while maintaining comparable per-
formance. Recently, Frankle and Carbin (2019)
proposed Lottery Ticket Hypothesis and stated that
in a randomly initialized dense model, a sparse sub-
network exists that, when trained in isolation, can
achieve performance comparable to dense models.
Accompanied by this hypothesis, many pruning-
before-training methods have emerged (Lee et al.,

7565



Adapter1

Prototype

0 0 1
1 1 0
0 1 1

1 0 1
1 0 1
0 1 0

0 1 1
1 1 0
0 1 0

Adapterl

AdapterNMaskN

MasklMask1

1 0 0

1 0 1

0 1 0

1 0 1

0 1 1

0 0 0
Layer
Mask

Hybrid
Mask

Task
Mask

1 0 1

1 1 1

0 1 0

Network

Figure 2: Overview of our PROPETL method. In the left part, the grey neural network indicates the prototype
network. Using various binary masks, we can derive sub-networks by pruning certain connections, as depicted by
the green (top right), red (down left), and blue (down right) networks. In the right part, we learn layer masks and
task masks under multi-task learning. Given a specific Transformer (Vaswani et al., 2017) layer and task to handle,
PROPETL generates a hybrid mask by performing an OR logical operation on the layer mask and the task mask. It
then uses hybrid masks to generate different sub-networks from the prototype.

2019; Bai et al., 2022; Sreenivasan et al., 2022). Xu
et al. (2021) further propose a method that prunes
the backward gradient of the neural network, as
opposed to pruning the network parameters them-
selves. Based on these methods, some works (He
et al., 2022b; Ma et al., 2022) also proposed to com-
bine pruning algorithms with parameter-efficient
methods to further decrease the additional mod-
ule size. However, those methods only focus on
discarding redundant parameters. A parameter is
either discarded or retained without any sharing.
They fail to make full use of the additional parame-
ters and cannot achieve highly sparse sub-networks
without significantly compromising accuracy.

2.3 Multi-Task Learning

Multi-task learning (Zhang and Yang, 2022), which
involves training a single model to perform well
on multiple tasks, has gained popularity as a re-
search direction in machine learning. However, this
approach can be hindered by catastrophic forget-
ting (Kirkpatrick et al., 2016) and data imbalance
among tasks, which will result in overfitting on low-
resource tasks and underfitting on high-resource
tasks (Arivazhagan et al., 2019). Houlsby et al.
(2019) propose adapter tuning that only introduces
and updates small additional parameters for each

task while freezing the pre-trained model. Based
on such a parameter-efficient method, Mahabadi
et al. (2021) train a hyper-network named Hyper-
former, which generates task-specific weights for
the adapter modules when fed with different task
embeddings.

3 Methods

In this section, we first give an introduction to
parameter-efficient transfer learning (PETL). We
then present our method PROPETL, depicted in Fig-
ure 2, which combines the techniques of parameter-
sharing and pruning to further improve the parame-
ter efficiency compared to existing PETL methods.

3.1 Preliminaries
In parameter-efficient transfer learning, we freeze
the parameters θlm of the pre-trained language
model and then introduce additional fine-tunable
parameters denoted as θt. Given dataset
{Xi, Yi}Ni=1, the goal of parameter-efficient fine-
tuning is to maximize the following likelihood of
the label Y by only updating the additional param-
eters θt:

max
θt

N∑

i=1

logP (Yi|Xi; θlm, θt) (1)

7566



Such parameter-efficient methods suggest a
more effective way to adapt pre-trained language
models over downstream tasks than fully fine-
tuning. We give a brief introduction of the
three most widely used PETL modules, namely
adapter (Houlsby et al., 2019), prefix-tuning (Li
and Liang, 2021), and LoRA (Hu et al., 2022)
in Appendix A. However, there is still a storage
limitation when we handle a large range of tasks
using these methods. In this paper, we investi-
gate the potential for further enhancing parame-
ter efficiency in neural network models by reduc-
ing storage requirements. While previous PETL
methods have primarily focused on decreasing the
number of parameters to improve efficiency, our
approach posits that employing varying bit lengths
(e.g., 1-bit, 8-bit, 32-bit) during storage can lead to
significant improvements in parameter efficiency
by reducing the overall number of bits used by
the parameters. To this end, we use bits to mea-
sure the storage, which we call Bit-Level Storage
(BLS), to take into account the fact that different
parameters may have different bit lengths. Con-
sider a neural model, where each parameter has a
specific bit length. Then we divide these parame-
ters into N distinct groups based on their respective
bit lengths. Let {ρi}Ni=1 denote the number of pa-
rameters within the group i, with corresponding bit
lengths {bi}Ni=1. The BLS for these parameters can
subsequently be determined as follows:

Bit-Level Storage =
N∑

i=1

ρibi (2)

3.2 Shared Prototype Network

Parameter-efficient methods like adapter and prefix-
tuning tend to introduce an additional module
in each Transformer layer. Assuming the Trans-
former has L layers, we can split the parameters θt
into [θt,1, ..., θt,L] according to their layer indexes.
Therefore, we can rewrite Equation 2 as:

max
θt,1,...,θt,L

N∑

i=0

logP (Yi|Xi; θlm, [θt,1, ..., θt,L])

(3)
Inspired by ALBERT (Lan et al., 2020b), in our

methods, we first introduce additional parameters
for a single PETL module as our prototype network,
denoted as θpro. Then, we share the prototype net-
work across different layers. Assuming that the
number of parameters in a single PETL module is

Algorithm 1: PROPETL training algorithm
Input: Dataset D = (xi, yi), prototype network

learning rate λp, mask learning rate λm,
number of layers L, sparsity k% ∈ [0, 1],
pretrained parameters θlm

Output: Parameter of the prototype network
θpro ∈ Rn, binary mask across layers
m ∈ Rn

1 θpro ← randomly initialize in Rn

2 s← randomly initialize in Rn

3 for (xi, yi) in D do
/* Apply masks in each layer */

4 for l in 1, 2, ..., L do
5 ml ← h(sl, k)
6 θsub,l ← θpro ⊙ml

7 θpro ← θpro − λp∇θpro logP (yi|xi; θlm, θsub)
8 s← s− λm∇s logP (yi|xi; θlm, θsub)

9 for l in 1, 2, ..., L do
10 ml ← h(sl, k)

11 return θpro,m

n, we can decrease total parameters from nL to
only L, which significantly improves the parame-
ter efficiency. Therefore, we convert the objective
function to a more concise one:

max
θpro

N∑

i=0

logP (Yi|Xi; θlm, θpro) (4)

3.3 Masked Sub-Networks
Sharing the parameters alone will reduce the
model’s capacity to capture meaningful represen-
tation in different layers, leading to suboptimal
results. Inspired by Zhou et al. (2019) and Ra-
manujan et al. (2020), we believe that parameters
and network structures are both crucial contribut-
ing factors to the model’s representative capacity.
To this end, we introduce different binary masks
ml = {0, 1}n in each Transformer layer l (left part
of Figure 2), where n denotes the number of pa-
rameters in a single PETL module. Each mask rep-
resents a corresponding subnetwork of the shared
prototype network. Even though the prototype is
shared among all layers, we can use different masks
to create different sub-networks for each layer l,
whose parameter will be θsub,l = θpro⊙ml, where
⊙ indicates the element-wise product. With this,
we can get our final objective function as:

max
θpro,m1,m2,...,mL

N∑

i=0

logP (Yi|Xi; θlm, θsub) (5)

where θsub = [θpro ⊙m1, θpro ⊙m2, ..., θpro ⊙
mL].

7567



To learn such masks, we develop our training
algorithm based on the edge-popup approach (Ra-
manujan et al., 2020). Specifically, for each bi-
nary mask ml, we introduce floating-point scores
sl ∈ Rn. In the forward pass, we generate the
binary mask ml by setting the top-k% with the
largest absolute value in sl as 1 and the rest as 0.
We denote such top-k% thresholding function as h,
and ml = h(sl). We refer to the hyperparameter
k% as the sparsity ratio in subsequent sections of
this paper. During the backpropagation, we use the
straight-through gradient estimator (Bengio et al.,
2013) to approximate the gradient of the scores,
where function h(·) is treated as the identity func-
tion. In addition to training the masks, we also
jointly optimize the prototype network.

Our approach employs learnable floating-point
scores for each binary mask during fine-tuning,
leading to nL parameters. When integrated with
the prototype network, PROPETL updates a total
of nL + n parameters during the training phase,
which is marginally more than the conventional
PEFT methods which have nL extra parameters.
A comprehensive overview of the PROPETL algo-
rithm can be found in Algorithm 1. After train-
ing, we discard the floating-point scores and retain
only the binary masks (1-bit) together with the
shared prototype network (32-bit). Assuming that
the 32-bit prototype network requires p bit-level
storage and the binary mask of the same dimen-
sion demands p/32, our PROPETL can achieve a
substantial decrease in storage from around pL to
p(1 + L/32). To reconstruct the network structure
during inference, we adhere to the following steps:
(1) first load the unpruned, shared 32-bit prototype
network, (2) then load the binary masks (1-bit) for
each layer/task, and (3) extract and use the pruned
subnets from the shared prototype network based
on specific binary masks during the inference step.

3.4 Hybrid Masks for Multi-Task Learning

Rather than just sharing a PETL module across
layers under single-task learning, we can also al-
low for efficient sharing of the prototype network
across multiple tasks. In our approach, we lever-
age layer masks, as introduced in the previous sec-
tion, to support parameter sharing within the model.
Additionally, we introduce task masks to support
parameter sharing across multiple tasks. By per-

forming a logical OR operation2 on these masks,
we can obtain a hybrid mask for a specific layer in a
specific task, as shown in the right side of Figure 2.

mhybrid = mlayer ∨mtask (6)

With the design of the hybrid mask, given T
tasks and N layers in the pre-trained language mod-
els, we only require one PROPETL module, N layer
masks, and T task masks, further reducing the BLS
from the single task scenario (e.g., 0.011% BLS
as in Table 2). In addition, layer masks and task
masks, which can be combined as hybrid masks,
will potentially help infuse the knowledge into the
shared prototype network from layers and tasks.

4 Experimental Setup

We briefly summarize the experimental setup in this
section. More details can be found in Appendix C.

Datasets We evaluate PROPETL on a wide range
of benchmarks, including language understanding
(GLUE (Wang et al., 2018)), text summarization
(XSum (Narayan et al., 2018)), and machine trans-
lation (WMT16 Ro-En (Bojar et al., 2016)).

Backbones We use RoBERTaBASE (Liu et al.,
2019) for single-task learning on GLUE. During
fine-tuning, we only tune our PROPETL module
and the text classification head. For generation and
multi-task learning benchmark, we use T5BASE (Raf-
fel et al., 2020) and only tune the PROPETL module.
Note that some previous works also tune the layer
norms (Houlsby et al., 2019; Mahabadi et al., 2021)
while we keep them frozen during fine-tuning.

PETL Modules and PROPETL We use the Pfeif-
fer adapter (Pfeiffer et al., 2021) as our adapter
module and set the bottleneck dimension as 64 by
default. For prefix-tuning, we follow Li and Liang
(2021) and choose the prefix length to be 64. As
for LoRA tuning (Hu et al., 2022), the bottleneck
dimension and the scaling factor α are both set to
32. In PROPETL, we increase the value of α to 48
to scale the representation, as the sparse network
will decrease the norm of the output representation.
We give a brief summary of these PETL modules
and how PROPETL is implemented on top of them
in Appendix A. Following Ramanujan et al. (2020),
we choose the sparsity ratio k% of PROPETL as
0.5, which we will also further discuss in Section 6.

2We provide ablations regarding the choice of mask com-
bining methods in Appendix D.1.

7568



Model % FT Params %BLS CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE Avg

RoBERTaBASE 100.00% 100.00% 60.94 94.04 87.25/90.76 91.34/88.53 90.96/90.70 87.57 92.53 73.14 86.16

Prefix (l=64) 0.95% 000.95% 63.27 94.42 89.05/92.01 88.86/85.18 90.46/90.39 85.76 91.46 63.79 84.97
LoRA (bn=32) 0.95% 000.95% 62.24 93.81 86.76/90.48 88.79/85.15 90.73/90.49 86.59 91.85 67.63 84.96
Adapter (bn=64) 0.95% 000.95% 63.15 94.00 86.93/90.49 89.78/86.52 90.84/90.65 87.10 92.23 70.50 85.65

PROPETLPrefix (l=64) 1.03% 000.11% 61.81 94.00 87.42/91.00 88.85/85.22 90.48/90.47 85.73 91.05 63.79 84.53
PROPETLLoRA (bn=32) 1.04% 000.11% 62.16 93.62 88.73/91.80 87.59/83.71 90.92/90.83 85.30 91.75 72.66 85.37
PROPETLAdapter (bn=64) 1.04% 000.11% 65.43 94.15 88.24/91.41 89.40/86.04 91.34/90.95 86.53 92.58 76.50 86.60

Table 1: Performance of all models based on RoBERTa on the GLUE tasks under single task settings. Bold fonts
indicate the best results. “bn” stands for the bottleneck dimension and “ l” refers to the number of prefixes. Here %
FT Params refers to the percentage of fine-tunable parameters during training (including the underlying floating
point score of each pruning mask). %BLS indicates the task-specific Bit-Level Storage (defined in Sec 3) calculated
against the fully-finetuned counterparts when saving the model weights and during the inference time.

In multi-task learning, we aim to maintain an ex-
pected k% around 0.5 for the hybrid mask, so we
set the k% to 0.3 for both the layer and task masks.3

Evaluation For text generation, we report
ROUGE-2 (Lin, 2004) on the XSUM test set and
BLEU (Papineni et al., 2002) score on the Ro-En
test set. Since the test sets of GLUE are not re-
leased publicly, following Zhang et al. (2021) and
Mao et al. (2022), when the sample number of the
datasets is fewer than 10k (RTE, MRPC, STS-B,
CoLA), we divide the original validation set into
halves – the first half for validation and the sec-
ond for testing. As for the other datasets in GLUE,
we randomly choose 1k samples from the training
set as our validation data and test on the original
validation set. we report both accuracy and F1 for
MRPC and QQP in GLUE . For STS-B, we report
both Pearson and Spearman correlation coefficients.
For CoLA, we report Matthews correlation. For
all remaining sub-tasks in GLUE, we report accu-
racy. Due to high training overhead for generation
tasks, we report experimental results with one run
for XSum and Ro-En. For GLUE, we report the
mean of three different random runs.

5 Results

5.1 Single-Task Learning

Results in Language Understanding In Table
1, we report the performance of PROPETL and
various baselines on the GLUE benchmark. Both
PROPETLAdapter and PROPETLLoRA demonstrate su-
perior performance compared to their respective
counterparts (adapter and LoRA). Despite having

3Two random and independent binary masks whose ele-
ments have 30% probability to be one will produce a resulting
mask with about 50% ones after the OR logical operation,
which can be calculated using the equation P (A ∪ B) =
P (A) + P (B)− P (A)P (B).

slightly more parameters during the fine-tuning
process, PROPETL requires only 1/9 (0.11% v.s.
0.95%) of bit-level storage during inference, mak-
ing them more efficient options. Specifically,
PROPETL increases the average score of the adapter
by 0.95 and improves the score of LoRA by 0.41.
Besides, PROPETLAdapter remarkably outperforms
the fully fine-tuned model (86.60 v.s. 86.16) while
using 0.11% storage of the fully fine-tuned model.
These results indicate that although with reduced
parameters, PROPETL injected with the structure
information from masks can make more use of the
single prototype network and achieve better perfor-
mance compared to their counterparts. However,
we also found that PROPETLPrefix did not outper-
form prefix-tuning, which we believe is caused
by the reparameterization in prefix-tuning that has
a harmful effect on the mask learning.4 Overall,
PROPETL increases the performance of the adapter
to the greatest extent. PROPETLAdapter also achieves
the highest performance among the three PROPETL

variants. We will stick to PROPETLAdapter for the rest
of the experiments.

Results in Language Generation To verify
PROPETL can also be applied to harder tasks, we
evaluate our method on two language generation
datasets, XSum and WMT16 Ro-En. The results
are presented in Figure 3 (a) and (b). We find that
PROPETLAdapter can perform just as well as the regu-
lar adapter method while using significantly less bit-
level storage. Additionally, when consuming more
than 1.6% of the storage, PROPETLAdapter is able
to achieve competitive performance on the XSum
dataset compared with the fully fine-tuned T5.
However, both adapter tuning and PROPETLAdapter

do not reach the level of the fully fine-tuned model
on Ro-En. One potential explanation is Ro-En is

4See more details and explanation in Appendix A.3

7569



Model
%FT Params

per task
%BLS
per task CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE Avg

Single-Task Learning

T5BASE
† 100.0% 100.000% 54.85 92.19 88.18/91.61 91.46/88.61 89.55/89.41 86.49 91.60 67.39 84.67

Adapter (bn=64) 1.070% 1.070% 62.64 94.07 87.36/91.06 90.25/87.28 89.88/89.55 85.76 92.85 71.01 85.61

Multi-Task Hypernetworks

Hyperformer++† 0.290% 0.290% 63.73 94.03 89.66/92.63 90.28/87.20 90.00/89.66 85.74 93.02 75.36 86.48

Multi-Task Training

T5BASE
† 12.500% 12.500% 54.88 92.54 90.15/93.01 91.13/88.07 88.84/88.53 85.66 92.04 75.36 85.47

Adapter (bn=64) 0.130% 0.130% 62.08 93.57 89.49/92.64 90.25/87.13 87.54/87.41 85.14 92.80 72.22 85.48
Adapter (bn=6) 0.013% 0.013% 58.34 93.61 86.20/90.44 90.10/86.98 86.96/86.66 84.02 92.38 67.63 83.94
PROPETLAdapter (bn=64) 0.156% 0.011% 61.43 94.22 87.36/90.97 90.13/87.14 90.32/90.12 85.34 93.01 75.60 85.97
PROPETLAdapter (bn=6) 0.016% 0.001% 54.59 93.53 87.36/91.02 90.15/87.04 90.70/90.50 85.08 92.79 75.86 85.32

Table 2: GLUE Results on T5. Under single-task learning, we train each task with different model copies. As for
multi-task training, we train a unified model or adapter. Results marked with † are from the implementation of
Mahabadi et al. (2021). Bold fonts suggest the best results in the block.

harder because translation knowledge may not be
covered a lot during the pre-training process of T5.
To perform well on such tasks, the model needs to
learn additional knowledge and requires more tun-
able parameters during fine-tuning. We note that
such sub-optimal performance on hard generation
tasks is not only a nature of PROPETL but generally
exists in all PETL methods. Similar findings are
also presented in Raffel et al. (2020) and He et al.
(2022a). Overall, these experiments show that our
PROPETL is also more parameter-efficient on text
generation benchmarks compared to existing PETL
methods.

5.2 Multi-Task Learning

We present the results of multi-task learning and
also provide baseline results from single-task
learning using the T5BASE in Table 2. Our best-
performing model, PROPETLAdapter with bottleneck
dimension of 64, surpasses the fully fine-tuned T5.
We also compare PROPETL with Hyperformer++
(Mahabadi et al., 2021), a hyper-network that
is specifically designed to transfer knowledge
across tasks. The latter uses significantly more
task-specific bit-level storage (26×: 0.011% v.s.
0.29% per task), while only increasing the average
score by 0.51. Compared to the vanilla adapter,
PROPETLAdapter can be marginally better under a
similar fine-tuning parameter budget but with 1/9
of the original storage. Besides, we experiment
with an extreme case, where we set the bottleneck
dimension to 6. Our results show that the accuracy
of adapter tuning decreases from 85.48 to 83.94,
while PROPETLAdapter still maintains a comparable
performance to the fully fine-tuned model (85.32
v.s. 85.47) with a remarkably small percentage

Model %FT Params
per task

%BLS
per task Avg

T53B 0.0025% 0.0025% 88.92
Adapter (bn=64) 0.0278% 0.0278% 88.31
PROPETLAdapter (bn=64) 0.0283% 0.0016% 89.02

Table 3: Multi-task learning results on the GLUE using
T53B as the backbone.

(0.001%) of bit-level storage per task. This demon-
strates that normal adapter tuning can not make
full use of the parameters and may fail to perform
well with a relatively small bottleneck dimension.
However, in the case of PROPETLAdapter, even with
a bottleneck dimension that is only 6, it can still
achieve a reasonable result. To further validate that
PROPETL is effective for larger-sized models, we
also carry out experiments on the T5 3B variant
and present the findings in Table 3. The outcomes
align with our conclusions drawn from the T5
base model. We believe that, in PROPETLAdapter,
the structure information learned by the mask can
make up for the performance drop due to the shrink
of the bottleneck dimension to a certain extent. We
further compare adapter tuning with PROPETLAdapter

with different percentages of bit-level storage by
varying the bottleneck dimension. The results are
presented in Figure 3 (c). It shows PROPETLAdapter

is able to reach the fine-tuned performance with as
few as 0.002% task-specific bit-level storage. We
can also see that the curve shares a similar trend
with those in Figure 3 (a) and (b), which we will
further discuss in the next section.

6 Discussion

How does PROPETL Scale Differently to
Adapter? Figure 3 presents the results when we

7570



(a) XSum (b) Ro-En (c) GLUE

Figure 3: Performance of adapter and PROPETLAdapter on XSum (left), Ro-En (middle), and GLUE (right) with T5BASE

model. We train on XSum and Ro-En under single-task settings for 1 run. We train GLUE under multi-task learning
and report the average score with 3 runs. We additionally provide these results in table format in Appendix E.

adjust the size of the adapter and PROPETLAdapter on
three different datasets. Despite the difference in
tasks and methods, we discover that adapter and
PROPETLAdapter show similar scaling trends on all
three datasets when we increase the proportion of
the task-specific bit-level storage. Their perfor-
mance increases linearly with respect to the log
scale of the extra storage in the beginning. When
the adapter and PROPETLAdapter reach close to the
performance of the fully fine-tuned model, their
performance gradually converges. Even though
PROPETLAdapter and adapter tuning can slightly ex-
ceed the fully fine-tuned performance on some
datasets, their performance is still bounded to the
same level and cannot outperform the fully fine-
tuned model by a large margin. For instance,
the performance of both adapter and PROPETL

starts to drop when the task-specific storage ex-
ceed 0.4% per task on GLUE (Figure 3 (c)). How-
ever, PROPETLAdapter is able to reach the fully fine-
tuned level much earlier in the scaling curves.
Given a fixed amount of task-specific storage,
PROPETLAdapter is also able to achieve better results
than the adapter. These results indicate that our
share-and-mask method is overall more efficient
than the adapter across almost all scales.

Which is More Important, Sharing or Masking?
In this section, we discuss the effect of masking
and sharing in the prototype network by compar-
ing PROPETL with a random mask baseline and
two alternative settings (only mask and only share).
For the random mask setting, we randomly select
the sub-network of the prototype module during
the forward process rather than relying on the up-
dated mask score. Only mask involves not sharing

the module across layers but only learning masks
to prune different PETL modules into sparse sub-
networks. Only share shares a single PETL mod-
ule among layers without using masks for pruning.
Masking without sharing will drastically increase
the number of fine-tunable parameters if we keep
the same bottleneck dimension and sparsity ratio.
To keep the number of fine-tunable parameters on
the same level, we either keep the bottleneck di-
mension the same and reduce the sparsity ratio k%
or use the same sparsity ratio with reduced bottle-
neck dimension for the only mask setting. We also
slightly increase the bottleneck dimension of the
only share set up to compensate for the parame-
ters of masks. Our results, as presented in Table
4, indicate that the random mask setting yields the
poorest performance. Moreover, neither only mask
nor only share reaches the same performance with
PROPETL, highlighting the necessity to use both
masking and sharing to achieve higher parameter
efficiency.5 We believe masking injects crucial
structural information into the sub-networks, while
sharing is necessary to expand the size of each
sub-network when the number of fine-tunable pa-
rameters is fixed. Therefore, our method can use
the parameters more efficiently.

How do Sub-Networks’ Size and Structure Af-
fect Each Other? The sparsity ratio k% is an im-
portant hyperparameter in PROPETL. We study the
impact of such sub-network sparsity and present
the results in Figure 4. The performance of our
PROPETL improves as k% increases from 0.1 to
0.5 but then declines as k% continues to grow from

5Detailed setup can be found in Appendix D.2.

7571



Method PROPETL Random
Only Mask
(Same bn)

Only Mask
(Same k%) Only Share

GLUE

Adapter (0.11%) 86.60 82.29 85.40 84.70 84.32
Prefix (0.11%) 84.53 79.56 84.18 84.23 81.57
LoRA (0.11%) 85.37 82.48 83.46 84.75 82.53

Ro-En

Adapter (0.46%) 32.63 30.02 31.58 30.68 31.30

Table 4: Ablation studies of the shared network and
masks. We report the average score on GLUE based on
RoBERTaBASE under single-task learning. For Ro-En,
we report the BLEU score with T5BASE as the backbone.
Numbers in parenthesis indicate the percentage of task-
specific bit-level storage calculated against the fully-
finetuned model.

0.5 to 1.0. Additionally, it can be seen that all these
PETL methods can achieve the best accuracy when
k% is set to 0.5. This is likely due to the fact that
as the network becomes denser from 0.1 to 0.5,
the sub-networks get to use more parameters and
thus obtain better modeling ability. However, after
0.5, the network in different layers becomes more
homogeneous as the sub-networks overlap more,
leading to less distinctive structural information in
each layer. The absence of enough structural infor-
mation starts to harm the performance, which even
outweighs the benefits of potential knowledge shar-
ing across the layers. We also discover that sharing
the PETL module without any pruning (k% = 1.0)
results in the worst performance among all spar-
sity levels. These results suggest that given the
fixed percentage of tunable parameters, it is cru-
cial to find a good balance between the distinctive
structural information of each sub-network and the
number of parameters used in each sub-network.

How is PROPETL Conceptually Related to
PETL? Other than the explanation of proto-
type network sharing and masking, our proposed
PROPETL can also be considered as a PETL-on-
PETL approach, which we refer to as PETL2. In
other words, the mask is to the prototype network
(in our approach) as the PETL module is to the
PLM (in conventional PETL approaches). Vanilla
PETL methods, such as adapter and prefix-tuning,
update specific additional parameters for each layer
and downstream task while only sharing the param-
eters of the PLM. In contrast, PROPETL extends
this approach by sharing not only the PLM but
also the prototype PETL module among layers and
tasks, resulting in a higher degree of parameter
sharing. Our method uses binary masks that func-
tion like PETL modules on top of the prototype

Figure 4: Average score of PROPETL on GLUE with
different sparsity ratios under single-task learning on
RoBERTaBASE.

PETL module to prune different structures in dif-
ferent sub-networks. These task-specific tunable
parameters are thus an order of magnitude smaller
than conventional PETL modules.

7 Conclusion and Future Work

In this paper, we introduce PROPETL, a method
for sharing prototype PETL modules across dif-
ferent layers and tasks. Our method significantly
improves the parameter efficiency by utilizing the
prototype network and maintaining a binary mask
for each layer and task. Extensive experiments
show that our method achieves comparable perfor-
mance to fully fine-tuned models and conventional
PETL methods with a much smaller fraction of
storage. For future works, we aim to study the in-
terpretability of the masks in different layers and
explore their potential relationships. We also intend
to apply our method to the pre-training process of
large language models to reduce the overall number
of parameters.

Limitations

Although our masks in different layers are binary
and require significantly less storage compared to
other PETL networks, we still need the underly-
ing 32-bit scores for each mask during the training
process. Therefore, PROPETL consumes slightly
more memory in the training time than existing
PETL methods. To fine-tune PROPETL, it takes a
similar training time to conventional PETL mod-
ules, which means our method will normally take
a longer time to converge compared to the fully
fine-tuned model.

7572



Acknowledgements

We would like to thank the anonymous review-
ers, our meta-reviewer, and senior area chairs for
their constructive comments and support on this
work. This research/project is supported by the
National Research Foundation Singapore and DSO
National Laboratories under the AI Singapore Pro-
gram (AISG Award No: AISG2-RP-2020-016),
and AI Singapore Programme (AISG Award No:
AISG2-PhD-2021-08-007).

References
Naveen Arivazhagan, Ankur Bapna, Orhan Firat,

Dmitry Lepikhin, Melvin Johnson, Maxim Krikun,
Mia Xu Chen, Yuan Cao, George F. Foster, Colin
Cherry, Wolfgang Macherey, Zhifeng Chen, and
Yonghui Wu. 2019. Massively multilingual neural
machine translation in the wild: Findings and chal-
lenges. CoRR, abs/1907.05019.

Yue Bai, Huan Wang, Xu Ma, Yitian Zhang,
ZHIQIANG TAO, and Yun Fu. 2022. Parameter-
efficient masking networks. In Proceedings of
NeurIPS.

Yoshua Bengio, Nicholas Léonard, and Aaron C.
Courville. 2013. Estimating or propagating gradients
through stochastic neurons for conditional computa-
tion. CoRR, abs/1308.3432.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck, An-
tonio Jimeno Yepes, Philipp Koehn, Varvara Lo-
gacheva, Christof Monz, Matteo Negri, Aurélie
Névéol, Mariana Neves, Martin Popel, Matt Post,
Raphael Rubino, Carolina Scarton, Lucia Specia,
Marco Turchi, Karin Verspoor, and Marcos Zampieri.
2016. Findings of the 2016 conference on machine
translation. In Findings of the 2016 Conference on
Machine Translation.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL.

Jonathan Frankle and Michael Carbin. 2019. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. In Proceedings of ICLR.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022a. Towards a
unified view of parameter-efficient transfer learning.
In Proceedings of ICLR.

Shwai He, Liang Ding, Daize Dong, Miao Zhang, and
Dacheng Tao. 2022b. Sparseadapter: An easy ap-
proach for improving the parameter-efficiency of
adapters. CoRR, abs/2210.04284.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In Pro-
ceedings of ICML.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In Proceedings of ICLR.

James Kirkpatrick, Razvan Pascanu, Neil C. Rabi-
nowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Clau-
dia Clopath, Dharshan Kumaran, and Raia Hadsell.
2016. Overcoming catastrophic forgetting in neural
networks. CoRR, abs/1612.00796.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020a. ALBERT: A lite BERT for self-supervised
learning of language representations. In Proceedings
of ICLR.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020b. ALBERT: A lite BERT for self-supervised
learning of language representations. In Proceedings
of ICLR.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip
H. S. Torr. 2019. Snip: single-shot network pruning
based on connection sensitivity. In Proceedings of
ICLR.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of EMNLP.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of ACL.

Chin-Yew Lin. 2004. ROUGE: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

7573

http://arxiv.org/abs/1907.05019
http://arxiv.org/abs/1907.05019
http://arxiv.org/abs/1907.05019
https://openreview.net/forum?id=7rcuQ_V2GFg
https://openreview.net/forum?id=7rcuQ_V2GFg
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
https://doi.org/10.18653/v1/W16-2301
https://doi.org/10.18653/v1/W16-2301
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
https://doi.org/10.48550/arXiv.2210.04284
https://doi.org/10.48550/arXiv.2210.04284
https://doi.org/10.48550/arXiv.2210.04284
http://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
http://arxiv.org/abs/1612.00796
http://arxiv.org/abs/1612.00796
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=B1VZqjAcYX
https://openreview.net/forum?id=B1VZqjAcYX
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692


Fang Ma, Chen Zhang, Lei Ren, Jingang Wang, Qifan
Wang, Wei Wu, Xiaojun Quan, and Dawei Song.
2022. Xprompt: Exploring the extreme of prompt
tuning. CoRR, abs/2210.04457.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa
Dehghani, and James Henderson. 2021. Parameter-
efficient multi-task fine-tuning for transformers via
shared hypernetworks. In Proceedings of ACL.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Alma-
hairi, Hao Ma, Jiawei Han, Scott Yih, and Madian
Khabsa. 2022. UniPELT: A unified framework for
parameter-efficient language model tuning. In Pro-
ceedings of ACL.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of EMNLP.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of ACL.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
Adapterfusion: Non-destructive task composition for
transfer learning. In Proceedings of EACL.

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya
Kamath, Ivan Vulić, Sebastian Ruder, Kyunghyun
Cho, and Iryna Gurevych. 2020. AdapterHub: A
framework for adapting transformers. In Proceedings
of EMNLP.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kem-
bhavi, Ali Farhadi, and Mohammad Rastegari. 2020.
What’s hidden in a randomly weighted neural net-
work? In Proceedings of CVPR.

Kartik Sreenivasan, Jy yong Sohn, Liu Yang, Matthew
Grinde, Alliot Nagle, Hongyi Wang, Eric Xing, Kang-
wook Lee, and Dimitris Papailiopoulos. 2022. Rare
gems: Finding lottery tickets at initialization. In
Proceedings of NeurIPS.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of NeurlPS.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for

natural language understanding. In Proceedings of
EMNLP.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander Rush. 2020. Transformers:
State-of-the-art natural language processing. In Pro-
ceedings of EMNLP.

Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan,
Baobao Chang, Songfang Huang, and Fei Huang.
2021. Raise a child in large language model: To-
wards effective and generalizable fine-tuning. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 9514–
9528, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Wein-
berger, and Yoav Artzi. 2021. Revisiting few-sample
{bert} fine-tuning. In Proceedings of ICLR.

Yu Zhang and Qiang Yang. 2022. A survey on multi-
task learning. IEEE Trans. Knowl. Data Eng.,
34(12):5586–5609.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason
Yosinski. 2019. Deconstructing lottery tickets: Ze-
ros, signs, and the supermask. In Proceedings of
NeurIPS.

A Implementation Details of the Three
Variants of PROPETL

A.1 PROPETLAdapter

An adapter module modifies a model’s hidden rep-
resentation through a down-sampling projection
and an up-sampling projection with a non-linear
layer in between:

h← h+ f(hWdown + bdown)Wup + bup (7)

where W represents the weight matrix, f denotes
the non-linear layer and b is the bias term. In
PROPETLAdapter, we apply our binary pruning masks
on the up-sampling and down-sampling weights,
respectively:

h← h+ f(hW̃down + bdown)W̃up + bup (8)

where W̃down = Wdown⊙mdown and W̃up = Wup⊙
mup.

The original Houlsby adapter (Houlsby et al.,
2019) introduces the adapter module after each

7574

https://doi.org/10.48550/arXiv.2210.04457
https://doi.org/10.48550/arXiv.2210.04457
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2022.acl-long.433
https://doi.org/10.18653/v1/2022.acl-long.433
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1109/CVPR42600.2020.01191
https://doi.org/10.1109/CVPR42600.2020.01191
https://openreview.net/forum?id=Jpxd93u2vK-
https://openreview.net/forum?id=Jpxd93u2vK-
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/2021.emnlp-main.749
https://doi.org/10.18653/v1/2021.emnlp-main.749
https://openreview.net/forum?id=cO1IH43yUF
https://openreview.net/forum?id=cO1IH43yUF
https://doi.org/10.1109/TKDE.2021.3070203
https://doi.org/10.1109/TKDE.2021.3070203
https://proceedings.neurips.cc/paper/2019/hash/1113d7a76ffceca1bb350bfe145467c6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1113d7a76ffceca1bb350bfe145467c6-Abstract.html


multi-head attention and feed-forward layer. Pfeif-
fer et al. (2021) later propose a more efficient vari-
ant of the adapter that is only inserted after the
feed-forward layer.

A.2 PROPETLLoRA

LoRA (Hu et al., 2022), like adapter tuning, also
includes a down-sampling projection and an up-
sampling projection. The difference is that LoRA
does not have any non-linear layers, but it does
have an additional scaling factor α ≥ 1:

h← h+ α · xWdownWup (9)

To modify PLMs’ hidden representation, LoRA
is applied to the query and value representations
of the attention modules in Transformers. In
PROPETLLoRA, the network is pruned with binary
masks:

h← h+ α · x(Wdown ⊙mdown)(Wup ⊙mup)
(10)

The scaling factor α is an important parame-
ter for LoRA and Hu et al. (2022) use different
α for different datasets in their released code. In
PROPETLLoRA, applying the pruning masks m will
reduce the norm of the output of the LoRA module.
We find that applying a larger α for PROPETLLoRA

than that used in LoRA will remedy the issue of
reduced feature norm and result in better perfor-
mance.

A.3 PROPETLPrefix

Li and Liang (2021) propose to insert tunable ma-
trices, which they call prefixes, into the key-value
pair of the Transformers’ attention modules:

H = Attention(Q, [Pk;K], [Pv;V ])

= softmax(
Q[Pk;K]T√

d
)[Pv;V ]

(11)

where [·; ·] stands for matric concatenation. They
also find that directly updating the P parameters
will lead to unstable training and a bit drop in per-
formance. In order to ameliorate the problem, they
propose to reparametrize the matrix:

P = P ′W (12)

where P ′ is a smaller learnable matrix and W is
the weight of an up-projecting feedforward neural

Module Vanilla Prune 50%

Prefix (l=64) 84.97 84.50
LoRA (bn=32) 84.96 85.44
Adapter (bn=64) 85.65 86.56

Table 5: Average score between pruning or not on the
GLUE dataset based on RoBERTaBASE single-task learn-
ing under conventional PETL methods.

network. In PROPETLPrefix, we apply our binary
pruning masks on the reparametrized prefixes:

H = Attention(Q, [Pk ⊙mk;K], [Pv ⊙mv;V ])
(13)

Note that different from adapter and LoRA tuning,
the pruning masks in PROPETLPrefix do not directly
operate on the parameters of the network. Instead,
the masks are applied on Pk and Pv that are out-
put activation depending collectively on W and P ′.
Thus, it might be hard for the mask training pro-
cess to identify good structures from Pk and Pv,
which potentially explains the sub-optimal results
of PROPETLPrefix in Table 1. To verify this claim,
we further compare 3 PETL modules against their
counterparts pruned with a sparsity of 0.5 in Ta-
ble 5. We find that both adapter and LoRA tuning
improve their performance when 50% of parame-
ters are pruned, which substantiates the idea that
structural information of sub-networks is important.
However, for prefix tuning that uses reparameteriza-
tion, its performance drops when we learn pruning
masks on top of it. This shows that the masks fail
to locate suitable structures for prefix tuning.

B Parameter Efficiency in PROPETL

B.1 Overview

Learning Setup Bit-Level Storage
of PROPETL

Single-task Learning p+ 1/32pL
Multi-task Learning p+ 1/32p(L+ T )

Table 6: Storage calculation.

We present an approximate calculation of the
bits (space) required by PROPETL during inference
in Table 6, in which we assume that a single shared
PETL network contains p BLS and the model has
L layers. In addition, the storage space required for
the binary mask makes up 1/32 (≈ 0.031) of the
32-bit PETL module. Depending on the specific
PETL module used, the calculations may vary a bit,
and we detail them in the following sections.

7575



Datasets XSum Ro-En CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE

#Train 204k 997k 8.6k 66k 3.7k 363k 5.7k 392k 104k 2.5k
#Valid 11k 2.6k 0.5k 1k 0.2k 1k 0.8k 1k 1k 0.1k
#Test 11k 3k 0.5k 0.9k 0.2k 40k 0.8k 10k 5k 0.1k

Table 7: Dataset statistics

B.2 PROPETLAdapter

Given the number of layers (L), hidden dimension
(d) of the pre-trained language model, and bottle-
neck dimension (bn) of the adapter module, the
BLS consumed by PROPETLAdapter is:

32 · (2 · bn · d+ bn+ d)︸ ︷︷ ︸
Prototype adapter

+2 · bn · d · L︸ ︷︷ ︸
Mask

(14)

Note that our method does not apply any masks
on the bias terms in the prototype adapter. Since
our PROPETL will reuse the prototype network,
we do not consider the pruning ratio k% when
calculating the storage. Here we also discuss how
to calculate the storage cost of parameters used
under the only mask setting in Table 4, in which
we do not share the PETL module across layers but
only learn masks to prune them. In that case, we
do not count the pruned parameters because they
will never be reused. Therefore, the formula for the
BLS required by only mask is:

32 · (2 · k% · bn · d+ bn+ d) · L (15)

B.3 PROPETLLoRA

Similarly, given the number of layers (L), hid-
den dimension (d) of the pre-trained language
model, and bottleneck dimension (bn) of the LoRA
module, the formula for the storage needed by
PROPETLLoRA is:

32 · 4 · bn · d︸ ︷︷ ︸
Prototype LoRA

+4 · bn · d · L︸ ︷︷ ︸
Mask

(16)

Note that there is no bias term in LoRA. Under the
only mask setup, given the sparsity ratio k%, the
storage of parameters is:

32 · 4 · k% · bn · d · L (17)

B.4 PROPETLPrefix

Given the number of layers (L), hidden dimension
(d) of the pre-trained language model, and the pre-
fix length (l) of the prefix module, the formula to
calculate the BLS of PROPETLPrefix is:

32 · 2 · l · d︸ ︷︷ ︸
Prototype prefix

+2 · l · d · L︸ ︷︷ ︸
Mask

(18)

Under only mask settings, given the sparsity ratio
k%, the approximate required storage is:

2 · k% · l · d · L (19)

C Experimental Details

We briefly introduce the benchmark datasets used
in this work. Their statistics can be found in Ta-
ble 7.

C.1 Datasets

GLUE The General Language Understanding
Evaluation (GLUE) benchmark (Wang et al., 2018)
is widely used to benchmark models’ language un-
derstanding ability. It consists of a broad range
of sentence-level tasks, including natural language
inference (MNLI, QNLI, RTE), sentence similarity
(MRPC), paraphrase detection (QQP, STS-B), and
single sentence classification (SST-2, CoLA).

XSum The Extreme Summarization dataset
(XSum) (Narayan et al., 2018) is designed to evalu-
ate systems’ abstractive summarization ability of a
single document. It is collected from the online arti-
cles of the British Broadcasting Corporation (BBC).
The input is a single document with an average to-
ken count of 431.07, and the model is expected to
generate a short, single-sentence summarization of
this document.

WMT16 Ro-En WMT16 is the 2016 edition
of the Workshop on Machine Translation (WMT)
dataset (Bojar et al., 2016). This dataset is widely
used to evaluate machine translation systems. To
benchmark on WMT16 Ro-En, the model is sup-
posed to take in a Romanian sentence and output
translation in English.

Model Masklr

PROPETLAdapter 3e-3
PROPETLLoRA 3e-2
PROPETLPrefix 1e-4

Table 8: Learning rates in GLUE under single task
settings

7576



Datasets Training time

MNLI 90min
QQP 81min
QNLI 24min
SST-2 15min
CoLA 04min
STS-B 03min
MRPC 02min
RTE 01min

Table 9: The approximate training time in GLUE with
PROPETL under single-task training

C.2 Implementation Details
Single-Task Learning on RoBERTaBASE Our
models are implemented based on the Adapter-
Hub package (Pfeiffer et al., 2020). We use the
datasets (Lhoest et al., 2021) library to calculate
each sub-task’s scores in GLUE.

The learning rate of the PETL module is set to
1e-4, and we detail the learning rate of pruning
masks in Table 8. We find that it is important to
set a higher learning rate for the masks than the
learning rate of the PELT network. The batch size
is set to 128 and the weight decay is 0.1 in all
experiments with Roberta. When conducting ex-
periments on GLUE datasets, we train 10 epochs
when the dataset is large (MNLI, QNLI, QQP, SST-
2), while training 20 epochs on the small dataset
(RTE, MRPC, STS-B, CoLA). Table 9 shows the
training time taken on a single A100 GPU.

Single and Multi-Task Learning on T5BASE

We implement T5 based on the transformers li-
brary (Wolf et al., 2020). We use the ROUGE
package (Lin, 2004) for ROUGE-2 calculation and
sacrebleu (Post, 2018) for the BLEU score. Ta-
ble 10 shows the training time on a single A100
GPU and the detailed hyperparameters used. We
mainly follow He et al. (2022a) and Mahabadi et al.
(2021) to select the hyperparameters and do not
perform an exhaustive search. The same set of hy-
perparameters is used across the fully-finetuning,
adapter tuning, and PROPETL models. For GLUE,
we follow Mahabadi et al. (2021) to sample data
from each GLUE sub-task with a temperature of 10.
Specifically, a sub-task is sampled with probability
p
1/T
τ where pτ = Nτ∑T

i=1 Nτ
and T = 10.

D Additional Ablation Studies

D.1 Choice of Mask Combining Methods
As shown in Table 11, using the OR logical opera-
tion to combine the layer mask and the task mask

Hyperparameters XSum Ro-En GLUE

Batch size 64 64 128
Total steps 100k 60k 20k
Learning rate 1e-4 3e-4 3e-4
Mask’s learning rate 1e-3 3e-3 3e-3
Learning rate schedule linear linear linear
Label smoothing 0.1 0.1 0.1
Weight decay 0.01 0.01 0.0
Sampling temperature n.a. n.a. 10

Training time 1 day 6 hours 2 hours

Table 10: Hyperparameters on XSum, Ro-En, and
GLUE when T5BASE is used as the backbone.

Combining Method Avg. GLUE Score

OR 85.97
ADD 85.66
AND 85.57

Table 11: Results of different mask combining methods
based on T5 multi-task learning on GLUE. We set the
bottleneck dimension to 64.

Method PROPETL
Only Mask
(Same bn)

Only Mask
(Same k%)

Only Mask
(Same k% and bn) Only Share

GLUE

Adapter 64/50% 64/11% 14/50% 64/50% 88/100%
Prefix 64/50% 64/15% 15/50% 64/50% 88/100%
LoRA 32/50% 32/15% 8/50% 32/50% 44/100%
% BLS (0.11%) (0.11%) (0.11%) (0.48%) (0.11%)

Ro-En

Adapter 384/50% 384/8% 55/50% 384/50% 673/100%
% BLS (0.46%) (0.46%) (0.46%) (3.2%) (0.46%)

Table 12: The bottleneck dimension/sparsity ratio used
in Table 13.

Method PROPETL
Only Mask
(Same bn)

Only Mask
(Same k%)

Only Mask
(Same k% and bn) Only Share

GLUE

Adapter 86.60 85.40 84.70 86.56 84.32
Prefix 84.53 84.18 84.23 84.50 81.57
LoRA 85.37 83.46 84.75 85.44 82.53
% BLS (0.11%) (0.11%) (0.11%) (0.48%) (0.11%)

Ro-En

Adapter 32.63 31.58 30.68 33.28 31.30
% BLS (0.46%) (0.46%) (0.46%) (3.2%) (0.46%)

Table 13: Ablation studies of the shared network and
masks. We report the average score on GLUE based on
RoBERTaBASE under single-task learning. For Ro-En,
we report the BLEU score with T5BASE as the backbone.

achieves the best performance. This is intuitive
because given a specific task and a Transformer
layer, parameters that contain the layer information
and parameters that contain the task information
should be both used in the forward pass.

D.2 Choice of Sharing and Masking

We provide additional details of the experiments in
Table 4 in this section. With the equations shown
in Appendix B, we calculate the bottleneck dimen-

7577



Adapter

Bottleneck dimension 12 24 48 96 192 384 769
% Bit-Level Storage 0.207% 0.405% 0.803% 1.597% 3.186% 6.363% 12.72%
ROUGE-2 14.33 15.05 15.98 16.66 16.97 18.29 18.58

PROPETLAdapter

Bottleneck dimension 96 192 384 768 1536 3042 6144
% Bit-Level Storage 0.116% 0.232% 0.464% 0.927% 1.853% 3.706% 7.412%
ROUGE-2 15.52 16.42 16.96 17.91 18.52 18.87 18.96

Table 14: Performance of adapter and PROPETLAdapter on XSum under single-task learning when varying the
bottleneck dimension. We report the BLEU and the proportion of the bit-level storage.

Adapter

Bottleneck dimension 6 12 24 48 96 192 384 768
% Bit-Level Storage 0.108% 0.207% 0.405% 0.803% 1.597% 3.186% 6.363% 12.72%
BLEU 26.95 29.18 30.20 31.20 32.52 32.83 33.56 33.63

PROPETLAdapter

Bottleneck dimension – 96 192 384 768 1536 3072 6144
% Bit-Level Storage – 0.116% 0.232% 0.464% 0.927% 1.853% 3.706% 7.412%
BLEU – 30.82 32.72 32.63 33.16 33.62 33.79 33.83

Table 15: Performance of adapter and PROPETLAdapter on En-Ro under single-task learning when varying the
bottleneck dimension. We report the BLEU and the proportion of the bit-level storage.

Adapter

Bottleneck dimension – – – – 1 2 3 6 12 24 48 64 96 192 384
% BLS per task – – – – 0.003% 0.005% 0.007% 0.013% 0.026% 0.051% 0.100% 0.133% 0.200% 0.398% 0.795%
Avg. Score – – – – 80.88 82.61 82.89 83.94 84.92 85.00 85.49 85.48 85.78 86.01 85.50

PROPETLAdapter

Bottleneck dimension 1 2 3 6 12 24 48 64 96 192 384 768 1536 3072 –
% BLS per task 0.0002% 0.0004% 0.0006% 0.001% 0.002% 0.004% 0.008% 0.011% 0.017% 0.033% 0.066% 0.132% 0.265% 0.529% –
Avg. Score 79.88 83.45 84.46 85.32 85.77 85.85 85.93 85.97 85.76 86.05 85.73 86.3 86.21 85.71 –

Table 16: Performance of adapter and PROPETLAdapter on GLUE under multi-task learning when varying the
bottleneck dimension. We report the average score and the proportion of the bit-level storage per task.

sion (bn) and sparsity ratio (k%) to ensure all the
settings have a similar BLS to PROPETL. We also
add one more setup, only mask with the same k%
and bn as PROPETL. Note that this new setup will
result in more storage than the other settings. The
hyperparameters are listed in Table 12 and the re-
sults are detailed in Table 13.

We find that on the GLUE dataset, PROPETL

achieves matched performance to this new setup,
even though the latter has used more than 4 times
the bit-level storage (0.11% v.s. 0.49%). We be-
lieve that, with masks, models with only 0.11% of
storage can be enough to have a good performance
while more storage cost will not have a significant

improvement or lead to overfitting under simple
tasks like GLUE. However, on the more challeng-
ing dataset Ro-En, when we keep the k% and bn
unchanged and only mask the adapter modules, the
model indeed improves its performance by 0.65,
but this comes at a cost of around 7× more storage
of parameters.

E Additional Results

We additionally present the experimental results
from Figure 3 in table format in Table 14, 15,
and 16.

7578



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Section Limitations.

�3 A2. Did you discuss any potential risks of your work?
Section Ethics Statement.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and Section 1.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 4 and Appendix C

�3 B1. Did you cite the creators of artifacts you used?
Section 4 and Appendix C

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Not applicable. Apache License 2.0 gives permission on Commercial use, Modification, Distribution,
Patent use and Private use.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. The dataset we applied is a commonly used open-source benchmarks datasets in
NLP.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Appendix C

C �3 Did you run computational experiments?
Section 5 and 6

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Appendix C

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

7579

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Appendix C

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 4, 5 and 6

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section C

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

7580


