WebiE: Faithful and Robust Information Extraction on the Web

Chenxi Whitehouse ${ }^{1,2, *}$, Clara Vania ${ }^{2}$, Alham Fikri Aji ${ }^{2, \text {,** }}$, Christos Christodoulopoulos ${ }^{2}$, Andrea Pierleoni ${ }^{2}$
${ }^{1}$ City, University of London
${ }^{2}$ Amazon Alexa AI, Cambridge, UK
chenxi.whitehouse@city.ac.uk
\{vaniclar, chrchrs, apierleoni\}@amazon.co.uk

Abstract

Extracting structured and grounded fact triples from raw text is a fundamental task in Information Extraction (IE). Existing IE datasets are typically collected from Wikipedia articles, using hyperlinks to link entities to the Wikidata knowledge base. However, models trained only on Wikipedia have limitations when applied to web domains, which often contain noisy text or text that does not have any factual information. We present WebiE, the first large-scale, entity-linked closed IE dataset consisting of 1.6 M sentences automatically collected from the English Common Crawl corpus. WebIE also includes negative examples, i.e. sentences without fact triples, to better reflect the data on the web. We annotate $\sim 21 \mathrm{~K}$ triples from WebIE through crowdsourcing and introduce mWebIE, a translation of the annotated set in four other languages: French, Spanish, Portuguese, and Hindi. We evaluate the in-domain, out-of-domain, and zero-shot cross-lingual performance of generative IE models and find models trained on WEBIE show better generalisability. We also propose three training strategies that use entity linking as an auxiliary task. Our experiments show that adding Entity-Linking objectives improves the faithfulness of our generative IE models ${ }^{1}$.

1 Introduction

Information Extraction (IE) is the task of extracting structured information from unstructured text, usually in the form of triples <subject, relation, object $>$. It is essential for many Natural Language Processing applications such as knowledge base population, question answering, faithful summarisation, and fake news detection (Trisedya et al., 2019; Huguet Cabot and Navigli, 2021; Narayan et al., 2021; Whitehouse et al., 2022).

[^0]Typically, two pieces of information are needed for training closed IE^{2} systems: (i) the entities mentioned in the text and (ii) the relations that exist between each pair of entities. Obtaining such information requires expensive annotations, therefore most existing IE datasets, such as WikiNRE (Trisedya et al., 2019) or REBEL (Huguet Cabot and Navigli, 2021), are built using Wikipedia, as entity information is available through hyperlinks and relation information can be automatically extracted via distant supervision (DS) approach (Mintz et al., 2009) using a knowledge base (KB) such as Wikidata. The DS approach assumes that if two entities are connected through a relation in a KB , then the sentences that mention both entities together express the relation.

While models trained only on this fact-rich domain ${ }^{3}$ have shown to be useful for IE applications, they have limited capacity when applied to extracting information in other web domains, which often contains noisy text or text without any factual information. Take AllenAI's C4 dataset ${ }^{4}$, an open-sourced version of Google's C4 (Raffel et al., 2020) dataset based on Common Crawl, as an example. Our analysis using the DS approach reveals that less than 15% of the sentences contain triples (§2.1), whereas we observe that a state-of-the-art (SOTA) generative IE model, GenIE (Josifoski et al., 2022), which is trained on REBEL, the largest IE dataset to date (which includes only positive examples), tends to generate triples for every sentence, resulting in a high rate of false positives and issues with hallucination.

To address these issues and facilitate future work on IE on the web, we present WebIE, the first large-scale, entity-linked closed IE dataset collected from web sources. The WebIE dataset is

[^1]

Figure 1: Training strategies used in this paper. The blue and green text refer to mention span and its corresponding Wikipedia title (used as entity labels). For standard BART training, the target output is the linearised triples (§3.1). For Entity-Prompt, the target is the EL output (§3.2) concatenated with the linearised triples. In ArtificialPrompt, we prepend an artificial token to the input to indicate the desired output: EL (yellow box) or linearised triples. For 2LM-HEADS, we add an additional task-specific LM head to the decoder for the EL task (grey box).
collected from the 200 most frequent URL domains from the C4 dataset. First, we use ReFinED (Ayoola et al., 2022), a state-of-the-art Entity Linking (EL) model to identify mention spans of the entities and link them to Wikidata. We then apply the DS approach to extract triples and use a Natural Language Inference (NLI) model to filter out triples not expressed by the sentence. We also include negative examples, i.e., sentences without any factual information, to better reflect the data on the web. Our final dataset consists of 1.6 M sentences, and we annotate a subset of $\sim 21 \mathrm{~K}$ triples through crowdsourcing. The annotated set is exclusively used as part of the test set to allow more reliable evaluation. Finally, we introduce mWEBIE, which contains human-corrected translations of the annotated version of WEBIE in four languages: French, Spanish, Portuguese, and Hindi.

Previous works have shown that compared to discriminative pipelines which often suffer from accumulative errors due to separate Entity Linking and Relation Extraction (RE) steps (Mesquita et al., 2019; Trisedya et al., 2019; Josifoski et al., 2022), generative models achieve superior performance in many closed IE tasks. Therefore we primarily benchmark WEBIE with generative, transformerbased encoder-decoder models, BART (Lewis et al., 2020) and mBART (Tang et al., 2021). The latter is used to evaluate the zero-shot cross-lingual transfer performance on mWEBIE.

We further propose three training strategies (§3.2) that use entity linking as an auxiliary task
for generative IE, namely joint generation with the linked-entity prompt (Entity-Prompt), multitask learning with distinguished artificial prompt tokens (ARTIFICIAL-PROMPT), and training with an additional task-specific language model (LM) head (2LM-HEADS). We find that training with EL as an auxiliary task overall leads to better and more faithful IE results. An illustration of these training strategies is provided in Figure 1.

Our experiments show that compared to models trained only on Wikipedia datasets, models also trained on WEBIE are more robust and generalisable, achieving a new SOTA performance on REBEL (§5) and competitive zero-shot performance on WikiNRE. We demonstrate that WeBIE serves as a complementary dataset to existing datasets based on Wikipedia, and show that including negative examples is crucial for addressing false positives in generative IE.

Our main contributions are as follows: (1) We present (m)WEBIE, the first large-scale, entitylinked IE dataset on the web, where a subset is further annotated by humans and translated into four other languages; (2) We propose and study the effectiveness of using entity linking as an auxiliary task for generative IE with various training strategies; (3) Our comprehensive experiments demonstrate that models trained on WEBIE exhibit better generalisability in Information Extraction on the web domain, including competitive zero-shot performance on IE tasks on Wikipedia.

DATASET	Domains	Entity Linked	Relation Types	Sentences	Train †	Validation †	Test †	Triples	Annotated Triples	Negative Instances	Languages (Test Set)
TACRED	Web	\boldsymbol{x}	42	106,264	68,124	22,631	15,509	106,264	106,264	79.5%	1
WEBRED	Web $\left(120^{\ddagger}\right)$	\boldsymbol{x}	523	117,717	-	-	-	117,717	117,717	65%	1
WIKINRE	Wikipedia	\checkmark	158	255,654	224,881	988	29,785	330,005	0	0	1
REBEL	Wikipedia	\checkmark	1146	$3,059,894$	$2,754,387$	152,672	152,835	$10,311,293$	0	0	1
WEbIE	Web $\left(200^{\ddagger}\right)$	\checkmark	661	$1,649,167$	$1,480,223$	82,914	86,030	$1,905,205$	21,113	50%	5

Table 1: Statistics of WEBIE and comparison with other sentence-level RE (top two rows) and IE datasets. We report the publicly available version of WebRED. \dagger shows the number of examples in each split. \ddagger corresponds to the number of URL domains. Annotated Triples show the number of human-annotated triples.

2 (m)WEBIE

In this section, we provide a detailed explanation of the dataset collection process for (m)WEBIE.

2.1 Collecting WEBIE

Data Preprocessing We start with the English portion of the AllenAI's C4 dataset and keep the most frequent 200 URL domains ${ }^{5}$. We randomly sample 1 M documents and use SpaCy^{6} for sentence segmentation. Sentences with fewer than 10 words are removed, resulting in $\sim 20 \mathrm{M}$ sentences.

Entity Linking and DS Dataset Next, we run ReFinED (Ayoola et al., 2022), a state-of-the-art EL model on the sentences to identify entity spans and link them to their corresponding Wikidata ID. Besides named entities, ReFinED also extracts $n u$ merical entities that do not have Wikidata ID. In this work, we only consider numerical entities that express dates, and map them to the corresponding year for simplicity ${ }^{7}$. Some examples of ReFinED processed output are included in Appendix B.

After obtaining the entity-linked sentences, we apply the DS paradigm to retrieve the set of relations that exist between each pair of entities in each sentence using Wikidata (September 2022 dump) as our KB and build a DS dataset. After the above steps, we obtain WEBIE DS dataset consisting of 21.2 M entities and 4.8 M triples.

Entailment Filtering One major drawback of the DS approach is that the triples extracted may or may not be expressed by the source sentence (Riedel et al., 2010). Following previous work on obtaining a cleaner version of the DS dataset (Huguet Cabot and Navigli, 2021; Vania et al., 2022), we apply an NLI model,

[^2]nli-deberta-v3-large ${ }^{8}$, that is trained on SNLI (Bowman et al., 2015) and MultiNLI (Williams et al., 2018), to filter out triples that do not entail the sentence.

Each source sentence is treated as the premise and we use manually created templates (similar to Vania et al. (2022)) to convert a DS triple to one or more hypotheses. We then obtain the entailment probability score for each premise-hypothesis pair and take the maximum score for cases with multiple converted hypotheses. We set the threshold to be 0.7, similar to Huguet Cabot and Navigli (2021), and only keep triples with an entailment score above the threshold. We retain 2.1 M triples (44% of the previous DS triples, see Table 1) after this filtering process.

Negative Examples After the DS creation and NLI filtering steps, only less than 10% of the original sentences contain triples. To train models for extracting facts from the web and alleviate false positives, we include two kinds of negative examples in WEBIE: (i) sentences with one or zero entities, and (ii) sentences with two or more entities, but without any factual information (i.e., no relation between the entities). We randomly sample negative instances covering both cases evenly and add them to WEBIE. In the end, WEBIE consists of 1.6 M sentences, where 50% are negative examples. A summary of the statistics of WEBIE with a comparison with other datasets is shown in Table 1. The dataset is randomly split into train/validation/test sets using a 90/5/5 split.

2.2 Human Annotation

Existing IE datasets, such as REBEL, are often automatically annotated using the DS approach, hence the labels can be noisy. To allow more reliable evaluation of WEBIE, we randomly sample

[^3]$\sim 21 \mathrm{~K}$ triples from the most frequent 200 relations and annotate them with MTurk. Given a sentence, each HIT (Human Intelligence Task) is designed to verify if a DS triple is correctly expressed in the sentence ${ }^{9}$. First, the annotators are asked to verify if the head entity (subject) and tail entity (object) are linked correctly. For each entity, we provide its Wikipedia title and link to its Wikidata page as additional context. After that, the annotators are asked to verify if the triple relation is correctly inferred from the sentence. Here, we provide the relation descriptions and example use cases of each relation. We ask three MTurk workers to annotate each DS triple and take the majority vote as the final label for each triple. A triple is considered valid if both entities are linked to the correct Wikidata entities and the relation is inferred ${ }^{10}$ by the sentence. An annotation interface is shown in Appendix C.

To ensure the annotation quality, we set qualifications with additional requirements for MTurk workers (see Appendix C for details). The agreement among the three annotators is high: 99.4% for the head entities, 99.2% for the tail entities, and 76.1% for the relations have all three annotators agreeing on the same label. After the majority vote, 92.1% of the triples are labelled as inferred and therefore kept as valid triples.

2.3 Multilingual WebIE

To enable zero-shot cross-lingual transfer evaluation on WEbIE, we further extend the annotated subset, with additional negative examples, to four other languages: French, Spanish, Portuguese, and Hindi. First, we use a neural machine translation model, the distilled 1.3 B variant ${ }^{11}$ of NLLB-200 (Costa-jussà et al., 2022), to translate the English sentences into the target languages. We then use MTurk to verify the translation and add entity span information in the translated sentences. We provide the English sentence (with the entity spans highlighted) and its translation, and first, ask the annotators to correct the translation. After that, MTurk workers are asked to mark the corresponding entity spans in the target language. We ask two annotators to complete the aforementioned HIT, and an additional worker to select the bet-

[^4]ter translation, which is used in our final dataset. To obtain translations with higher quality, we restrict the region of the workers to countries where the target language is the official language ${ }^{12}$. The final mWEBIE consists of 9K instances in each language, which corresponds to roughly 90% of the 21 K annotated triples.

3 Generative Information Extraction

This section describes the training strategies that we use for benchmarking (m)WEBIE.

3.1 Sentence-to-Triples Generation

We use BART and mBART for all of our experiments. Given a sentence s as input, we train the model to autoregressively generate the linearised triples t as an output. Following the practice from Huguet Cabot and Navigli (2021) and Josifoski et al. (2022), we linearise a triple t_{i} by converting it into "<sub> head entity label <rel> relation <obj> tail entity label <et>", where the tags in brackets represent subject, relation, object, and the end of triple, respectively. Head/tail entity label refers to the Wikipedia title that the mention span in the sentence is mapped to, which also has a one-to-one correspondence with the Wikidata ID ${ }^{13}$.

For each sentence, we order its linearised triples accordingly to the order in which they appear in the input sentence; first by the order of the appearance of the head entity, and then by the order of the tail entity (for cases when the head entities are the same). The conditional probability of generating t is formulated as $p(t \mid s)=\prod_{t=0}^{N} p\left(t_{i} \mid t_{<i}, s\right)$. We use the standard cross-entropy loss and maximise the output sequence likelihood with teacher forcing (Sutskever et al., 2014). An example of input and output can be seen in the top left of Figure 1.

3.2 Entity-Linking as an Auxiliary Task

The standard linearised triples output only contains the label of the entity and not the span. As a result, it may be difficult to trace back from which input span an entity is generated, especially in the case when the model hallucinates (e.g., by generating an entity that is not mentioned in the sentence). To encourage models to generate faithful and interpretable output, we also experiment with models that are jointly optimised for generating triples and

[^5]EL. The goal of the EL task is to identify and extract entity spans from the input sentence and link them to their corresponding KB entities. We posit that adding the EL task as an additional training objective will teach the model to put attention to the input spans when generating the output. We experiment with the following three approaches.

Entity-Prompt Narayan et al. $(2021,2022)$ have shown that generation with entity-chain planning, i.e. generating the desired entities first before the actual output, is effective in improving the faithfulness and controlling hallucinations in text generation tasks such as abstractive summarisation. For generative IE tasks, EL can be used as an intermediate plan to ground the generation of the linearised triples. We define the Entity-Linking target in the format of "Mention Span ${ }_{1}$ \# Entity Label $_{1}$ | Mention Span $_{2}$ \# Entity Label $_{2}$ | ...", where the entity spans are ordered as they appear in the text. We then prepend the EL target to the linearised triples target, using special symbols as separators, i.e., "[ENTITY] Entity-Linking target [TRIPLE] Linearised Triples Target", where "[ENTITY]" is the start symbol before generating the EL output, and "[TRIPLE]" is the start symbol before generating the linearised triples. Given an input sentence, we essentially train the decoder to first generate the EL chain and then generate the triples, conditioned on both the input sentence and the EL output ${ }^{14}$.

Artificial-Prompt Artificial Prompt tokens are symbols placed in front of the input sequence, which has previously been explored for neural machine translation to distinguish the language of the target output translation (Johnson et al., 2017), and visual question answering for joint answer and explanation generation (Whitehouse et al., 2023). We adapt this approach for jointly training our models for EL and generative IE. Specifically, we use an artificial prompt token <\#el\#> at the beginning of the input sentence when training for the EntityLinking target, and use <\#tri\#> ${ }^{15}$ for linearised output target. Training instances for both tasks are mixed and randomly shuffled for training.

2LM-HEADS Finally, inspired by Gontier et al. (2022), the third approach that we experiment with

[^6]is the addition of a second language model (LM) head in the decoder, which is initialised with the same weights as the first (standard) LM head. The first LM head is optimised for generating the linearised triples while the second LM head is optimised for the EL task, thus each training instance has two different target outputs. During training, the input sentence is fed to the encoder once, and different target outputs are given to the same decoder. Each task-specific LM head is then responsible for generating output targeted for it. The training loss is then formulated as a weighted sum of the losses from both tasks: $\mathcal{L}=\alpha \mathcal{L}_{\text {IE }}+(1-\alpha) \mathcal{L}_{\mathrm{EL}}$.

3.3 Inference with a Constraint Trie

In addition to standard beam search decoding, we experiment with constraint decoding by restricting the generated output to be valid Wikipedia titles and Wikidata relations using a prefix Trie, following the ideas proposed in GENRE (Cao et al., 2021) and GenIE (Josifoski et al., 2022). We use two constraint Tries: an entity Trie and a relation Trie. The entity Trie is built using all Wikipedia titles (as the entity labels), and the relation Trie is built using all Wikidata relation property labels. We refer the readers to Cao et al. (2021) for more details on constructing the Trie.

We use four special symbols, <sub>, <rel>, $<o b j>$ and <et> to define the state of the generation. We apply both constraint Tries as follows. We adopt the constraint Trie so that, in the very first decoding state, the model is allowed to either (i) return an empty string for a negative example, or (ii) generate $\langle s u b\rangle$, which is the start symbol for generating a triple. If the <sub> symbol is generated, then we generate the head entity using the entity Trie, i.e., only valid entities will be considered. Once the generation of the head entity is completed, the model proceeds to generate <rel> (i.e., the start symbol for generating relation string) and then subsequently generate allowed tokens from the relation Trie which is built from the relations in Wikidata. After that, the model generates <obj> and the tail entity, in the same manner, using the entity Trie. After generating the full triple (indicated by <et> generated after the tail entity), the decoder can either stop the generation or start a new iteration for generating the next triple.

For the Entity-Prompt models, since the entity mention spans are text from the input sentences and usually are not the same as the entity labels in

Model	Webie (all test)				Webie (anno. TEst)				REBEL			Wiki-NRE		
	Precision	Recall	F1	Acc.-Neg.	Precision	Recall	F1	Acc.-Neg.	Precision	Recall	F1	Precision	Recall	F1
$\mathrm{BART}_{\text {RAND }}(\mathrm{R})$	11.93	18.91	14.63	0.00	11.82	15.63	13.46	0.00	66.89	70.37	68.58	27.61	66.73	39.06
$\mathrm{BART}_{\text {PLM }}$ (R)	15.24	39.30	21.96	0.00	15.98	34.92	21.93	0.00	66.28	76.78	71.14	25.39	77.45	38.24
$\mathrm{BART}_{\text {rand }}$ (w)	55.47	57.25	56.35	90.07	52.95	46.60	49.57	95.04	27.47	23.13	25.12	18.98	43.75	26.48
$\mathrm{BART}_{\text {PLM }}$ (w)	57.92	74.19	64.91	87.99	57.00	65.91	61.13	94.18	35.81	43.00	39.08	24.30	78.01	37.06
$\operatorname{BART}_{\text {RAND }}(\mathrm{R}+\mathrm{W})$	52.79	64.15	57.92	87.45	51.89	54.28	53.06	93.71	66.87	72.24	69.45	29.02	82.35	42.91
$\mathrm{BART}_{\text {PLM }}(\mathrm{R}+\mathrm{W})$	54.63	78.43	64.40	76.43	55.22	71.25	62.22	82.59	66.42	78.29	71.87	29.25	86.38	43.70

Table 2: Experiment results with constraint Trie. BART RAND corresponds to models with BART configuration but randomly initialised weights. $\mathrm{BART}_{\mathrm{PLM}}$ are models with pretrained weights from Lewis et al. (2020). (R), (W), $(\mathrm{R}+\mathrm{W})$ refer to models trained on REBEL, WEBIE, and both datasets, respectively. For WEBIE we show the overall performance and the accuracy on negative samples. The blue shade indicates zero-shot performance.

Language	Unconstrained Decoder					Constraint Trie				
	Precision	Recall	F1	Empty-Pos.\%	Accuracy-Neg.	Precision	Recall	F1	Empty-Pos.\%	Accuracy-Neg.
English	57.72	61.26	59.43	2.48	95.69	60.29	64.29	62.22	2.63	96.11
French	43.27	36.13	39.38	11.89	96.19	46.52	40.26	43.16	12.63	96.64
Spanish	41.93	34.63	37.93	12.34	96.74	45.13	38.89	41.78	12.80	96.97
Portuguese	41.17	32.37	36.24	14.07	96.91	44.15	36.61	40.02	14.82	97.22
Hindi	4.28	1.62	2.35	67.38	98.64	4.23	1.67	2.40	67.55	98.64

Table 3: Performance on mWebIE with mBART. Results for non-English are zero-shot. Empty-Pos(itive)\% shows false negatives, revealing zero-shot performance has a high rate of empty results for positive examples.

Wikidata, we propose a partial constraint generation approach. Specifically, we start the standard beam search for the EL target output and only activate the Trie constraints after that when generating the linearised triples.

4 Experiments

In this section, we explain the datasets used in the experiments and the detailed modelling setup.

4.1 Dataset

In addition to our proposed WEbIE dataset, we also use the following datasets for our experiments.

WikiNRE (Trisedya et al., 2019) is an IE dataset based on Wikipedia which is automatically constructed by aligning Wikipedia sentences to Wikidata triples using the DS approach. The authors apply a coreference resolution model (Clark and Manning, 2016) to obtain sentences with implicit entity names, and use a paraphrase detection model (Ganitkevitch et al., 2013; Grycner and Weikum, 2016) to filter out sentences that do not express the DS triples. In our experiments, we only use WikiNRE for zero-shot evaluation.

REBEL (Huguet Cabot and Navigli, 2021) is a large-scale IE dataset constructed automatically from Wikipedia abstracts. Using the Wikipedia hyperlinks in the abstracts, as well as numerical
values and dates, they map the entity spans to their corresponding Wikidata entities. They then use the DS approach to identify triples in each sentence. To filter out false positives, the authors use an NLI model by concatenating the entities and the relation as the hypothesis. In our experiment, we use the REBEL dataset that is sub-sampled by Josifoski et al. (2022), where 857 relations are considered. Both WikiNRE and REBEL do not contain negative examples and are not annotated by humans.

4.2 Models

We experiment with BART using two settings: BART ${ }_{\text {PLM }}$ with the pre-trained weights from Lewis et al. (2020) ${ }^{16}$, and BART RAND , using the same configuration and architecture but randomly initialised weights. Across the two settings, Josifoski et al. (2022) find that BART $_{\text {RAND }}$ generates better results than BART $_{\text {PLM }}$ on REBEL. For mWEBIE, we experiment with the mBART-50 ${ }^{17}$ model (for simplicity we refer to it as mBART in this paper).

To compare models trained on different datasets, we train both BART $_{\text {PLM }}$ and BART RAND on REBEL (R), WEbIE (W), and both datasets together $(\mathrm{R}+\mathrm{W})$. We evaluate the performance of the generated triples by parsing the linearised output to a list

[^7]| Model | REBEL | | | | | | WebIE (anNo) | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Unconstrained | | | Constraint Trie | | | Unconstrained | | | Constraint Trie | | |
| | Precision | Recall | F1 |
| BART ${ }_{\text {RAND }}$ | 64.34 | 67.90 | 66.07 | 66.89 | 70.37 | 68.58 | 51.64 | 44.46 | 47.78 | 52.95 | 46.60 | 49.57 |
| Entity-PROMPT | 63.30 | 63.04 | 63.17 | 67.91 | 67.54 | 67.72 | 49.64 | 51.62 | 50.61 | 51.90 | 54.28 | 53.06 |
| ARTIFICIAL-PROMPT | 64.23 | 68.23 | 66.17 | 66.41 | 70.72 | 68.50 | 52.33 | 46.21 | 49.08 | 53.86 | 48.18 | 50.86 |
| 2LM-HEADS | 65.16 | 68.70 | 66.88 | 67.05 | 70.88 | 68.91 | 49.13 | 47.67 | 48.39 | 51.07 | 49.59 | 50.32 |

Table 4: Comparison of various training with entity linking as an auxiliary task, and beam search with and without constraint Trie decoding. WebIE results are on the annotated test set. All models use BART configuration with randomly initialised weights. We show in bold the best F1 scores among the training objectives.
of triples and comparing it to the gold label to calculate precision, recall, and F1 scores. For WebIE, we also calculate the accuracy of the prediction of negative instances, where a prediction is considered correct if the model accurately generates empty strings rather than hallucinating triples.

For training with EL as an auxiliary task, we primarily experiment with the $\mathrm{BART}_{\text {RAND }}$. We prepare the training instances as described in §3.2, and train separate models on REBEL and on WEbIE. For the 2LM-HEADS, we conduct experiments with different values of the α parameter in the combined loss function, specifically, we set it to 0.5 and 0.75 .

We use 8 GPUs, each with 32G VRAM, for all experiments. We set the batch size to 8 and accumulate gradient batches to 32 . We follow the hyperparameters settings from Josifoski et al. (2022) and set the learning rate to $3 e^{-5}$, weight decay to 0.01 , and warmup steps to $5 \mathrm{~K}^{18}$. We train for up to 30 epochs with early stopping (patience 10), validate twice per epoch, and take the last checkpoint for evaluation. Training one epoch takes ~ 1.5 hours for BART and ~ 2 hours for mBART.

5 Results and Analysis

We now present the main results of (m)WEBIE and compare different training strategies.

5.1 Main Results

Table 2 shows our benchmarking results on WEBIE. We report results with the constraint Trie in decoding since it overall achieves better results ${ }^{19}$. Contrary to the findings from Josifoski et al. (2022), we find that BART models with pre-trained weights are better than initialised weights. Constraint Trie decoding benefits REBEL, WikiNRE, and the recall performance of WEBIE, but may compromise

[^8]the precision since the models are also trained to handle negative examples.

Models trained on both REBEL and WEbIE ($\mathrm{R}+\mathrm{W}$) obtain overall better F1 scores on the two datasets compared to models trained on each dataset separately. Similar performance can also be observed in the zero-shot performance on WikiNRE. Models trained solely on the REBEL dataset (Wikipedia-domain) show poor generalisability on WEBIE 20 and always generate false positives thus resulting in 0% accuracy for negative instances in WebIE. This indicates that Wikipedia-domain data only is not adequate for training robust models for the web, and the absence of negative examples in these datasets leads to a prominent issue of hallucination when applied to the web.
$\mathrm{BART}_{\text {PLM }}(\mathrm{R}+\mathrm{W})$ also achieves a new state-of-the-art F1 score of 71.87 on REBEL, surpassing the performance of 68.93 from GenIE (Josifoski et al., 2022) and 70.74 from KnowGL (Rossiello et al., 2023), the latter of which trains with additional information including entity type. The results demonstrate the benefit of WEBIE, which contributes to the generalisability of the models.

5.2 Cross-lingual Transfer with mBART

We train mBART on the training set of WEBIE and evaluate the zero-shot cross-lingual transfer on mWEBIE. Similar to prior experiments, results in Table 3 show that constraint Trie decoding obtains higher performance than standard decoding ${ }^{21}$.

For English, mBART achieves higher overall performance than $\mathrm{BART}_{\text {PLM }}$ (see Table 2). The zero-shot results reveal that Hindi has a significant decline in performance compared to the other three non-English languages, French, Spanish, and Portuguese. Since these three languages utilise the

[^9]Latin script as in English, which may result in an overlap of entity surface forms. In contrast, the transfer is more difficult for Hindi as it employs a different writing system. Manual analysis indicates that mBART tends to produce a high rate of false negatives in Hindi examples, where the correct extraction mostly occurs when the entities in the sentences share similar surface forms with the English counterparts.

5.3 Results with Additional EL Training

Table 4 shows the results of training with EntityLinking as an auxiliary task. For REBEL, the best results are achieved with the 2LM-HEAdS approach, where the α parameter is set to 0.75 . For WebIE with negative examples, all EL training models achieve better F1 performance than BART $_{\text {RAND }}$, with ENTITY-PROMPT particularly resulting in better recall. This shows the benefit of joint training with EL to improve the faithfulness of web domain data. Artificial-Prompt achieves the best precision in WebIE but does not show significant differences in performance compared to $\mathrm{BART}_{\text {rand }}$. Nevertheless, all three approaches provide better interpretability, i.e., the information of the mention spans in the text that contributes to the IE prediction.

Entity-Prompt and Artificial-Prompt do not require additional architectural adaptation over the standard model. Entity-Prompt also does not introduce training overhead, whereas the other two models may require twice the training time. 2LM-HEADS offers the flexibility of adapting the weighted combination of the main task and the auxiliary task by adjusting α in the joint loss formula, which allows more emphasis on the main target.

6 Related Work

IE Datasets The term Information Extraction has been used for different tasks in the literature. Most existing IE datasets are collected from Wikipedia articles aligned with Wikidata, including sentence-level IE datasets such as REBEL, WikiNRE, FewRel (Han et al., 2018), T-REx (Elsahar et al., 2018); document-level Relation Extraction ${ }^{22}$ datasets, e.g., DocRED (Yao et al., 2019), CodRED (Yao et al., 2021). SMiLER (Seganti et al., 2021) is a multilingual sentence-level IE dataset that is also based on Wikipedia, covering 14 languages

[^10]and 36 relations. These sentence-level IE datasets typically do not contain negative examples.

Datasets such as TACRED (Zhang et al., 2017), RE-TACRED (Stoica et al., 2021), and WebRED (Ormandi et al., 2021) have negative relation examples but they are not linked to knowledge bases. Our proposed dataset WebIE is distinct from the existing datasets in that it is on the web domain, entity-linked, and with negative examples.

IE Approaches IE approaches can be classified into two categories: pipeline systems with discriminative models, and sequence-to-sequence systems with generative models. Pipeline models typically include separate modules for Named Entity Recognition (NER), Entity Linking and Relation Extraction (Chaganty et al., 2017; Yamada et al., 2020). Systems that jointly train NER, EL, and RE, have also been explored, taking advantage of the information shared between the tasks (Ji et al., 2020; Eberts and Ulges, 2020).

In recent years, generative IE has gained a lot of attention. Nayak and Ng (2020) utilise an LTSM model and propose a pointer network-based decoding. More recent approaches, e.g. as introduced in REBEL and GenIE, train a transformer-based encoder-decoder model with standard maximumlikelihood objectives to convert sentences to linearised output. KnowGL (Rossiello et al., 2023) improves upon REBEL with additional entity type information added to the linearised output. Our work extends GenIE and experiments with three different approaches where we incorporate explicit EL information as an auxiliary task with adapted constraint Trie decoding.

7 Conclusions

We present (m)WebIE, the first large-scale, entitylinked closed IE dataset on the web. A subset of the dataset is further annotated by humans and translated into four other languages, French, Spanish, Portuguese, and Hindi, via crowd-sourcing.

We benchmark WebIE with generative models and compare the models trained on WebIE and REBEL (Wikipedia-domain). Our results show that models trained on WebIE have competitive zero-shot performance when applied to REBEL and WikiNRE, whereas models trained only on REBEL have 0% accuracy on the negative examples in WebiE. This highlights the importance of including negative examples for training more robust models and reducing hallucination in genera-
tive IE on the web. Models trained on both REBEL and WEbIE achieve the best performance on both datasets, as well as zero-shot results on WikiNRE, showing that WEBIE serves as a complementary dataset to existing Wikipedia-domain datasets.

Investigating the approaches with entity linking as an auxiliary task, we find that adding an additional task-specific LM head achieves the overall best performance. The Entity-Prompt approach shows the most significant improvement on WEBIE with the constraint Trie. We primarily benchmark transformer-based encoder-decoder models on WEBIE, but future work could also explore pipeline frameworks and larger language models for few-shot performance.

Limitations

We identify several limitations in this work: (i) False negatives: Our current automatic triple extraction pipeline is built using the DS approach followed by filtering using an NLI model. However, Wikidata is not complete (Tan et al., 2022). While some triples may not be completely available in WebIE, we expect models trained on this dataset can still discover new triples that do not exist in Wikidata. (ii) Limited relations in annotation: the human annotation is only conducted on the most frequent 200 relations. (iii) Limited languages in mWEBIE: As discussed in $\S 2.3$ and Appendix C, the languages in mWEBIE are limited to official languages from geographical regions where there is a reasonable amount of MTurk workers to accept the job. An alternative solution would be to use professional translators, especially for low-resource languages. (iv) Fixed dataset: Facts might change in the world (and Wikidata). This can lead to a degraded real-world performance if a system relies exclusively on WebIE for evaluation when the dataset is not updated accordingly.

Acknowledgements

We would like to thank Jens Lehmann for the helpful feedback on the paper draft, and Balkarn Hayre for helping with the MTurk experiments. We also thank the anonymous reviewers for their valuable comments that improved the paper.

References

Tom Ayoola, Shubhi Tyagi, Joseph Fisher, Christos Christodoulopoulos, and Andrea Pierleoni. 2022. ReFinED: An efficient zero-shot-capable approach to
end-to-end entity linking. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track, pages 209220, Hybrid: Seattle, Washington + Online. Association for Computational Linguistics.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A large annotated corpus for learning natural language inference. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 632-642, Lisbon, Portugal. Association for Computational Linguistics.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio Petroni. 2021. Autoregressive entity retrieval. In International Conference on Learning Representations.

Arun Chaganty, Ashwin Paranjape, Percy Liang, and Christopher D. Manning. 2017. Importance sampling for unbiased on-demand evaluation of knowledge base population. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1038-1048, Copenhagen, Denmark. Association for Computational Linguistics.

Kevin Clark and Christopher D. Manning. 2016. Improving coreference resolution by learning entitylevel distributed representations. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 643-653, Berlin, Germany. Association for Computational Linguistics.

Marta R Costa-jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, et al. 2022. No language left behind: Scaling human-centered machine translation. arXiv preprint arXiv:2207.04672.

Markus Eberts and Adrian Ulges. 2020. Span-based joint entity and relation extraction with transformer pre-training. ECAI, page 2006-2013.

Hady Elsahar, Pavlos Vougiouklis, Arslen Remaci, Christophe Gravier, Jonathon Hare, Frederique Laforest, and Elena Simperl. 2018. T-REx: A large scale alignment of natural language with knowledge base triples. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan. European Language Resources Association (ELRA).

Juri Ganitkevitch, Benjamin Van Durme, and Chris Callison-Burch. 2013. PPDB: The paraphrase database. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 758-764, Atlanta, Georgia. Association for Computational Linguistics.

Nicolas Gontier, Siva Reddy, and Christopher Pal. 2022. Does entity abstraction help generative transformers reason? Transactions on Machine Learning Research.

Adam Grycner and Gerhard Weikum. 2016. POLY: Mining relational paraphrases from multilingual sentences. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2183-2192, Austin, Texas. Association for Computational Linguistics.

Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao, Zhiyuan Liu, and Maosong Sun. 2018. FewRel: A large-scale supervised few-shot relation classification dataset with state-of-the-art evaluation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4803-4809, Brussels, Belgium. Association for Computational Linguistics.

Pere-Lluís Huguet Cabot and Roberto Navigli. 2021. REBEL: Relation extraction by end-to-end language generation. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages 23702381, Punta Cana, Dominican Republic. Association for Computational Linguistics.

Bin Ji, Jie Yu, Shasha Li, Jun Ma, Qingbo Wu, Yusong Tan, and Huijun Liu. 2020. Span-based joint entity and relation extraction with attention-based spanspecific and contextual semantic representations. In Proceedings of the 28th International Conference on Computational Linguistics, pages 88-99, Barcelona, Spain (Online). International Committee on Computational Linguistics.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, Macduff Hughes, and Jeffrey Dean. 2017. Google's multilingual neural machine translation system: Enabling zero-shot translation. Transactions of the Association for Computational Linguistics, 5:339-351.

Martin Josifoski, Nicola De Cao, Maxime Peyrard, Fabio Petroni, and Robert West. 2022. GenIE: Generative information extraction. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 4626-4643, Seattle, United States. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7871-7880, Online. Association for Computational Linguistics.

Filipe Mesquita, Matteo Cannaviccio, Jordan Schmidek, Paramita Mirza, and Denilson Barbosa. 2019. KnowledgeNet: A benchmark dataset for knowledge base population. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 749-758, Hong Kong, China. Association for Computational Linguistics.

Mike Mintz, Steven Bills, Rion Snow, and Daniel Jurafsky. 2009. Distant supervision for relation extraction without labeled data. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the $A F N L P$, pages 1003-1011, Suntec, Singapore. Association for Computational Linguistics.

Shashi Narayan, Gonçalo Simões, Yao Zhao, Joshua Maynez, Dipanjan Das, Michael Collins, and Mirella Lapata. 2022. A well-composed text is half done! composition sampling for diverse conditional generation. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1319-1339, Dublin, Ireland. Association for Computational Linguistics.

Shashi Narayan, Yao Zhao, Joshua Maynez, Gonçalo Simões, Vitaly Nikolaev, and Ryan McDonald. 2021. Planning with learned entity prompts for abstractive summarization. Transactions of the Association for Computational Linguistics, 9:1475-1492.

Tapas Nayak and Hwee Tou Ng. 2020. Effective modeling of encoder-decoder architecture for joint entity and relation extraction. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):85288535.

Robert Ormandi, Mohammad Saleh, Erin Winter, and Vinay Rao. 2021. Webred: Effective pretraining and finetuning for relation extraction on the web. arXiv preprint arXiv:2102.09681.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, 21(140):1-67.

Sebastian Riedel, Limin Yao, and Andrew McCallum. 2010. Modeling relations and their mentions without labeled text. In Machine Learning and Knowledge Discovery in Databases, pages 148-163, Berlin, Heidelberg. Springer Berlin Heidelberg.

Gaetano Rossiello, Md. Faisal Mahbub Chowdhury, Nandana Mihindukulasooriya, Owen Cornec, and Alfio Gliozzo. 2023. Knowgl: Knowledge generation and linking from text. In Proceedings of the AAAI Conference on Artificial Intelligence.

Alessandro Seganti, Klaudia Firlag, Helena Skowronska, Michał Satława, and Piotr Andruszkiewicz. 2021. Multilingual entity and relation extraction dataset and model. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 1946-1955, Online. Association for Computational Linguistics.

George Stoica, Emmanouil Antonios Platanios, and Barnabas Poczos. 2021. Re-tacred: Addressing shortcomings of the tacred dataset. Proceedings of the AAAI Conference on Artificial Intelligence, 35(15):13843-13850.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural networks. In Advances in Neural Information Processing Systems, volume 27. Curran Associates, Inc.

Qingyu Tan, Lu Xu, Lidong Bing, Hwee Tou Ng, and Sharifah Mahani Aljunied. 2022. Revisiting DocRED - addressing the false negative problem in relation extraction. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 8472-8487, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, and Angela Fan. 2021. Multilingual translation from denoising pre-training. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 3450-3466, Online. Association for Computational Linguistics.

Bayu Distiawan Trisedya, Gerhard Weikum, Jianzhong Qi, and Rui Zhang. 2019. Neural relation extraction for knowledge base enrichment. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 229-240, Florence, Italy. Association for Computational Linguistics.

Clara Vania, Grace Lee, and Andrea Pierleoni. 2022. Improving distantly supervised document-level relation extraction through natural language inference. In Proceedings of the Third Workshop on Deep Learning for Low-Resource Natural Language Processing, pages 14-20, Hybrid. Association for Computational Linguistics.

Chenxi Whitehouse, Tillman Weyde, and Pranava Madhyastha. 2023. Towards a unified model for generating answers and explanations in visual question answering. In Findings of the Association for Computational Linguistics: EACL 2023, pages 1648-1660, Dubrovnik, Croatia. Association for Computational Linguistics.

Chenxi Whitehouse, Tillman Weyde, Pranava Madhyastha, and Nikos Komninos. 2022. Evaluation of fake news detection with knowledge-enhanced language models. In Proceedings of the International AAAI Conference on Web and Social Media, volume 16, pages 1425-1429.

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage challenge corpus for sentence understanding through inference. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume l (Long Papers), pages 1112-1122, New Orleans, Louisiana. Association for Computational Linguistics.

Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, and Yuji Matsumoto. 2020. LUKE: Deep contextualized entity representations with entityaware self-attention. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6442-6454, Online. Association for Computational Linguistics.

Yuan Yao, Jiaju Du, Yankai Lin, Peng Li, Zhiyuan Liu, Jie Zhou, and Maosong Sun. 2021. CodRED: A cross-document relation extraction dataset for acquiring knowledge in the wild. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 4452-4472, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.

Yuan Yao, Deming Ye, Peng Li, Xu Han, Yankai Lin, Zhenghao Liu, Zhiyuan Liu, Lixin Huang, Jie Zhou, and Maosong Sun. 2019. DocRED: A large-scale document-level relation extraction dataset. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 764-777, Florence, Italy. Association for Computational Linguistics.

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli, and Christopher D. Manning. 2017. Position-aware attention and supervised data improve slot filling. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 35-45, Copenhagen, Denmark. Association for Computational Linguistics.

A Additional Results

We show the full results in Table 5 for BART Rand and BART PLM trained on REBEL and WEBIE, using both beam search with and without constraint Trie decoding.

We show in Table 6 the results for non-English languages for mWEBIE when specifying the source language and using the default (English) for the mBART tokenizer. These results are from beam search without constraint Trie. We can see that specifying the source language mostly harms the performance (except French), especially for Portuguese. We hypothesise that due to the model being trained solely on English as the source token, mBART may have difficulty handling other languages.

Model	Webie (all test)				Webie (anno. test)				REBEL			Wiki-NRE		
	Precision	Recall	F1	Acc.-Neg.	Precision	Recall	F1	Acc.-Neg.	Precision	Recall	F1	Precision	Recall	F1
$\mathrm{BART}_{\text {RAND }}$ (R)	10.83	16.00	12.92	0.00	10.70	13.26	11.84	0.00	64.34	67.90	66.07	15.83	52.09	24.28
會 $\mathrm{BART}_{\text {PLM }}(\mathrm{R})$	17.58	34.20	23.23	2.28	17.95	30.02	22.47	1.97	63.83	76.66	69.66	18.34	65.04	28.62
$\stackrel{\widetilde{c}}{\widetilde{\sim}} \mathrm{BART}_{\text {RAND }}(\mathrm{W})$	55.06	54.90	54.98	89.67	51.64	44.46	47.78	94.74	22.45	20.42	21.39	10.95	31.49	16.25
${ }_{\sim}^{\sim} \mathrm{BART}_{\text {PLM }}$ (w)	54.81	70.29	61.59	87.59	53.40	62.36	57.53	93.58	28.05	37.28	32.01	15.55	60.45	24.73
${ }_{5}^{0} \mathrm{BART}_{\text {RAND }}(\mathrm{R}+\mathrm{W})$	51.34	61.22	55.85	86.80	49.64	51.62	50.61	93.15	64.38	69.57	66.87	17.68	65.96	27.89
$\mathrm{BART}_{\text {PLM }}(\mathrm{R}+\mathrm{W})$	53.04	75.29	62.23	76.66	53.18	68.41	59.84	82.96	63.49	75.30	68.89	18.93	73.52	30.11
$\mathrm{BART}_{\text {RAND }}(\mathrm{R})$	11.93	18.91	14.63	0.00	11.82	15.63	13.46	0.00	66.89	70.37	68.58	27.61	66.73	39.06
$\stackrel{\sim}{\underset{\sim}{*}} \mathrm{BART}_{\text {PLM }}(\mathrm{R})$	15.24	39.30	21.96	0.00	15.98	34.92	21.93	0.00	66.28	76.78	71.14	25.39	77.45	38.24
- $\mathrm{BART}_{\text {rand }}$ (w)	55.47	57.25	56.35	90.07	52.95	46.60	49.57	95.04	27.47	23.13	25.12	18.98	43.75	26.48
$\stackrel{\text { cle }}{ } \mathrm{BART}_{\text {PLM }}(\mathrm{W})$	57.92	74.19	64.91	87.99	57.00	65.91	61.13	94.18	35.81	43.00	39.08	24.30	78.01	37.06
$\sum_{0}^{n} \operatorname{BART}_{\text {RaND }}(\mathrm{R}+\mathrm{W})$	52.79	64.15	57.92	87.45	51.89	54.28	53.06	93.71	66.87	72.24	69.45	29.02	82.35	42.91
$\cup \mathrm{BART}_{\text {PLM }}(\mathrm{R}+\mathrm{w})$	54.63	78.43	64.40	76.43	55.22	71.25	62.22	82.59	66.42	78.29	71.87	29.25	86.38	43.70

Table 5: Additional results using beam search with and without constraint Trie for each dataset. Results in blue shades are zero-shot performance.

Language	EN as Source Language in mBART Tokenizer					XX as Source Language in mBART Tokenizer				
	Precision	Recall	F1	Empty-Pos.\%	Accuracy-Neg.	Precision	Recall	F1	Empty-Pos.\%	Accuracy-Neg.
French	43.27	36.13	39.38	11.89	96.19	41.29	37.73	39.43	8.56	94.87
Spanish	41.93	34.63	37.93	12.34	96.74	40.47	36.57	38.42	8.56	95.82
Portuguese	41.17	32.37	36.24	14.07	96.91	13.81	1.77	3.14	86.33	98.21
Hindi	4.28	1.62	2.35	67.38	98.64	3.69	1.69	2.31	60.62	98.43

Table 6: Comparison of the zero-shot performance on mWEBIE with mBART when specifying the source language (XX) and keeping the default setting as the source language (EN). Results are with standard beam search (without the constraint Trie).

B Examples of ReFinED Output

We show examples of the sentences processed by ReFinED in Table 7. For each input sentence, ReFinED identifies the set of entities in that sentence, and outputs mention span, Wikidata id, and Wikipedia title for each entity. For our experiments, we use the wikipedia_model_with_numbers model with wikipedia entity set.

C MTurk Annotation Details

In this section, we describe the detailed settings for annotating (m)WEBIEwith MTurk.

C. 1 WebIE

The first annotation task (HIT) is to verify the correctness of the triples automatically created from the DS approach and filtered by the NLI model. The guidance and the interface are shown in Figure 2 and Figure 3, respectively.

In each HIT, we provide a sentence with its entities highlighted (head entity in blue and tail entity in green) and the URL of the web page which the sentence is extracted from. For the first EL annotation job, we provide both links to the Wikipedia and

Wikidata pages. Annotators are asked to choose if the highlighted spans are linked correctly to the KB. Next, the annotators are asked to verify if a relation (highlighted in orange) can be inferred from the sentence. We provide the description of the relation and an example use case to facilitate the annotation.

Each triple is annotated by three workers, and we pay $\$ 0.2$ per HIT. We hire MTurk workers with Masters Qualification and set additional requirements including (i) having done 2,000 HITs and (ii) having a job approval rate $\geq 99 \%$.

C. 2 mWebIE

Figure 4 and Figure 5 illustrates the interface for correcting machine-translated sentence and identifying corresponding entities in them. As it is challenging to find qualified crowd workers for the translation task ${ }^{23}$, we set the geographical regions for each language to the countries where the language is one of the official languages. We find

[^11]| Example Id | Sentence | ReFinED Output |
| :---: | :---: | :---: |
| 21464177 | On Thursday, British campaigning group the Environmental Investigation Agency accused Italy of trying to sabotage efforts to reform the EU ETS. | [["Thursday", None, "DATE"], ["British",
 Entity(wikidata_entity_id=Q145, wikipedia_entity_title=United
 Kingdom), "GPE"], ["Environmental Investigation Agency",
 Entity(wikidata_entity_id=Q1345905,
 wikipedia_entity_title=Environmental Investigation Agency), "ORG"],
 ["Italy", Entity(wikidata_entity_id=Q38, wikipedia_entity_title=Italy),
 "ORG"], ["EU", Entity(wikidata_entity_id=Q458,
 wikipedia_entity_title=European Union), "ORG"], ["ETS",
 Entity(wikidata_entity_id=Q899383, wikipedia_entity_title=ETSI),
 "ORG"]] |
| 1274217 | It culminates in the decade-long debate ending in 1913 to turn the Hetch Hetchy valley in Yosemite National Park into a reservoir for San Francisco. | [['decade-long', None, 'DATE'], ['1913',
 Entity(parsed_string=[timepoint: ["1913"]]), 'DATE'], ['Hetch Hetchy',
 Entity(wikidata_entity_id=Q1616130, wikipedia_entity_title=Hetch
 Hetchy), 'GPE'], ['Yosemite National Park',
 Entity(wikidata_entity_id=Q180402, wikipedia_entity_title=Yosemite National Park), 'FAC'], ['San Francisco',
 Entity(wikidata_entity_id=Q62, wikipedia_entity_title=San Francisco), 'GPE'll |

Table 7: ReFinED outputs on WEbIE validation examples.
that only India and countries in America have an adequate number of MTurk workers, which highly restricts the options for our target languages. In the end, the countries we set for the target languages are as follows: Portuguese: AO, BR, CV, ST, GW, GQ, MZ; Spanish: ES, MX, CO, PE, CL; CA for French, and IN for Hindi ${ }^{24}$. It was also necessary to remove the Masters Qualification requirement for MTurk workers (except Hindi) to find adequate annotators. We then conduct pilot annotations, where we deliberately introduce errors in the reference machine translation to verify if the workers under our requirement settings are able to correct them.

We provide the English sentence paired with the original machine-translated sentence for the actual HIT. The English sentence is highlighted with its entity spans, and we instruct the workers to correct the translation while ensuring that the entities are correctly translated. After confirming the translation, workers are then asked to highlight the corresponding entities in the target language (in green). For negative sentences without entity spans, the longest noun phrases were highlighted instead to prevent workers from simply copying the reference translations. We pay $\$ 0.35$ per HIT for positive sentences and $\$ 0.25$ for negative sentences (since most sentences in negative examples have only one highlighted entity/noun phrase and it is

[^12]considered an easier task).
Two MTurk workers are asked for the translation task, and an additional worker was asked to select the better translation, for which $\$ 0.10$ per HIT was paid.

D Domains in WebIE

The 200 URL domains included in WEbIE are shown in Table 8.

E Relations in the Annotated Set

Table 9 shows the details of the 200 relations that are covered in the human-annotated set of WEbIE.

Guidance:

This task presents you with a sentence, and a link to its source context online.
For the first part, please determine if the entities are correct.
An entity is correct if the entity in the first sentence has been correctly mapped to the wikipedia title provided. If this is ambiguous you can also hover over the wikidata link to see more information. If this information is still not enough you can also click the wikipedia and/or wikidata links to find out more.

If an entity is a year, then please check that the value in the "Wikipedia Title / Date" column matches the date (year) in the sentence (it is fine if it has different forms, as long as it refers to the same year). There will be no wikidata link, which is expected.
\checkmark For ambiguous entities - such as someone mentioned only by their surname, it is important to check the entity has been mapped to the correct person rather than someone else with the same surname.
X An entity should not be marked as wrong due to a missing wikipedia or wikidata page, unless both are missing and there is no date

For the second part, please determine if it can be inferred that the suggested fact was ever true from the sentence.
∇ Use the sentence provided alone
∇ If the sentence implies a fact was true in the past, still mark it as inferred.
X Do not use your own knowledge
\times Do not consider whether the fact is factually correct or out of date
\times Do not consider whether the entities are correct in this part
If you are unsure about anything, select "no" or "not inferred" and please provide a comment

Figure 2: MTurk HIT guidance entity and relation labelling.

Fact Extraction from Natural Language Task

Sentence:	The proceeds will go to veterans' charity groups. February 21, 2010 cultivated enigma: The French actress and singer has hardly missed a step in a long career that began in adolescence.
Context:	https://www.npr.org/sections/music-interviews/archive?date=2-28-2010 a
Note:	If you need additional context to determine if the entities are linked correctly you can check the link above if it looks correct. If you would prefer not to, or the link does not work: you could use a search engine with the exact sentence as a search term.

Part 1: Extracted Entities

Entity	Wikipedia Title / Date	Wikidata Link	Correct?	
Serge Gainsbourg	Serge Gainsbourg	Q Q1698	Yes	No
Gainsbourg	Charlotte Gainsbourg	Q Q276005	Yes	No
Optional comments:				

Part 2: Suggested Fact

Relation:	Serge Gainsbourg child Gainsbourg
Relation Description:	Subject has object as child. Do not use for stepchildren.
Relation Example:	King Charles III [child] William, Prince of Wales
Inferred?	Inferred Not Inferred
Optional comments:	

Figure 3: MTurk HIT user interface for entity and relation labelling.

Multilingual Translation and Mention Linking

Part 1: Translation

Sentence (English):	The 1954 Major League Baseball All-Star Game was the 21st playing of the midsummer classic between the all-stars of the American League (AL) and National League (NL), the two leagues comprising Major League Baseball.
Reference from Machine Translation:	O All-Star Game da Major League Baseball de 1954 foi o 210 jogo do clássico de meio de verão entre os All-Stars da American League (AL) e da National League (NL), as duas ligas que compõem a Major League Baseball.
Corrected Portuguese Sentence:	O All-Star Game dạ Major League Baseball de 1954 fọi o 210 jọgo do cllásssic̣o de meioo de verão entre os All-Stars da American League (AL) e dạ National League (NLT), as duas ligas que compōpem a Major League Baseball.
	Confirm Translation

Figure 4: MTurk HIT user interface for correcting the machine-translated text.

Multilingual Translation and Mention Linking

Part 1: Translation

Sentence (English):	The 1954 Major League Baseball All-Star Game was the 21st playing of the midsummer classic between the all-stars of the American League (AL) and National League (NL), the two leagues comprising Major League Baseball.
Reference from Machine Translation:	O All-Star Game da Major League Baseball de 1954 foi o 21o jogo do clássico de meio de verão entre os All-Stars da American League (AL) e da National League (NL), as duas ligas que compõem a Major League Baseball.
Corrected Portuguese Sentence:	O All-Star Game da Major League Baseball de 1954 foi o 210 jogo do clássico de meio de verão entre os All-Stars da American League (AL) e da National League (NL), as duas ligas que compõem a Major League Baseball.
Edit Translation	

Part 2: Entity List

Figure 5: MTurk HIT user interface for entity labelling in the target language.

Table 8: URL domains of the sentences included in WEBIE.

Count	PID	Relation	Description
1359	P17	country	sovereign state of this item (not to be used for human beings)
910	P131	located in the administrative territorial entity	the item is located on the territory of the following administrative entity. Use P276 for specifying locations that are non-administrative places and for items about events. Use P1382 if the item falls only partially into the administrative entity.
776	P530	diplomatic relation	diplomatic relations of the country
684	P47	shares border with	countries or administrative subdivisions, of equal level, that this item borders, either by land or water. A single common point is enough.
655	P27	country of citizenship	the object is a country that recognizes the subject as its citizen
588	P161	cast member	actor in the subject production .use "character role" (P453) and/or "name of the character role" (P4633) as qualifiers, use "voice actor" (P725) for voice-only role
580	P577	publication date	date or point in time when a work was first published or released
546	P527	has part(s)	part of this subject
480	P54	member of sports team	sports teams or clubs that the subject represents or represented
438	P800	notable work	notable scientific, artistic or literary work, or other work of significance among subject's works
437	P463	member of	organization, club or musical group to which the subject belongs. Do not use for membership in ethnic or social groups, nor for holding a political position, such as a member of parliament (use P39 for that).
430	P108	employer	person or organization for which the subject works or worked
426	P127	owned by	owner of the subject
400	P361	part of	object of which the subject is a part (if this subject is already part of object A which is a part of object B, then please only make the subject part of object A)
378	P1830	owner of	entities owned by the subject
370	P102	member of political party	the political party of which a person is or has been a member or otherwise affiliated
364	P150	contains the administrative territorial entity	(list of) direct subdivisions of an administrative territorial entity
359	P749	parent organization	parent organization of an organization, opposite of subsidiaries
340	P178	developer	organization or person that developed the item
314	P159	headquarters location	city, where an organization's headquarters is or has been situated. Use (P276) qualifier for specific building
310	P57	director	director(s) of film, TV-series, stageplay, video game or similar
299	P118	league	league in which team or player plays or has played in
297	P1376	capital of	country, state, department, canton or other administrative division of which the municipality is the governmental seat
296	P449	original broadcaster	network(s) or service(s) that originally broadcast a radio or television program
293	P36	capital	seat of government of a country, province, state or other type of administrative territorial entity
285	P2936	language used	language widely used (spoken or written) in this place or at this event
280	P355	has subsidiary	subsidiary of a company or organization; generally a fully owned separate corporation
279	P175	performer	actor, musician, band or other performer associated with this role or musical work
267	P166	award received	award or recognition received by a person, organization or creative work
267	P569	date of birth	date on which the subject was born
262	P641	spo	sport that the subject participates or participated in or is associated with
258	P26	spouse	the subject has the object as their spouse (husband, wife, partner, etc.). Use "unmarried partner" (P451)) for non-married companions
247	P571	inception	time when an entity begins to exist; for date of official opening use P1619
241	P176	manufacturer	manufacturer or producer of this product
234	P40	child	subject has object as child. Do not use for stepchildren
233	P170	creator	maker of this creative work or other object (where no more specific property exists)
227	P3373	sibling	the subject and the object have at least one common parent (brother, sister, etc. including half-siblings); use "relative" (P1038) for siblings-in-law (brother-in-law, sister-in-law, etc.) and step-siblings (step-brothers, step-sisters, etc.)
227	P50	author	main creator(s) of a written work (use on works, not humans); use P2093 when Wikidata item is unknown or does not exist
226	P570	date of death	date on which the subject died
224	P276	location	location of the object, structure or event. In the case of an administrative entity as containing item use P131. For statistical entities use P8138. In the case of a geographic entity use P706. Use P7153 for locations associated with the object.
204	P674	characters	characters which appear in this item (like plays, operas, operettas, books, comics, films, TV series, video games)
203	P1412	languages spoken, written or signed	language(s) that a person or a people speaks, writes or signs, including the native language(s)
201	P1441	present in work	this (fictional or fictionalized) entity or person appears in that work as part of the narration (use P2860 for works citing other works, :P361/P1433 for works being part of other works, P1343 for entities described in non-fictional accounts)
201	P945	allegiance	country (or other power) that the person or group serves
197	P58	screenwriter	person(s) who wrote the script for subject item
197	P37	official language	language designated as official by this item
193	P137	operator	person, profession, or organization that operates the equipment, facility, or service
193	P162	producer	person(s) who produced the film, musical work, theatrical production, etc. (for film, this does not include executive producers, associate producers, etc.)
185	P1411	nominated for	award nomination received by a person, organisation or creative work

Count	PID	Relation	Description
184	P1056	product or material produced	material or product produced by a government agency, business, industry, facility, or process
183	P35	head of state	official with the highest formal authority in a country/state
180	P206	located in or next to body of water	body of water on or next to which a place is located
180 180	P1001 P144	applies to jurisdiction	the item (institution, law, public office, public register...) or statement belongs to or has power over or applies to the value (a territorial jurisdiction: a country, state, municipality, ...)
180	P144	based on	the work(s) used as the basis for subject item
177	P156	followed by	immediately following item in a series of which the subject is a part, preferably use as qualifier of P179
176	P112	founded by	founder or co-founder of this organization, religion or place
174	P155	follows	immediately prior item in a series of which the subject is a part, preferably use as qualifier of P179
171	P488	chairperson	presiding member of an organization, group or body
169	P279	subclass of	this item is a subclass (subset) of that item; all instances of these items are instances of those items; different from P31 (instance of), e.g.: K2 is an instance of mountain; volcano is a subclass of mountain (and an instance of volcanic landform).
169	P169	chief executive officer	highest-ranking corporate officer appointed as the CEO within an organization
168	P86	composer	person(s) who wrote the music [for lyricist, use "lyrics by" (P676)
164	P140	religion or worldview	religion of a person, organization or religious building, or associated with this subject
163	P750	distributed by	distributor of a creative work; distributor for a record label; news agency; film distributor
161	P974	tributary	watercourse that flows into an other one (for lake inflows use P200)
159	P6087	coach of sports team	sports club or team for which this person is or was on-field manager or coach
157	P197	adjacent station	the stations next to this station, sharing the same line(s)
156	P1344	participant in	event in which a person or organization was/is a participant
155	P272	production company	company that produced this film, audio or performing arts work
154	P461	opposite of	item that is the opposite of this item
152	P1365	replaces	person, state or item replaced. Use "structure replaces" (P1398) for structures.
152	P277	programmed in	the programming language(s) in which the software is developed
151	P19	place of birth	most specific known (e.g. city instead of country, or hospital instead of city) birth location of a person, animal or fictional character
150	P1366	replaced by	other person or item which continues the item by replacing it in its role. Use P156 ("followed by") if the item is not replaced nor identical, but adds to the series (e.g. books in a series).
148	P585	point in time	time and date something took place, existed or a statement was true
148	P710	participant	person, group of people or organization (object) that actively takes/took part in an event or process (subject). Preferably qualify with "object has role" (P3831)). Use P1923 for participants that are teams.
147	P466	occupant	person or organization occupying property
144	P7047	enemy of	opponent character or group of this fictive character or group
143	P580	start time	time a time period starts
138	P403	mouth of the watercourse	the body of water to which the watercourse drains
135	P400	platform	platform for which a work was developed or released, or the specific platform version of a software product
134	P1327	partner in business or sport	professional collaborator
134	P22	father	male parent of the subject. Not stepfather
134	P414	stock exchange	exchange on which this company is traded
133	P306	operating system	operating system (OS) on which a software works or the OS installed on hardware
129	P1346	winner	winner of a competition or similar event, NOT to be used for awards (instead use "award received" on awardee's item, possibly qualified with "for work" or for wars or battles
128	P1889	different from	item that is different from another item, with which it may be confused
128	P4969	derivative work	new work of art (film, book, software, etc.) derived from major part of this work
127	P31	instance of	that class of which this subject is a particular example and member; different from 'subclass of'; for example: K2 is an instance of mountain; volcano is a subclass of mountain (and an instance of volcanic landform)
127	P30	continent	continent of which the subject is a part
124	P397	parent astronomical body	major astronomical body the item belongs to
122	P607	conflict	battles, wars or other military engagements in which the person or item participated
120	P2789	connects with	item with which the item is physically connected
120	P1038	relative	family member (qualify with "type of kinship"; for direct family member please use specific property)
119	P1891	signatory	person, country, or organization that has signed an official document
118	P1029	crew member(s)	person(s) that participated operating or serving aboard this vehicle
115	P937	work location	location where persons or organisations were actively participating in employment, business or other work
114	P495	country of origin	country of origin of this item (creative work, food, phrase, product, etc.)
113	P1557	manifestation of	inherent and characteristic embodiment of a given concept
113	P6	head of government	head of the executive power of this town, city, municipality, state, country, or other governmental body

Count	PID	RELATION	DESCRIPTION
112	P451	unmarried partner	someone with whom the person is in a relationship without being married. Use "spouse" (P26) for married couples performer of a spoken role in a creative work such as animation, video game, radio drama, or dubbing over
112	P725	voice actor	P123
organization or person responsible for publishing books, periodicals, printed music, podcasts,			
games or software			

Count	PID	Relation	Description
82	P915	filming location	actual place where this scene/film was shot. For the setting, use "narrative location" (P840)
82	P371	presenter	main role in presenting a radio or television program or a performing arts show
80	P740	location of formation	location where a group or organization was formed
79	P2512	series spin-off	series' spin-offs
79	P1382	partially coincident with	object that partially overlaps with the subject in its instances, parts, or members
79	P291	place of publication	geographical place of publication of the edition (use 1st edition when referring to works)
78	P39	position held	subject currently or formerly holds the object position or public office
78	P1535	used by	item or concept that makes use of the subject (use sub-properties when appropriate)
78	P1027	conferred by	person or organization who grants an award, certification, grant, or role
78	P210	party chief representative	chief representative of a party in an institution or an administrative unit
76	P1269	facet of	topic of which this item is an aspect, item that offers a broader perspective on the same topic
75	P4913	dialect of	language of which an item with this property is a dialect. Use in addition to "subclass of" (P279) if a languoid is also considered a dialect.
75	P1619	date of official opening	date or point in time an event, museum, theater etc. officially opened
75	P208	executive body	branch of government for the daily administration of the territorial entity
75	P376	located on astronomical body	astronomical body on which features or places are situated
74	P931	place served by transport hub	territorial entity or entities served by this transport hub (airport, train station, etc.)
74	P793	significant event	significant or notable events associated with the subject
73	P8138	located in the statistical territorial entity	statistical territorial entity in which a place is located or is part of. If a municipality or county is split into or part of several regions: add several values
73	P2032	work period (end)	end of period during which a person or group flourished in their professional activity
73	P3842	located in the presentday administrative territorial entity	the item was located in the territory of this present-day administrative unit; however the two did not at any point coexist in time
71	P664	organizer	person or institution organizing an event
71	P6872	has written for	publication an author has contributed to
71	P747	has edition or translation	link to an edition of this item
71	P1951	investor	individual or organization which invests money in the item for the purpose of obtaining financial return on their investment
69	P576	dissolved, abolished or demolished date	point in time at which the subject (organisation, building) ceased to exist; see "date of official closure" (P3999) for closing a facility, "service retirement" (P730) for retiring equipment, "discontinued date" (P2669) for stopping a product
69	P101	field of work	specialization of a person or organization
69	P1408	licensed to broadcast to	place that a radio/TV station is licensed/required to broadcast to
69	P832	public holiday	official public holiday that occurs in this place in its honor, usually a non-working day
68	P61	discoverer or inventor	subject who discovered, first described, invented, or developed this discovery or invention
68	P38	currency	currency used by item
68	P1142	political ideology	political ideology of an organization or person or of a work (such as a newspaper)
67	P1435	heritage designation	heritage designation of a cultural or natural site
67 67	P119 P286	place of burial	location of grave, resting place, place of ash-scattering, etc. (e.g., town/city or cemetery) for a person or animal. There may be several places: e.g., re-burials, parts of body buried separately.
67	P286	head coach	on-field manager or head coach of a sports club (not to be confused with a general manager P505, which is not a coaching position) or person
67	P797	authority	entity having executive power on given entity
66	P364	original language of film or TV show	language in which a film or a performance work was originally created. Deprecated for written works and songs; use P407 ("language of work or name") instead.
65	P413	position played on team / speciality	position or specialism of a player on a team
65	P1304	central bank	country's central bank
65	P921	main subject	primary topic of a work
65	P3975	secretary general	leader of a political or international organization, sometimes below the chairperson
64	P1037	director / manager	person who manages any kind of group
64	P407	language of work or name	language associated with this creative work (such as books, shows, songs, broadcasts or websites) or a name (for persons use "native language" P103 and "languages spoken, written or signed" P1412
63	P177	crosses	obstacle (body of water, road, railway...) which this bridge crosses over or this tunnel goes under
63	P3033	package management system	package management system used to publish the software
62	P1877	after a work by	artist whose work strongly inspired/ was copied in this item
60	P98	editor	person who checks and correct a work (such as a book, newspaper, academic journal, etc.) to comply with a rules of certain genre
58	P729	service entry	date or point in time on which a piece or class of equipment entered operational service
57	P3301	broadcast by	channel, network, website or service that broadcast this item over radio, TV or the Internet
55	P726	candidate	person or party that is an option for an office in this election
53	P4884	court	specific court a legal case is/was heard/decided in
53	P669	located on street	street, road, or square, where the item is located.

Table 9: Count, PID (Wikidata ID), Relations and Descriptions of the top 200 relations in the annotated WEbIE.

A For every submission:

\checkmark A1. Did you describe the limitations of your work? Limitations
\checkmark A2. Did you discuss any potential risks of your work? Limitations
\checkmark A3. Do the abstract and introduction summarize the paper's main claims? Abstract and Section 1

X A4. Have you used AI writing assistants when working on this paper?
Left blank.

B D Did you use or create scientific artifacts?

Left blank.B1. Did you cite the creators of artifacts you used?
No response.B2. Did you discuss the license or terms for use and / or distribution of any artifacts? No response.B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided that it was specified? For the artifacts you create, do you specify intended use and whether that is compatible with the original access conditions (in particular, derivatives of data accessed for research purposes should not be used outside of research contexts)?
No response.B4. Did you discuss the steps taken to check whether the data that was collected / used contains any information that names or uniquely identifies individual people or offensive content, and the steps taken to protect / anonymize it?
No response.B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and linguistic phenomena, demographic groups represented, etc.?
No response.B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits, etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the number of examples in train / validation / test splits, as these provide necessary context for a reader to understand experimental results. For example, small differences in accuracy on large test sets may be significant, while on small test sets they may not be.
No response.

C Did you run computational experiments?

4
$\checkmark \mathrm{C} 1$. Did you report the number of parameters in the models used, the total computational budget (e.g., GPU hours), and computing infrastructure used?

4
The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing assistance.
$\checkmark C 2$. Did you discuss the experimental setup, including hyperparameter search and best-found hyperparameter values?
4
\checkmark C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary statistics from sets of experiments), and is it transparent whether you are reporting the max, mean, etc. or just a single run?

5
\checkmark C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE, etc.)?
2,4,5
D \quad Did you use human annotators (e.g., crowdworkers) or research with human participants?
2
\checkmark D1. Did you report the full text of instructions given to participants, including e.g., screenshots, disclaimers of any risks to participants or annotators, etc.?

2, appendix B

\checkmark D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students) and paid participants, and discuss if such payment is adequate given the participants' demographic (e.g., country of residence)?

Appendix B

D3. Did you discuss whether and how consent was obtained from people whose data you're using/curating? For example, if you collected data via crowdsourcing, did your instructions to crowdworkers explain how the data would be used?Not applicable. we use MTurk platform
\square D4. Was the data collection protocol approved (or determined exempt) by an ethics review board? Not applicable. we use MTurk platform
\checkmark D5. Did you report the basic demographic and geographic characteristics of the annotator population that is the source of the data?
Appendix B

[^0]: * Work conducted as Research Intern at Amazon Alexa AI.
 ** Now at Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI), Abu Dhabi, UAE.
 ${ }^{1}$ Dataset, code and additional materials are available at https://github.com/amazon-science/WebIE.

[^1]: ${ }^{2}$ Closed IE refers to the extraction of triples with the entity and relation defined by a knowledge base.
 ${ }^{3}$ We use the term domain to refer to the URL domain.
 ${ }^{4}$ We use the dataset from https://huggingface.co/ datasets/allenai/c4.

[^2]: ${ }^{5}$ See Appendix D for URL domains included in WEBIE.
 ${ }^{6}$ https://spacy.io/
 ${ }^{7}$ For example, "October 10, 2018" will be mapped to " 2018 ".

[^3]: ${ }^{8}$ https://huggingface.co/cross-encoder/ nli-deberta-v3-large achieved superior results among the models we evaluated in our preliminary experiments.

[^4]: ${ }^{9}$ We ensure all DS triples in a selected sentence are annotated.
 ${ }^{10} \mathrm{We}$ ask for inferred instead of explicit expression since some relations may not be explicitly expressed in the sentence, e.g. "located in" (London, UK) or "date of birth" XX (1986-2022).
 ${ }^{11}$ https://huggingface.co/facebook/ nllb-200-distilled-1.3B

[^5]: ${ }^{12}$ See details for mWEBIE annotations in Appendix C.
 ${ }^{13}$ For example, a mention span of "UK" is linked to Wikipedia title "United Kingdom" and mapped to Q145 in Wikidata.

[^6]: ${ }^{14}$ The EL target only includes mention spans that contribute to valid triples, consistent with the triples that are later generated conditioned on the linked entities.
 ${ }^{15}$ Both artificial prompt tokens are added as the special tokens to the tokenizer to avoid bias from pre-trained embeddings, but are intended to be biased to the associated task.

[^7]: 16https://huggingface.co/facebook/ bart-large
 ${ }^{17}$ https://huggingface.co/facebook/ mbart-large-50

[^8]: ${ }^{18}$ For $\mathrm{BART}_{\text {pLM }}(\mathrm{W})$ we find it is necessary to use a lower learning rate $5 e^{-6}$ for more stable training.
 ${ }^{19}$ See Table 5 in Appendix A for detailed comparison.

[^9]: ${ }^{20}$ For positive examples it only achieves 20 F 1 points.
 ${ }^{21}$ We report results using EN as the source language token for mBART, as it produces better performance compared to the actual source language token. See more details in Appendix A.

[^10]: ${ }^{22} \mathrm{We}$ consider RE dataset as the ones that focus on extracting relations but without entity spans and/or linking information.

[^11]: ${ }^{23}$ Preliminary results where we include the USA for the mWEBIE annotation task indicate that MTurk workers with limited or no knowledge of the target language (or English) still accept the job, despite our specific requirement for proficiency in both English and the target language.

[^12]: ${ }^{24}$ For the mapping between country codes and countries, please refer to https://docs.aws.amazon. com/AWSMechTurk/latest/AWSMturkAPI/ ApiReference_LocaleDataStructureArticle. html

