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Abstract

Incorporating conversational context and
knowledge into dialogue generation models has
been essential for improving the quality of the
generated responses. The context, comprising
utterances from previous dialogue exchanges,
is used as a source of content for response gen-
eration and as a means of selecting external
knowledge. However, to avoid introducing ir-
relevant content, it is key to enable fine-grained
scoring of context and knowledge. In this pa-
per, we present a novel approach to context
and knowledge weighting as an integral part
of model training. We guide the model train-
ing through a Contextual Knowledge Learn-
ing (CKL) process which involves Latent Vec-
tors for context and knowledge, respectively.
CKL Latent Vectors capture the relationship
between context, knowledge, and responses
through weak supervision and enable differen-
tial weighting of context utterances and knowl-
edge sentences during the training process. Ex-
periments with two standard datasets and hu-
man evaluation demonstrate that CKL leads to
a significant improvement compared with the
performance of six strong baseline models and
shows robustness with regard to reduced sizes
of training sets.

1 Introduction

Dialogue generation is concerned with conversa-
tional settings where participants take turns and
the task is to generate a response to previous ut-
terances. In order to generate relevant responses,
prior research explored the use of the conversa-
tional history, i.e., the utterances already exchanged
between the participants, as a context for the new
response. It also investigated the use of external
knowledge that may be a good source of content
and not necessarily present in the conversational
history (Ghazvininejad et al., 2018; Zheng and
Zhou, 2019; Liu et al., 2021a,b; Prabhumoye et al.,

*Qatar Computing Research Institute, Doha, Qatar

Figure 1: Example showing utterances of participants
A and B, the scored knowledge, and the target response.
The knowledge sentence (1) is deemed the best knowl-
edge for response generation by our proposed CKL
model. The best context segments for retrieving the
best knowledge are colored Brown; the best context seg-
ments for generating response are colored Blue and the
best knowledge segments for the response are Purple.

2021a). However, it has been shown that adding
knowledge indiscriminately, can hurt performance.
Thus, the context has been used to select the best
knowledge for the response generation.

Since the context itself consists of multiple utter-
ances, the same concern applies: not all the prior
utterances are equally useful for generating the
response. Therefore, the context needs to be eval-
uated for its importance in relation to generating
the response and identifying the relevant knowl-
edge, separately. In Figure 1, we show an example
from the Wizard of Wikipedia (test seen) dataset,
illustrating that the best context segments for re-
sponse generation may not necessarily be the best
context segments for retrieving the best knowledge.
Furthermore, both the context and the contextual
knowledge contribute to the coverage of the tar-
get response (blue and purple words). Thus, it is
important to devise effective learning methods to
identify the best context for response generation
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and for knowledge selection. Once the knowledge
is selected, there is still a question of whether and
how to refine its selection for optimal use.

Recent studies differentiated between the two
context roles by adopting a pipeline approach and
training different models for each of them. Zheng
et al. (2020) proposed a knowledge retrieval model
TPPA that re-orders retrieved knowledge guided by
its relevance to the response and investigated the
effects of the resulting knowledge sets in combina-
tion with generative models such as TED (Zheng
and Zhou, 2019) and WSeq (Tian et al., 2017).
Paranjape et al. (2021) introduced a posterior-
guided training to guide the retrieval of the relevant
knowledge. A BART-based generative model (a
generator) is used to generate responses but the re-
triever and the generator are trained independently.
Similarly, Glass et al. (2022) developed a Re2G
model which comprises a retriever, a re-ranker, and
a generator. The re-ranker can take as input the
outputs of multiple retrieval systems, e.g., ANN-
based retrieval and BM25 method and the content
retrieval training is an integral part of the content
generation. This approach can differentiate the con-
text roles from knowledge selection and response
generation tasks. However, it requires additional
training stages, which may incur and accumulate
additional errors, and cannot separate the context
information used for knowledge selection and re-
sponse generation within the unified model.

In our work we hypothesize that the integrated
approach to model training and selection of con-
text and knowledge can be improved through a
parallel learning architecture where specific con-
tent selection roles (context and knowledge) are
clearly differentiated and each learning facet is su-
pervised, controlling for model training. Guided
by the hypothesis, we propose a Contextual Knowl-
edge Learning (CKL) model in which we introduce
Latent Vectors to capture context roles and knowl-
edge characteristics: the Context Latent Vector for
the relationship of context to the responses and to
the ‘best’ knowledge, and the Knowledge Latent
Vector for the knowledge to capture the importance
of knowledge to the responses. Latent Weights are
then derived from the Latent Vectors to indicate the
importance of context utterances and knowledge
sentences.

We also extend the notion of the Attention op-
eration, where tokens’ attention scores are entirely
decided by the scaled dot product between two rep-

resentations, and devise a Latent Weight Enhanced
Attention. The attention operation is augmented
with the multiplication by the tokens’ attention
scores and the Latent Weights (i.e., the context ut-
terance’s weight and knowledge sentence weight).
By adopting the weak supervision technique, the
Latent Weights for context and knowledge are su-
pervised by the (noisy) pseudo ground truth, re-
moving the need for human annotations. Com-
bined with the Negative Log Likelihood loss, the
CKL is trained in a unified way, differentiating the
context utterances for the knowledge selection and
response generation tasks.

The performance that our CKL model is supe-
rior to six strong baseline approaches, including
Transformer-based and pre-trained model-based
methods, on two publicly available datasets Wiz-
ard of Wikipedia and CM-DoG. By experimenting
with a 50% smaller training set, our approach still
outperforms the baseline methods. Figure 1 shows
the effectiveness of recognizing relevant context
utterances for both the knowledge selection task
and dialogue generation task using the CKL model.

In summary, the key contributions of our re-
search are through the novel design and clear ad-
vantages of the CKL method*:

• Differentiated functionality of the context ut-
terances for the knowledge selection task and
response generation task, achieved through
the technique of training latent vector;

• Latent Weight Enhanced Attention module
that incorporates the latent weights into the
generation process;

• Effective weak supervision of latent weights
training by defining the pseudo ground truths
for the context latent weights and knowledge
latent weights;

• Robustness of CKL, retaining its effectiveness
with reduced amounts of data.

2 Related Work

Knowledge-Grounded Dialogue Generation. Re-
search on knowledge injection into dialogue gener-
ation can be traced to Ghazvininejad et al. (2018)
who demonstrated that injecting knowledge into
the generative model benefits the performance due
to additional information available in knowledge

*https://github.com/tonywenuon/acl2023-ckl
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sentences. This led to a range of methods for knowl-
edge injection (Zheng and Zhou, 2019; Zhao et al.,
2020b; Li et al., 2019). Recently, pre-trained mod-
els were also adopted. Liu et al. (2021b) use BART
(Lewis et al., 2020a) as the backbone to fine-tune
the model with few-resource datasets. Prabhumoye
et al. (2021a) also chose BART as the basic pre-
trained framework to project context and knowl-
edge in a unified model. However, it has been
shown that not all the knowledge is useful, and
therefore knowledge has to be carefully selected
(Kim et al., 2020; Lian et al., 2019). Lewis et al.
(2020b) propose a RAG model by leveraging re-
trieval techniques to obtain relevant knowledge for
enhancing dialogue generation. Built on top of the
RAG, Shuster et al. (2021) study various types of
architectures with multiple components, including
retrievers, rankers, and encoder-decoders. All pre-
viously mentioned approaches take the same con-
text information for both the knowledge selection
task and the dialogue generation task. To differ-
entiate the functionality of the context for the two
tasks, Glass et al. (2022); Paranjape et al. (2021);
Zheng et al. (2020) introduce pipelines to achieve
multi-stage generative models. Commonly, they
devise a retriever that takes responsibility of retriev-
ing knowledge units given the context information
and follow by a generator that generates the final
responses. The limitation is that this multi-stage
training may cause error accumulation. Motivated
by this, we train our CKL model in an end-to-end
way by differentiating the context inside the model.

Weak Supervision for Dialogue Generation. For
the dialogue generation task, even though the re-
sponses are naturally the ground truth for the model
training, previous studies showed that several aux-
iliary tasks with weak supervision can help to im-
prove the generation performance (Chang et al.,
2021). Zhao et al. (2020b) uses BERT encoders
(Kenton and Toutanova, 2019) and a GPT-2 de-
coder (Radford et al., 2019) for knowledge pro-
jection and prediction. They built pseudo ground
truth documents by leveraging the similarity be-
tween each document and the response to weakly
supervise document selection. Zheng et al. (2021)
propose a de-noising mechanism for the knowledge
tokens to be injected in a weak supervision manner.
Wang et al. (2019) design a weak supervision-based
discriminator to capture the relations between the
answer and the corresponding passage and even-
tually generate the questions. Informed by these

studies, in our work we introduce a weak supervi-
sion to complement the generation model training.

Our proposed CKL model combines context dif-
ferentiation and weak supervision for response gen-
eration purposes. The CKL model differs from
prior studies by (1) devising latent vectors for both
context and knowledge to derive the context latent
weights and knowledge latent weights for knowl-
edge selection and response generation tasks, and
(2) designing a latent weight enhanced attention
operation, combined with a weak supervision tech-
nique to provide more effective use of context and
knowledge for response generation.

3 Method

Problem and Definitions. Considering a con-
versational history that comprises context C =
{c1, c2, . . . , cm}, our goal is to generate a response
R = {r1, r2, . . . , rL} by leveraging knowledge
K = {k1, k2, . . . , kl} that is relevant to the con-
text C. Among the notations, ri is each word of the
response, ci means the context utterance, and ki de-
notes the knowledge sentence. L is the maximum
token number of the response; m is the number
of context utterances and l is the number of back-
ground knowledge sentences.

We aim to (1) calculate latent weights of con-
text utterances and knowledge sentences (Sec. 3.2
and 3.3); (2) generate the final response given con-
text, knowledge, and their latent weights (Sec. 3.4).
In our approach, we do not integrate latent vec-
tors into the content representation. Instead, we
transform vectors into scalar values, referred to as
latent weights. The Context Latent Weights for
Response and Knowledge, (CLWR) and (CLWK),
respectively, are used in the loss function and by
the decoder to score content utterances. The Con-
textual Knowledge Latent Weights (KLW) are sim-
ilarly used in the loss function and the decoder to
score knowledge sentences.

Contextual Knowledge Learning (CKL) Archi-
tecture. Our proposed CKL method consists of
four components: an encoder, a Context Latent
Weight generator (CLW Generator in Figure 2), a
Knowledge Latent Weight generator (KLW Gener-
ator), and a decoder. We use the state-of-the-art
Transformer-based encoder-decoder model BART
(Lewis et al., 2020a) as the backbone of our En-
coder and Decoder. The CLW generator takes re-
sponsibility for producing two sets of context latent
weights, one set for response generation (CLWR)
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Figure 2: Contextual Knowledge Learning (CKL) model architecture comprising the BART-based encoder, two
generators for latent vectors training and latent weights generation, and decoder with context and knowledge scoring.
Trainable parameters δi balance multi-losses.

and another set for knowledge latent weight gener-
ation (CLWK). Similar to the CLW generator, the
KLW generator is used to generate knowledge la-
tent weights (KLW) which are conditioned on the
context and knowledge. Finally, the decoder is a
normal BART decoder but equipped with the latent
weight enhanced attention mechanism.

3.1 Encoder

Leveraging the pre-trained model BART, we di-
rectly use the BART encoder to get the context and
knowledge representations. The proposed CKL
model needs context utterances’ and knowledge
sentences’ representations, so they are expected
to be passed through the BART encoder sequence
by sequence. However, that would destroy the in-
ner dependency between words from sequences,
i.e., this means discarding the long dependency be-
tween context and knowledge. To tackle this, we
first inject the concatenation of the context and
knowledge to get a whole sequence representa-
tion, i.e., ‘Context & Knowledge Representation’
in Figure 2. Then by recognizing the context utter-
ances’ lengths and knowledge sentences’ lengths,
we split the whole representation into several sub-

sequences, obtaining representations that take word
long-dependency into account.

3.2 Context Latent Weight Generator

As shown in Figure 2, CLW Generator is designed
to generate two sets of context latent weights: Con-
text Latent Weight for Response (CLWR) and Con-
text Latent Weight for Knowledge (CLWK).

Context Latent Vector. The CLW generator starts
from a Context Latent Vector which is a trainable
vector. Practically, it is a word embedding indexed
by a fixed word index of 1.

Context Latent Vector Interaction with Con-
text Representations. Here in the CLW generator,
like the Transformer architecture, a standard cross-
attention, feed-forward, and residual network are
used. We introduce the cross-attention operation in
detail because it will be used in the next sections.
For the rest of the Transformer modules, e.g., feed-
forward layer and residual network, please refer to
Vaswani et al. (2017). Formally, the attention is
calculated as:

Attention(Q, K, V) = softmax
(
QKT

√
d

)
V (1)
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in which Q, K, and V are matrices and d is the
representation dimension. Through the softmax
function, the attention weights, i.e., QKT, are nor-
malized. Multiplying with V, the Q’s representation
is updated by K and V. In the CLW generator, Q
is the context latent vector, while K and V are the
context representation.

Latent Weight Head. The Latent Weight Head
module contains a linear layer and a Sigmoid func-
tion. The purpose is to transfer the d dimensional
context latent vector to scalar values. By doing so,
each context utterance will have a latent score. To
be specific, we define the Latent Weight Head as
follows:

CLWR = Sigmoid(xCLVW1 + b1) (2)

CLWK = Sigmoid(xCLVW2 + b2) (3)

where CLWR ∈ R1×m and CLWK ∈ R1×m are
the context latent weight scores for the response
and knowledge respectively. W1,W2 ∈ Rd×1 and
b1, b2 ∈ R1 are trainable parameters. xCLV ∈
R1×d denotes the vector converted from the Con-
text Latent Vector. It is important to note that
CLWR and CLWK have the same Latent Weight
Head architecture, but do not share parameters.
CLWR is used to identify the importance of a
context utterance when generating responses and
CLWK is used when producing knowledge latent
weights, i.e., knowledge sentences’ importance.

Weak Supervision on CLWR and CLWK. As illus-
trated, when predicting the response and producing
the knowledge latent weight, the role of the con-
text utterances should not be treated as the same:
CLWR and CLWK reflect the difference. We devise
two loss functions to weakly supervise them. The
latent weight scores are expected to be a continu-
ous value thus we consider this task as a regression
task rather than a classification task. Mean Squared
Error (MSE) is adopted as the loss function. To
obtain the pseudo ground truth, we use the F1 score
to measure the closeness between a context utter-
ance and the response on the word level. As for its
values, for CLWR, the context utterance with the
maximum F1 score is tagged as 1 and the rest of
the utterances to be 0. It is worth noting that the
last utterance, i.e., the post, is always 1 because
it has been proven crucial for response generation
(Sankar et al., 2019).

For training CLWK, we use the same method for
constructing the pseudo ground truth. The only dif-
ference is that CLWK is built for the knowledge

latent weight, so we produce the most relevant
knowledge for the F1 score calculation. First of
all, we use the TF-IDF approach to retrieve from
the knowledge sentences by taking the response as
the query, i.e., ranking the knowledge sentence by
TF-IDF(knowledge sentence, response).† The top-
1 ranked sentence based on the TF-IDF is treated
as the most important knowledge sentence, being
tagged as Top1-RK. Secondly, similar to CLWR, the
context utterance with the maximum F1(Context
Utterance, Top1-RK) is used to supervise CLWK.
Formally,

GTCLWR(i) =





1, if ci= argmax(F1(ci, R))
1, if ci= post
0, otherwise

(4)

GTCLWK(i) =





1, if ci= argmax(F1(ci, Top1-RK))
1, if ci= post
0, otherwise

(5)

in which ci means each context utterance. Then,
we define the loss function to be:

LossCLWR = MSE(CLWR,GTCLWR) (6)

LossCLWK = MSE(CLWK,GTCLWK) (7)

where GTCLWR and GTCLWK are the pseudo ground-
truth context utterance scores for response genera-
tion and knowledge selection tasks respectively.

3.3 Knowledge Latent Weight Generator
The knowledge Latent Weight generator is de-
signed to generate a knowledge latent weight
(KLW). It begins with a knowledge latent vector,
which is a word embedding indexed by a fixed
index of 1. Note that the knowledge latent word
embedding is different from the context latent em-
bedding.

Latent Weight Enhanced Attention. Latent
Weight Enhanced Attention (LWE Attention) is
built on top of the standard attention by consider-
ing the latent weights. Originally, the attention is
calculated between two sequence representations
from the word level (shown in Eq. 1). The LWE
Attention takes sentence-level scores, i.e., the latent
weights, into consideration. By this, the Eq. 1 is
then changed to be:

LWE Attention(Q, K, V) = LW × softmax
(

QKT

√
d

)
V (8)

†TF-IDF(·) is the TF-IDF (term frequency-inverse document frequency)
function. IDF is obtained by the individual dataset.

7826



where LW stands for latent weights. LW will be
different when predicting responses and generat-
ing knowledge latent weight. Namely, in the KLW
generator, the LW is replaced with CLWK. In the
Decoder, it is changed to CLWR and KLW, which
will be introduced in Sec. 3.4.

Context & Knowledge Dependency (CK-Dep for
short). Prior studies (Prabhumoye et al., 2021b; Liu
et al., 2021c) consider the context and knowledge
dependency by stacking a context cross-attention
and a knowledge cross-attention from word level.
We also leverage the stacked architecture and con-
sider the context sentence-level weights (through
LWE Attention), i.e., the context LWE cross-
attention module and the knowledge cross-attention
module in KLW generator.

Weak Supervision on KLW. After going through
the CK-Dep operation, the Latent Vector is pro-
cessed by the Latent Weight Head module to get
the KLW. The knowledge generally contains richer
information than the context (Zheng and Zhou,
2019; Kim et al., 2020). For context we take
the top-1 ranked utterance as the pseudo ground
truth GTCLWK. However, for knowledge, we set a
hyper-parameter N to get the pseudo ground truth
knowledge sentences GTKLW. Namely, the top N
ranked knowledge sentences are considered to be
the ground truth for supervising KLW.

GTKLW(i) =

{
1, ki=Top N argmax(TF-IDF(k, R))
0, otherwise

(9)

where, ki is each knowledge sentence. With
different Extrema and Greedy scores of the
ZRKGC model are lower than the CKL. This
means although the generated re- sponses of the
ZRKGC model are closer to the ground truth
response on average, it can not seman- tically
capture the most important words. Third, in
terms of the diversity scores, the pro- posed
CKL does not improve over other models but
we expect that the method can be improved
by re- fining the use of latent weights which
are currently normalized between 0 and 1 and
multiplied by the word attention scores. Despite
of CKL model’s gen- erated responses being not
the most diverse among all compared models,
our human evaluation results reveal that CKL
is preferred by the 5 annotators with moderate
agreement, in terms of relevance, coherence,
informativeness, and overall preference (Appendix
B.2). 3https://github.com/ellenmellon/DIALKI

4https://github.com/neukg/KAT-TSLF
5https://github.com/shrimai/ Focused-Attention-
Improves-Document-Grounded-GenerationN for
the individual dataset, the performance could vary.
We discuss the effect of top-N in Appendix B.4.
Similar to the CLWR and CLWK, we also consider
the KLW generation as a regression task, and the
loss function is:

LossKLW = MSE(KLW,GTKLW) (10)

3.4 Decoder and Training
The Decoder is a BART decoder but equipped with
LWE Attention. In the ‘Context & Knowledge
LWE Cross-Attention’ module in Figure 2, the con-
text and knowledge representations are multiplied
by the corresponding latent weights. Namely, the
LW in Eq. 8 will be replaced by CLWR and KLW
when dealing with context and knowledge in the
Decoder. Formally, the Eq. 8 is instantiated to be:

PE Attention(Q, K, V) =
m∑

i=1

CLWRi × softmax
(

QKT
i√
d

)
Vi+

l∑

j=1

KLWj × softmax

(
QKT

j√
d

)
Vj

(11)

where, Ki and Vi means i-th context utterance. Kj

and Vj denote j-th knowledge sentence. CLWRi ∈
R1 and KLWj ∈ R1 stand for the corresponding
context and knowledge latent weights. The loss
function for response generation is a Negative Log
Likelihood loss (NLL).

LossNLL = −
L∑

i=1

log p(Rt|R<t, C, K). (12)

in which, L is the maximum length of the response,
t is the t-th token to be generated and R<t denotes
the generation steps prior to t.

Aggregation of Loss Functions. In this paper, we
have four different loss functions, including Eq. 6,
Eq. 7, Eq. 10 and Eq. 12. Previous studies simply
aggregate different loss functions by either an addi-
tion operation (Li et al., 2019; Zheng et al., 2021)
or setting hyper-parameters to do a weighted sum
(Wu et al., 2021), which are sub-optimal. Kendall
et al. (2018) propose a principled approach to multi-
task learning which weighs multiple loss functions
by considering the homoscedastic uncertainty of
each task. This Automatic Weighted Loss (AWL)
allows the model to simultaneously learn various
quantities with different units or scales in various
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settings. Adopting this strategy, we define our final
loss as follows:

Loss =
1

2δ21
LossCLWR +

1

2δ22
LossCLWK+

1

2δ23
LossKLW +

1

2δ24
LossNLL + log(δ1δ2δ3δ4)

(13)

The final goal is to minimize the objective with
respect to δ1, δ2, δ3 and δ4 as learning the relative
weight of the four different losses.

4 Experiment

4.1 Datasets, Settings, and Metrics
Datasets. Following previous research practices
(Prabhumoye et al., 2021a; Liu et al., 2021b;
Li et al., 2019; Zhao et al., 2020b; Liu et al.,
2021c), we use two public datasets: Wizard of
Wikipedia (WoW for short. Dinan et al. (2019))
and CMU-DoG (Zhou et al., 2018) to conduct our
experiments. We introduce them in detail in Ap-
pendix A.1.

Experimental Settings. All of the experiments are
conducted with the same hyper-parameter settings
as described in Appendix A.2.

Metrics. As used in previous works (Ghazvinine-
jad et al., 2018; Zhao et al., 2020a; Li et al., 2019;
Zheng et al., 2021), we employ BLEU (Papineni
et al., 2002), Rouge (Lin, 2004), Diversity (Li et al.,
2015) and embedding-based metric, BOW Embed-
ding (Liu et al., 2016a) as the metrics. Among
them, BLEU calculates N-grams co-occurrence be-
tween two sequences. Rouge measures the number
of overlapping units such as word sequences, and
word pairs between the generated sequence and
the ground truth sequence. Diversity score counts
distinct N-grams number divided by the total num-
ber of the generated corpus. BOW Embedding
metric leverages the pre-trained word vector to cal-
culate the similarity between sequences from the
semantic space. Meanwhile, Liu et al. (2016b);
Banerjee and Lavie (2005) suggest that compared
with the other metrics, BLEU2, and embedding-
based metrics have a better correlation with human
assessment, and thus in this paper, we take BLEU2
and embedding-based measurements as the main
metrics for discussion.

To have a better understanding of the proposed
model, we also conducted a human evaluation (re-
ported in Appendix B.2).

4.2 Baseline Approaches
We compare our CKL model with six baselines.

ITDD (Li et al., 2019) proposes an incremental
Transformer architecture to improve context coher-
ence and knowledge correctness.
DRD (Zhao et al., 2020a) proposes a disentangled
response decoder to isolate parameters that depend
on knowledge-grounded dialogues from the entire
generation model.
ZRKGC (Li et al., 2020) treats the knowledge
as latent variables so that the model can estimate
the knowledge representation distribution from the
latent space.‡

DIALKI (Wu et al., 2021) proposes a knowl-
edge identification model to provide dialogue-
contextualized passage encodings and locate
knowledge that is relevant to the conversation.§

KAT (Liu et al., 2021b) devises a three-stage ar-
chitecture to get better context inner-relationship,
knowledge representation, and interaction between
context and knowledge.¶

DoHA (Prabhumoye et al., 2021a) focuses on build-
ing a context-driven representation of the document
and enabling specific attention to the information
in the document.||

4.3 Experiment Results

Main Results. The experimental results are shown
in Table 1. Because of the page limitation, we re-
port the results of the WoW test unseen set (with
similar trends) in Appendix B.1. First, based on
BLEU and Rouge-L scores, the proposed CKL
models perform consistently better than the base-
line approaches. This reflects that the results from
the CKL share more consecutive tokens with the
ground truth responses. Looking closely at the
BLEU-2 scores, the CKL’s results are improved
by large margins compared to the best results of
the baseline approaches (DIALKI); they are around
15% better for the WoW test seen (improving from
13.72% to 15.80%) and around 14% better for the
CMU-DoG dataset.

Second, for the embedding-based metrics, the
CKL is better than most of the baseline models
except for the ZRKGC model on the Embedding
Average measurement. However, the Extrema and
Greedy scores of the ZRKGC model are lower than
the CKL. This means although the generated re-
sponses of the ZRKGC model are closer to the

‡
https://github.com/nlpxucan/ZRKGC

§
https://github.com/ellenmellon/DIALKI

¶
https://github.com/neukg/KAT-TSLF

||
https://github.com/shrimai/

Focused-Attention-Improves-Document-Grounded-Generation
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Table 1: Automatic evaluation results on Wizard of Wikipedia (WoW) test seen and CMU-DoG datasets. * means
significant test value with p < 0.05, compared to the CKL. Note that the results of ITDD and DRD are copied from
the papers, so they do not have significant test results. ‘w/o’ means without a certain module for the ablation study
while ‘red.’ means reduced to a subset of the whole dataset for training. All values are expressed as percentages (%).

Models Wizard of Wikipedia test seen
BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge-L Div-1 Div-2 Average Extrema Greedy

ITDD (Li et al., 2019) 15.80 7.10 4.00 2.50 - - - - - -
DRD (Zhao et al., 2020a) 21.80 11.50 7.50 5.50 - - - - - -
ZRKGC (Li et al., 2020) 23.80* 8.80* 4.04* 1.95* 16.86* 5.44* 22.66* 72.32* 40.40* 41.67*
KAT (Liu et al., 2021b) 16.92* 9.28* 6.04* 4.37* 16.41* 14.66* 45.99 67.86* 39.06* 39.37*
DoHA (Prabhumoye et al., 2021a) 23.19* 11.70* 6.99* 4.65* 21.32* 7.44 31.47 69.91* 40.91* 41.64*
DIALKI (Wu et al., 2021) 25.00* 13.72* 9.09* 6.68* 22.10* 9.33 41.71 70.43* 42.31* 41.73*
CKL 27.29 15.80 10.99 8.41 23.96 9.03 36.36 71.11 42.95 42.54
w/o LossKLW 26.01 14.80 10.16 7.68 23.25 9.37 37.27 70.69* 42.56 42.02*
w/o LossCLWR 26.57 15.43 10.76 8.22 23.75 9.31 37.38 71.05 43.50* 42.39
w/o LossCLWK 26.67 15.49 10.75 8.21 23.81 9.37 37.11* 70.99 43.37* 42.50
w/o CK-Dep 26.68 15.51 10.76 8.21 23.82 9.25 36.99* 71.18 43.35* 42.66
red. 1/2 training data 25.01* 13.81* 9.23* 6.85* 22.37* 9.04 35.79* 70.94 42.30* 42.41
red. 1/4 training data 23.48* 12.48* 8.03* 5.77* 21.17* 8.56* 34.45* 70.76 42.16* 42.63

Models CMU-DoG test set
BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge-L Div-1 Div-2 Average Extrema Greedy

ITDD 9.50 3.60 1.70 0.90 - - - - - -
DRD 15.00 5.70 2.50 1.20 - - - - - -
ZRKGC 17.35* 5.68* 2.31* 1.00* 13.05* 1.34* 8.26* 66.26* 31.42* 37.91*
KAT 13.53* 5.81* 2.81* 1.49* 11.98* 4.19* 17.60* 63.72* 35.18* 37.72*
DoHA 17.02* 6.95* 3.30* 1.72* 14.41* 2.39* 12.14* 65.69 35.51* 39.26*
DIALKI 15.83* 6.41* 3.10 1.69 14.64* 3.43* 20.43* 63.57* 34.89* 37.60*
CKL 17.74 7.91 4.11 2.29 15.87 2.30 11.10 65.63 35.81 39.46
w/o LossKLW 17.05 7.66 4.06 2.34 15.75 2.47 11.69 65.57* 35.74 39.48
w/o LossCLWR 17.02 7.62 3.98 2.23 15.93 2.34 11.32 65.19 35.71* 39.20*
w/o LossCLWK 17.33 7.80 4.14 2.38 15.91 2.37* 11.30 65.65 35.83 39.47
w/o CK-Dep 17.16 7.64 4.01 2.27 15.86 2.37* 11.67* 65.30* 35.63 39.10*
red. 1/2 training data 16.99* 7.25* 3.67* 2.02* 14.84* 2.32* 11.51* 65.07* 34.68* 38.30*
red. 1/4 training data 17.22* 7.27* 3.61* 1.94* 14.20* 2.07* 10.35* 65.11* 34.90* 39.09*

ground truth response on average, it can not seman-
tically capture the most important words.

Third, in terms of the diversity scores, the pro-
posed CKL does not improve over other models but
we expect that the method can be improved by re-
fining the use of latent weights which are currently
normalized between 0 and 1 and multiplied by the
word attention scores. Despite of CKL model’s gen-
erated responses being not the most diverse among
all compared models, our human evaluation results
reveal that CKL is preferred by the 5 annotators
with moderate agreement, in terms of relevance,
coherence, informativeness, and overall preference
(Appendix B.2).

Ablation Study. Four downgraded versions of
CKL are provided. (1) w/o LossKLW, i.e., removing
the knowledge latent weight loss function; (2) w/o
LossCLWR (deleting the context latent weight super-
vision for response generation); (3) w/o LossCLWK

(deleting the context latent weight supervision for
knowledge prediction); and (4) w/o CK-Dep re-
moves the context-knowledge dependency when
generating KLW, i.e., removing the Context LWE
Cross-Attention module from the KLW Generator
in Figure 2. From Table 1 we can see that all of
the BLEU-2 scores decrease. For the WoW dataset,

when removing LossKLW and LossCLWK, the BLEU-
2 gets the lowest score among all of the ablation ex-
periments, indicating the importance of knowledge
latent weights generation. In terms of the CMU-
DoG dataset, which has patterns different from the
WoW test seen, w/o LossCLWR decreases the most.
Thus, correctly identifying context seems more cru-
cial than knowledge selection for the CMU-DoG
dataset. We presume that CMU-DoG’s knowledge
sentences are complementary, i.e., different knowl-
edge sentences contain similar information, result-
ing in the context recognition showing more im-
portance. We further verify this assumption in Ap-
pendix B.4. Other metrics decreased to varying
degrees but most remain better than the baseline
approaches. On the whole, the full version of the
CKL performs the best.

Low-Resource Experiments. In order to test the
CKL’s robustness, we also conduct experiments on
low-resources scenarios. From Table 1, the BLEU-
2 scores of the CKL model with half of the training
data are respectively 13.81% and 7.25% on WoW
test seen and CMU-DoG datasets, outperforming
the best baseline models (DIALKI with 13.72%
on WoW, and DoHA with 6.95% on CMU-DoG).
Appendix B.3 further shows although as the scale
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Figure 3: P@N scores for WoW test seen original knowl-
edge set and the re-ranked knowledge set by CKL.

of the training set decreases, the performance drops
gradually, our proposed CKL model still performs
reasonably well with limited training data.

Latent Weight Analysis. To illustrate the effec-
tiveness of the proposed CKL model, we demon-
strate (1) knowledge re-ranking by the knowledge
latent weights and (2) Spearman’s Correlation be-
tween the knowledge latent weights and the pseudo
ground truth scores. We use the WoW test seen set
for illustration. The same patterns are found for
WoW test unseen and CMU-DoG datasets.

WoW and CMU-DoG datasets provide a set of
initial knowledge, designated by K. The predicted
knowledge latent weights by CKL are scores for
each knowledge sentence that can be used to rank
knowledge and obtain re-ranked knowledge set K ′.
We construct pseudo ground truth knowledge order
by using the response as the query to retrieve from
the knowledge named KGT. At this point, the top
1 ranked knowledge sentence in KGT is the most
relevant to the response, Top1Klg. We use P@N as
the metric to evaluate the precision. For a sample,
we calculate the percentage of Top1Klg included
within the top N-ranked knowledge sentences.

Figure 3 shows the results: for the original
knowledge order K, P@1 is about 17.5%; for K’
P@1 score is around 30%. For each N, the P@N
for K’ is higher than for K. That confirms that the
latent weight modules can improve the relevance
scoring of knowledge sentences. In Appendix C
we also provide a qualitative case study of the rank-
ings.

To further analyze the effectiveness of the la-
tent weights CLWR, CLWK and KLW, we calculate
Spearman’s Correlation between each weight group
and the corresponding pseudo ground truths which
have been elaborated on in Sec. 3 (e.g., for CLWR
we calculate the Spearman’s Correlation between
CLWR and GTCLWR). We use the ZRKGC model to
provide weights for knowledge sentences without

Table 2: Spearman’s Correlation between latent weights
and the pseudo ground truths. * means t-test value with
p < 0.05, in comparison with the proposed CKL.

Models KLW CLWR CLWK

ZRKGC 0.1001* - -
CKL 0.3700 0.6697 0.6455
w/o LossKLW 0.0966* 0.6699 0.6455
w/o LossCLWR 0.3585 0.4658* 0.6455
w/o LossCLWK 0.3694 0.6696 0.5769*
w/o CK-Dep 0.3732 0.6696 0.4816*

context weight (ZRKGC does not provide it) and
obtain Spearman’s Correlation with the pseudo-
ground truth GTKLW. We compare the resulting
Spearman’s Correlation coefficients with those of
the CKL and CKL’s ablated models. The results
are shown in Table 2. For KLW, the coefficients
are higher than for ZRKGC by a large margin. For
CKL’s ablated models, the coefficients are lower
than for the full CKL model. For instance, KLW
correlation score 0.0966 for ‘w/o LossKLW’ is much
lower than the score 0.37 for CKL. This further
demonstrates all supervised modules are helpful to
the entire model.

5 Conclusion

Past studies on capturing context and knowledge
relationships to boost the quality of response gen-
eration models were restricted to coarse-grain
characterization through context-knowledge cross-
attention. In this paper, we describe the Contextual
Knowledge Learning (CKL) method for response
generation. We propose our CKL model by using
two latent vectors which are trained to capture the
relationship between context, responses, and the
‘best knowledge’ (identified through a pre-defined
default retrieval process by taking the response as
the query) as well as the relationship between con-
textual knowledge and responses. The trained la-
tent vectors are used to generate latent weights that
enhance the traditional attention operation by mul-
tiplying them with the token-level attention scores.
Furthermore, we leverage the weak supervision
technique to jointly train the latent weights produc-
tion as well as the response generation. With these
two mechanisms, the CKL has the flexibility of
influencing the learning process and has demon-
strated superior performance against six strong
baselines. Future work will explore more diverse
use of latent vectors and latent weights as part of
the learning process.
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6 Limitations

The proposed CKL can automatically produce the
scores for each utterance in the context and each
sentence in the knowledge. However, it is con-
strained by the total length of the input sequence.
CKL takes BART as its foundation, thus the bot-
tleneck of BART limits the upper ability of CKL.
BART requests the input length to be 1,024, which
means the CKL can receive at most 1,024 tokens
at a time. For some samples, the concatenation
of the context and knowledge contains far more
than 1,024 but is truncated to fit with the length
requirement. In those cases, the CKL cannot get
enough information, resulting in the sub-optimal
performance of the CKL.

7 Ethical Statement

We are aware of how personal identities, expecta-
tions, norms, and values may influence our study.
Our datasets were released by previous studies and
are publicly available sources. Since researchers
had no interactions with human subjects in this
case, our ethics review board did not consider this
part of our research as human subjects research.
The only part of the study that involved human sub-
jects was a crowd-sourcing human evaluation study
(Appendix B.2), where participants were paid at
least the minimum wage. All of our analysis were
based on aggregated data without tracking down to
individuals.
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A Experimental Setup

To enable the reproduction of results, we make our
code publicly available at https://github.com/
tonywenuon/acl2023-ckl.

A.1 Datasets

Wizard of Wikipedia Dataset. The dataset (Di-
nan et al., 2019) includes knowledge annotated
by workers from the Amazon Mechanical Turk
(AMT) platform. Each worker was given a set of
background knowledge retrieved based on the di-
alogue history from Wikipedia articles to assess.
The dataset is split into train/validation/test sets.
For the validation and test sets, based on the topic
existence in the train set, there are two versions:
seen set (the topics exist in the train set) and the
unseen set (some new topics are not contained in
the train set). The original dataset can be obtained
at http://parl.ai. The train/seen validation/seen test
sets’ sizes are 74,092/3,939/3,865. For the seen
validation/seen test sets, the sizes are 3,927/3,924.

CMU-DoG Dataset. This dataset is proposed by
Zhou et al. (2018). It also employs workers from
the AMT and its conversations are mainly about
movies. They are required to exchange ideas about
movies. The original dataset can be obtained from
the published paper**. Li et al. (2019) also released
a CMU-DoG dataset††, which has tokenization to
all of the source and target sequences. In our paper,
we use the ITDD version. The train/validation/test
sets consist of 66,332/3,269/10,502 samples.

A.2 Experiment Settings
In our experiment, the BART-base model‡‡ is used.
The maximum source length is 1024 tokens and
64 tokens for the target length. For the number
of context utterances, we use the latest 10 utter-
ances. In terms of knowledge, we use the max-
imum source length rather than the number of
knowledge sentences to determine how many to
incorporate. The learning rate is set to be 5e-5. All
of the experiments are trained for 10 epochs on a
single TITAN V GPU. The proposed CKL model
needs about 20 hours for training on the Wizard of
Wikipedia dataset and about 8 hours on the CMU-
DoG dataset.

B Complementary Experimental Results

B.1 Results on WoW Test Unseen Set
From Table 3, it is clear that the CKL performs
best among all of the experiments in terms of the
BLEU and Rouge scores. Like the results of the

**https://github.com/festvox/datasets-CMU_DoG
††
https://github.com/lizekang/ITDD

‡‡
https://huggingface.co/facebook/bart-base
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Table 3: Automatic evaluation results on Wizard of Wikipedia test unseen set. * means significant test value with p
< 0.05, compared to the CKL. ‘w/o’ means without a certain module for the ablation study. All values are expressed
as percentages (%).

Models Wizard of Wikipedia test unseen
BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge-L Div-1 Div-2 Average Extrema Greedy

ITDD (Li et al., 2019) 13.40 4.70 2.10 1.10 - - - - - -
DRD (Zhao et al., 2020a) 20.70 10.10 6.20 4.30 - - - - - -
ZRKGC (Li et al., 2020) 23.30* 8.50* 3.94* 1.94* 16.81* 3.48* 15.78* 71.93* 39.11* 41.43*
KAT (Liu et al., 2021b) 16.49* 8.49* 5.30* 3.67* 15.60* 9.84* 31.13* 67.02* 37.20* 38.55*
DoHA (Prabhumoye et al., 2021a) 22.28* 10.53* 6.16* 4.10* 20.04* 5.04* 21.97* 68.61* 37.96* 40.23*
DIALKI (Wu et al., 2021) 25.26* 13.96* 9.36* 6.96* 22.02* 5.28 25.67 69.67* 40.94* 41.39*
CKL 27.68 16.05 11.22 8.62 23.93 4.89 18.60 70.36 41.93 41.86
w/o LossKLW 26.57 15.13 10.38 7.86 23.39 5.31 20.25 69.99* 41.51 41.62
w/o LossCLWR 26.87 15.48 10.77 8.21 23.53 5.04 19.26 69.97* 41.68 41.73
w/o LossCLWK 26.49 15.13 10.47 7.97 23.33 5.16 19.67 69.85* 41.59 41.56*
w/o CK-Dep 27.01 15.55 10.85 8.34 23.67 5.20 19.93 70.19 41.74 41.83

Wizard of Wikipedia (WoW) test seen set, the di-
versity scores and the Embedding-Average score
are slightly worse than KAT and ZRKGC respec-
tively. Remarkably, the BLEU-2 score improves
from 13.96% to 16.05%, which is even higher than
that of the WoW test seen set, which indicates the
effectiveness of the CKL model.

B.2 Human Evaluation

We also conducted human evaluation by deploying
users through the crowd-sourcing Amazon MTurk
platform. 5 AMT workers were employed to as-
sess samples from 4 perspectives, i.e., Relevance,
Coherence, Informativeness, and Overall Prefer-
ence. Following Ling et al. (2021), the four criteria
are referred to as: Relevance - whether the gen-
erated response is relevant to the given context.
Coherence - whether the generated response is a
coherent and meaningful continuation of the di-
alogue. Informativeness - how many new and
diverse expressions do the generated responses in-
troduce. Overall Preference - personal preference
between two responses.

To do the human evaluation, we randomly se-
lect 100 samples from the outputs of the proposed
CKL and DIALKI (the best-performing baseline
model) for the Wizard of Wikipedia and CMU-
DoG datasets respectively. Then we use the Ama-
zon Mechanical Turk platform for assessment. The
assessors are asked to select a response that they
preferred from two models on different perspec-
tives (relevance, coherence informativeness, and
overall), and they are also allowed to consider both
responses are equal to the given context, i.e., ‘Tie’
in Table 4.

The results are shown in Table 4, from which we
can see that for all of the four criteria, the proposed
CKL is better than the DIALKI. This indicates that

Figure 4: BLEU-2 scores (Y-axis) for WoW and CMU-
DoG datasets with different numbers of top N retrieved
knowledge sentences being the ground truth.

the CKL model improves in terms of relevance, co-
herence, and informativeness. We calculate Fleiss’
Kappa (Fleiss and Cohen, 1973) for each criteria.
The resulting Kappa scores are around 0.4, which
indicates a moderate agreement among the asses-
sors. From Table 4, we can observe that our pro-
posed CKL model outperforms the best baseline
DIALKI model from all perspectives.

B.3 Low-Resource Complementary
Experiments

Table 5 shows the results of the complementary ex-
periments for low-resource training. We can clearly
see the effectiveness of the proposed CKL. As the
scale of the training set decreases, the performance
drops gradually. However, when the scale of the
training data goes down to less than 1/4 of the orig-
inal training data, the performance decreases more
dramatically. Our proposed CKL model performs
reasonably well with limited training data, but mod-
els with sufficient amount of training data are still
preferred.
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Table 4: Human evaluation on Wizard of Wikipedia test seen and CMU-DoG datasets. The values except for Kappa
are in percentage (%).

CKL vs. DIALKI Relevance Coherence
Win Loss Tie Kappa Win Loss Tie Kappa

WoW test seen 41.34 25.25 33.41 0.30 42.66 24.26 33.08 0.33
CMU-DoG 49.51 20.79 29.70 0.39 44.55 26.73 28.72 0.45

CKL vs. DIALKI Informativeness Overall Preference
Win Loss Tie Kappa Win Loss Tie Kappa

WoW test seen 43.23 24.26 32.51 0.31 36.30 22.28 41.42 0.39
CMU-DoG 48.51 39.61 11.88 0.42 50.50 38.61 10.89 0.41

Table 5: Wizard of Wikipedia test seen & unseen and CMU-DoG evaluation results on low-resource scenarios. *
means significant test value with p < 0.05, in comparison with the full version of CKL. All values are expressed as
percentages (%).

Models Wizard of Wikipedia test seen
BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge-L Div-1 Div-2 Average Extrema Greedy

Full training data 27.29 15.80 10.99 8.41 23.96 9.03 36.36 71.11 42.95 42.54
1/2 training data 25.01* 13.81* 9.23* 6.85* 22.37* 9.04 35.79* 70.94 42.30* 42.41
1/4 training data 23.48* 12.48* 8.03* 5.77* 21.17* 8.56* 34.45* 70.76 42.16* 42.63
1/8 training data 19.43* 10.38* 6.86* 5.10* 18.32* 9.58* 36.35* 67.84* 40.88* 41.08*
1/16 training data 20.02* 9.77* 6.04* 4.26* 18.84* 8.33* 31.82* 67.12* 40.03* 40.05*
Zero training data 9.01* 4.14* 2.34* 1.54* 11.44* 5.66* 25.63* 56.87* 34.90* 35.45*

Models Wizard of Wikipedia test unseen
BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge-L Div-1 Div-2 Average Extrema Greedy

Full training data 27.68 16.05 11.22 8.62 23.93 4.89 18.60 70.36 41.93 41.86
1/2 training data 25.41* 14.09* 9.46* 7.06* 22.41* 5.14 20.17 69.88* 40.48* 41.75
1/4 training data 23.25* 12.25* 7.94* 5.76* 20.87* 5.31* 20.93* 69.69* 40.55* 41.70
1/8 training data 18.81* 10.09* 6.79* 5.11* 18.04* 5.48* 20.58* 65.88* 38.82* 39.92*
1/16 training data 19.96* 9.64* 6.04* 4.33* 18.52* 4.49* 17.04* 65.56* 38.12* 39.00*
Zero training data 8.76* 3.96* 2.24* 1.47* 11.32* 3.55* 17.10* 56.36* 33.54* 35.60*

Models CMU-DoG
BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge-L Div-1 Div-2 Average Extrema Greedy

Full training data 17.74 7.91 4.11 2.29 15.87 2.30 11.10 65.63 35.81 39.46
1/2 training data 16.99* 7.25* 3.67* 2.02* 14.84* 2.32* 11.51* 65.07* 34.68* 38.30*
1/4 training data 17.22* 7.27* 3.61* 1.94* 14.20* 2.07* 10.35* 65.11* 34.90* 39.09*
1/8 training data 15.47* 6.11* 2.94* 1.59* 13.74* 2.59* 13.00* 62.11* 33.53* 37.16*
1/16 training data 15.01* 5.68* 2.61* 1.32* 13.97* 2.43* 12.22* 62.05* 34.06* 36.72*
Zero training data 7.21* 2.51* 0.96* 0.42* 8.47* 2.92* 18.99* 62.65* 30.26* 35.61*
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B.4 Effect of Top-N Retrieved Knowledge
In Sec. 3.3, we set top N retrieved knowledge sen-
tences as the ground truth for obtaining GTKLW.
We will discuss how different N affects the perfor-
mance. As can be seen in Figure 4, we investigate
from the top 1 to top 10 retrieved knowledge sen-
tences. It is clear that for the WoW dataset, using
the first retrieved knowledge gets the best results,
while for the CMU-DoG dataset, the top-5 group
peaks. That indicates that in the WoW dataset, the
knowledge other than the top 1 retrieved sentence
contains limited useful information. However, the
knowledge in the CMU-DoG dataset complements
each other. This also explains why when removing
LossCLWR, the BLEU-2 decreases most for CMU-
DoG (see ablation study in Sec 4.3).

C Case Study

In order to qualitatively demonstrate the results
generated by the CKL and the baseline models,
we report a good case and a bad case which are
generated by the CKL model. The good case is se-
lected by this criterion for a sample: if a knowledge
weight is the highest among all of the knowledge
sentences and it is also the ground truth knowledge
(see latent weight analysis in Sec.4.3), it is viewed
as good. On the contrary, if the knowledge sen-
tence is the ground truth knowledge but predicted
to have the lowest latent score, it is a bad case.
From Table 6, we can see that in the good case,
if the knowledge is predicted correctly, the CKL-
generated response is very close to the ground truth
target. The other responses produced by the base-
line approaches tend to be generic. In terms of the
bad case, due to the lack of important information
used in the target, the CKL response does not share
keywords with the ground truth target even though
it is a proper answer for the given context. This
comes to the one-to-many problem which describes
that many responses are reasonable for a certain
dialogue scenario by the natural language. This
problem is out of this paper’s scope.
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Good Case

Context, Target and Generated Responses

Context: Pop music. I sure am a fan of pop music these days. It is so much fun to listen to!
Ground Truth Target: Pop music is a genre of popular music that originated in its modern form in the
United States, and yes it is fun to listen to.

ZRKGC: I’m a fan of pop music, but it is not the most popular genre.
KAT: I love pop music too! it originated in the US and UK in the 1950s.
DoHA: Pop music is a genre of music that originated in the US and Canada.
DIALKI: Pop and rock are popular music. I like both but I prefer pop music.
CKL: Pop music is a genre of popular music that originated in its modern form in the United States and
the UK during the mid-1950s.

Bad Case

Context, Target and Generated Responses

Context:
A: Swimming is consistently among the top public recreational activities, and in some countries,
swimming lessons are a compulsory part of the educational curriculum.
B: Swimming has been consistently the most popular recreational activity.
A: It is a fantastic exercise that people can do at almost any age.
Ground Truth Target: Especially since it mainly relies on the body’s natural buoyancy.

ZRKGC: Swimming is consistently the most popular recreational activity. I don’t know about it, but in
some countries, they have to be a time.
KAT: It is! Humans can hold their breath underwater and undertake rudimentary locomotive swimming
within weeks of birth.
DoHA: It is! And in some countries, swimming lessons are a compulsory part of the educational
curriculum.
DIALKI: It is amazing that people can do it almost every day, whether it be for recreation, sport,
exercise, or survival.
CKL: I think it is the most popular recreational activity.

Table 6: A good case and a bad case of the proposed CKL model. In the base case, ‘A’ and ‘B’ denote the two
Amazon MTurk workers exchanging their opinions.
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