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Abstract

We provide a survey and empirical compari-
son of the state-of-the-art in neural selective
classification for NLP tasks. We also provide
a methodological blueprint, including a novel
metric called refinement that provides a cali-
brated evaluation of confidence functions for
selective prediction. Finally, we supply docu-
mented, open-source code to support the future
development of selective prediction techniques.

1 Introduction

Deep learning has brought massive improvements
to natural language processing over the past decade,
but neural networks still make mistakes. Accord-
ingly, there is a current interest in confidence esti-
mation techniques that perform well on deep neural
networks. A prominent subarea of confidence esti-
mation is selective prediction (El-Yaniv et al., 2010;
Geifman and El-Yaniv, 2017). Selective predic-
tion focuses on developing classifiers that choose
to abstain when sufficiently uncertain. There is
less focus on absolute measures of confidence, and
more on a classifier’s ability to successfully rank
its predictions, enabling techniques that maximize
prediction quality given a desired yield (Geifman
and El-Yaniv, 2019) or that maximize yield given
a desired quality (Geifman and El-Yaniv, 2017).

This paper provides a survey and rigorous em-
pirical comparison of the state-of-the-art in neural
selective classification (i.e. selective prediction
where the underlying classifier is a neural network)
specifically as it pertains to natural language pro-
cessing. Our main contributions: (a) we survey a
variety of recent techniques proposed in the ML
and NLP literature and compare them across six
classification tasks from the GLUE benchmark
(Wang et al., 2018), do careful hyperparameter tun-
ing for all surveyed techniques, and perform multi-
ple trials of each technique to get an adequate sense
of median and variance; (b) inspired by (Xin et al.,

2021) and Kendall-tau distance (Kendall, 1948),
we propose a simple metric called refinement that
provides a calibrated measure of the performance
of selective classification techniques; (c) we deter-
mine that using maximum softmax probability as
a confidence indicator remains a strong baseline,
but Monte Carlo Dropout (Gal and Ghahramani,
2016) demonstrates significant improvement across
multiple tasks and trials; (d) we release a docu-
mented Python package called spred (selective
prediction) to make our experiments transparent
and reproducible. To facilitate evaluation of future
techniques, the package provides tutorials about
how to add and evaluate novel selective prediction
methods.

2 Selective Prediction

2.1 Preliminaries
A prediction function is a function f : X → Y
that maps an instance space X to a label space
Y . We refer to the output f(x) of the prediction
function as its prediction for instance x ∈ X . We
use the notation X(x) to refer to the gold prediction
for a particular instance. The following denotes
the correctly and incorrectly predicted instances of
prediction function f on set x ⊆ X :

C(f,x) = {x ∈ x | f(x) = X(x)}
C(f,x) = {x ∈ x | f(x) 6= X(x)}

If we pair a prediction function with a selection
function g̃ : X → {0, 1}, we obtain a selective
model (f, g̃). For instance x ∈ X , a selective
model h = (f, g̃) publishes its prediction f(x) if
g̃(x) = 1, and abstains if g̃(x) = 0. In short:

h(x) =

{
f(x) if g̃(x) = 1

⊥ if g̃(x) = 0

Y =

{
Y (1) if RY = 1

? if RY = 0
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Figure 1: Three confidence functions for an example
prediction function that has an overall accuracy of 6/10
on the evaluation set.

Figure 2: Three confidence functions for a stronger
prediction function that has an overall accuracy of 9/10
on the evaluation set.

where ⊥ is a symbol representing abstention. A
convenient way to implement a selection function
is to use a confidence function g : X → R that
assigns a real-valued confidence to any instance
x ∈ X . We can derive a selection function g̃θ
from confidence function g by specifying a mini-
mum confidence threshold θ ∈ R for publishing
predictions:

g̃θ(x) = 1[g(x) > θ]

2.2 Examples

In Figure 1, we show three confidence functions
g
(A)
1 , g(A)2 , g(A)3 for an example prediction func-

tion f (A). The first confidence function g
(A)
1 is

pretty good; it assigns its highest confidences to
four out of the six correct predictions, though un-
fortunately it also gives its lowest confidence to the
correct prediction f (A)(x1). The superior g(A)2 is a
best-case confidence function (assigning its highest
confidences to the six correct predictions) and g(A)3

is a worst-case confidence function (assigning its
lowest confidences to the six correct predictions).

Figure 2 shows three more confidence functions
g
(B)
1 , g(B)

2 , g(B)
3 for a stronger prediction function

f (B). This time, the first confidence function g(B)
1

is not particularly good; it assigns its third-highest
confidence to the only incorrect prediction. Again,
g
(B)
2 is a best-case confidence function (assigning

its highest confidences to the nine correct predic-
tions) and g(B)

3 is a worst-case confidence function
(assigning its lowest confidences to the nine correct
predictions).

2.3 Evaluation with AUC Metrics

Typically, one evaluates the goodness of a con-
fidence function by quantifying the trade-off be-
tween the quality and quantity of its published
predictions. Since the prominent approaches
– risk/coverage curves (El-Yaniv et al., 2010),
receiver-operator (ROC) curves (Davis and Goad-
rich, 2006), and precision-recall curves (Hendrycks
and Gimpel, 2017) – share many of the same ben-
efits and drawbacks (some of which we discuss
in this section), we will focus on precision-recall
curves, mainly due to the NLP community’s in-
creased familiarity with them. In Figure 3, we
show the precision-recall curves for the six confi-
dence functions from the previous subsection. The
aspiration of any confidence function is to achieve
an Area Under the Precision-Recall curve (AUPR)
of 1, which means that it has perfectly separated
the correct and incorrect predictions of the predic-
tion function. Among the examples, this has been
achieved by confidence functions g(A)2 and g(B)

2 .
A drawback with AUPR (and its analogs) is that

its value is not interpretable without knowledge of
the goodness of the associated prediction function.
To see why, suppose we replace confidence func-
tion g(A)1 with a random confidence function grnd,
i.e. we choose each confidence grnd(x) uniformly
at random from the interval (0, 1). Empirically, we
observe an average AUPR1 of approximately 0.64
for a random confidence function grnd associated
with prediction function f (A). Since this is consid-
erably worse than the AUPR (0.863) of confidence
function g(A)1 , we can surmise that confidence func-
tion g(A)1 is “better than random”. By contrast, a
random confidence function associated with the su-
perior prediction function f (B) yields a empirical
average AUPR2 of approximately 0.91, which is
considerably better than the AUPR (0.865) of con-
fidence function g(B)

1 – thus confidence function
g
(B)
1 is “worse than random”.

Both g
(A)
1 and g

(B)
1 have AUPRs of approxi-

mately 0.86, but the former is “better than ran-
dom," while the latter is “worse than random."

1Averaged over 200 random confidence functions.
2Again, averaged over 200 random confidence functions.
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Figure 3: Precision-recall curves for confidence functions g(A)
1 , g(A)

2 , g(A)
3 (top, blue) and confidence functions

g
(B)
1 , g(B)

2 , g(B)
3 (bottom, green).

Thus, AUPR does not provide a standalone indi-
cator of the quality of a confidence function. This
is because AUPR is a composite of the goodness
of the confidence function and the goodness of the
prediction function. One could imagine calibrat-
ing AUPR by taking into account the worst-case
AUPR (i.e. the AUPRs for worst-case confidence
functions g(A)3 and g(B)

3 ) but we will adopt an even
simpler approach based on a recent proposal by
(Xin et al., 2021).

2.4 Evaluation with Kendall-tau Distance

If we sort predictions by increasing confidence
(as in Figure 4), a best-case confidence function
(e.g. g(A)2 ) ranks all incorrect predictions below all
correct predictions, while a worst-case confidence
function (e.g. g(A)3 ) ranks all correct predictions
below all incorrect predictions. Observing this,
(Xin et al., 2021) proposed a rank-based evaluation
metric for selective prediction called Reversed Pair
Proportion (RPP), which is a normalized count of
pairwise ranking errors, i.e. a normalized version

of Kendall-tau distance (Kendall, 1948):

τf,x(g) =
∑

xX∈C(f,x)
x×∈C(f,x)

1[g(xX) < g(x×)]

RPPf,x(g) =
τf,x(g)

|x|2

For instance, confidence function g
(A)
1 has a

Kendall-tau distance of 7 (it misranks correct in-
stance x1 below 4 incorrect predictions, and in-
stance x3 below 3 incorrect predictions) and an
RPP of 7

100 . For the best-case confidence function

g
(A)
2 , τf,x(g

(A)
2 ) = RPPf,x(g

(A)
2 ) = 0. Unfor-

tunately, using |x|2 as the normalizer means that
RPP suffers the same issue as AUPR: its value
cannot be interpreted independently of the good-
ness of the prediction function. Consider the RPP
for our “worse-than-random” confidence function
g
(B)
1 . Like g(A)1 , it has a Kendall-tau distance of 7

(it misranks incorrect instance x8 above 7 correct
predictions) and thus an RPP of 7

100 . Even though

g
(A)
1 is better than random and g(B)

1 is worse than
random, they end up with the same RPP.

Fortunately, there is a simple remedy: all we
need to do is normalize by the worst-case Kendall-
tau distance c(|x| − c), where c is the number of
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Figure 4: The predictions of four of our example confi-
dence functions, sorted by increasing confidence. The
RPP for g(A)

1 and g(B)
1 are equivalent, although the for-

mer is better than random and the latter is worse than
random.

correct predictions made by the prediction function.
To obtain a metric with a similar interpretation to
accuracy and AUPR (for which higher values are
“better”), we subtract this new normalized distance
from one, resulting in a measurement we call re-
finement:

Rf,x(g) = 1− τf,x(g)

c(|x| − c)
where c = |C(f,x)|. Refinement has the following
appealing properties:
Theorem 1. If 0 < |C(f,x)| < |x| (i.e. prediction
function f makes at least one correct prediction
and at least one incorrect prediction), then:

min
g
Rf,x(g) = 0

max
g
Rf,x(g) = 1

Proof. Consider prediction function f and instance
set x such that 0 < |C(f,x)| < |x|, which implies
that c(|x|−c) > 0. Since 0 ≤ τf,x(g) ≤ c(|x|−c),
therefore 0 ≤ Rf,x(g) ≤ 1. To prove the theorem,
then, we need only show these bounds are tight, i.e.
construct two confidence functions gmin(x) and
gmax(x) such that gmin(x) = 0 and gmax(x) = 1.
Let:

gmin(x) =

{
0.4 if x ∈ C(f,x)

0.6 if x ∈ C̄(f,x)

gmax(x) =

{
0.4 if x ∈ C̄(f,x)

0.6 if x ∈ C(f,x)

Then Rf,x(gmin) = 1 − (|x|−c)
c(|x|−c) = 0, and

Rf,x(gmax) = 1− 0
c(|x|−c) = 1.

In other words, a best-case confidence function has
a refinement of 1, whereas a worst-case confidence
function has a refinement of 0. Moreover:

Theorem 2. For a random confidence function g,
the expected value ofRf,x(g) is 0.5.

Proof. Define binary random variableZij such that
Zij = 1 iff g(xi) < g(xj). According to the defi-
nition of Kendall-tau distance:

τf,x(g) =
∑

xi∈C(f,x)
xj∈C(f,x)

Zij

By linearity of expectation:

E(τf,x(g)) = E




∑

xi∈C(f,x)
xj∈C(f,x)

Zij




=
∑

xi∈C(f,x)
xj∈C(f,x)

E(Zij)

=
∑

xi∈C(f,x)
xj∈C(f,x)

0.5

= 0.5c(|x| − c)

And therefore:

E(Rf,x(g)) = 1− E(τf,x(g))

c(|x| − c)

= 1− 0.5c(|x| − c)
c(|x| − c)

= 0.5

Unlike RPP and the various area under the curve
metrics, refinement directly assesses the quality of
the confidence function, and its value is calibrated
and interpretable (0 = worst case, 0.5 = random
confidence, 1.0 = best case) without knowledge of
the quality of the associated prediction function.

3 Surveyed Techniques

Our main goal in this paper is a reproducible and
thorough comparison of a broad range of selective
prediction techniques on NLP tasks. In this section,
we describe the techniques we compare.
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3.1 Confidence Functions
The following are ways to create a confidence func-
tion for an already trained neural prediction func-
tion.

MAXPROB

For neural prediction functions, the simplest-to-
implement confidence function is likely MAX-
PROB, shown here applied to a three-way sentiment
analysis task:

After applying softmax to the neural network
output, MAXPROB (sometimes known as SOFT-
MAXRESPONSE) uses the maximum probability
of the resulting distribution as its measure of con-
fidence. The surprising effectiveness of such a
simple approach was observed by (Hendrycks and
Gimpel, 2017), among others.

Monte Carlo Dropout (MCDM/MCDV)
(Gal and Ghahramani, 2016) proposed leveraging
dropout (Srivastava et al., 2014) to assess the uncer-
tainty of a neural network on a particular instance.
As usual, dropout is disabled at test time to make
the prediction. But then the input instance is re-
decoded k times with dropout enabled. This yields
k samples for the softmax probability of the pre-
diction. There are two common methods (Kamath
et al., 2020) for synthesizing these k samples into
a confidence measure: either we take the mean
(Lakshminarayanan et al., 2017) of the samples
(a strategy we refer to as MCDM), or the nega-
tive3 variance (Feinman et al., 2017; Smith and
Gal, 2018) of the samples (a strategy we refer to as
MCDV).

TRUSTSCORE

(Jiang et al., 2018) advocated a nearest-neighbor-
based confidence function. First, the training in-
stances are converted4 into vector encodings, and
grouped according to their gold labels. Outliers
are then filtered from each labeled group. Specifi-
cally, they sort the vectors (i.e. points in Rd space)

3We use the negative variance so that a greater value indi-
cates a greater confidence.

4They are agnostic about how best to do so. We will return
to this issue.

by the radius of the minimal ball centered at that
vector that contains k points from their labeled
group. The percentage α ∈ [0, 1] of points with
the largest such radii (i.e. the outliers) are removed.
This filtered set5 is called an α-high density set.
The confidence assigned to an instance prediction,
called TRUSTSCORE, is the ratio of (a) the distance
between the instance’s vector encoding and the
closest α-high density set of a non-predicted label,
(b) the distance between the instance’s vector en-
coding and the α-high density set of the predicted
label.

3.2 Specialized Loss Functions
We also survey techniques that simultaneously train
a prediction function and an associated confidence
function.

Error Regularization (EREG)
(Xin et al., 2021) suggests adding an “error regu-
larization" term to the task’s loss function L that
directly penalizes ranking errors made by the con-
fidence function g:

ε(f,x) =
∑

xX∈C(f,x)
x×∈C(f,x)

[
max(0, g(x×)− g(xX))

]2

LEREG(f,x) = L(f,x) + λ ·
∑

b∈batches(x)

ε(f,b)

where λ ∈ R+ is a tunable hyperparameter and
batches(x) is the set of minibatches of training set
x. At training time, (Xin et al., 2021) uses MAX-
PROB for the confidence function g, though at test
time, they additionally experiment with MCDM
and MCDV.

Deep Abstaining Classifiers (DAC)
A Deep Abstaining Classifier (Thulasidasan et al.,
2019), abbreviated DAC, explicitly introduces an
extra abstention output ⊥ to the neural network,
and trains with a loss function that allows the pre-
diction function to benefit from abstaining on diffi-
cult instances:

LDAC(f,x) = (1− p⊥)L(f,x) + α log
1

1− p⊥
where p⊥ is the probability according to absten-
tion output ⊥ after applying softmax, L(f,x) is
standard cross-entropy loss over the non-abstention
outputs, and α is a real-valued weight that is zero

5They fix k = 10, but treat α as a tunable hyperparameter.
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for the first k (warmup) epochs of training, and
is linearly scaled from αmin to αmax during the
remaining epochs. The initial value αmin is set
to be a fixed fraction 1

ρ of a moving average of
the loss during the warmup epochs. The authors
provide code that we use in our experiments. At
test time, MAXPROB is used6 as the confidence
function, though with a slight modification – if the
probability associated with the abstention label is
the maximum softmax probability, then the next
highest probability is used as the confidence.

4 Experiment Design

To draw reliable conclusions on a sufficiently var-
ied set of NLP tasks, we evaluated the techniques
on six classification7 tasks of the GLUE bench-
mark (Wang et al., 2018): COLA, MNLI, MRPC,
QNLI, RTE, and SST-2. Bearing in mind that our
goal is to compare selective classification tech-
niques, not to produce state-of-the-art prediction
functions, we randomly partitioned each training
set into two halves, using GLUETRAIN-A for train-
ing and GLUETRAIN-B for early stopping and
hyperparameter tuning. Since the gold labels for
GLUE test sets are not all publicly available, we
reserved the development set (GLUEDEV) of each
task for final evaluation. We trained the prediction
function by fine-tuning BERT-BASE-CASED using
the transformers package (Wolf et al., 2020),
mostly using the training parameters recommended
by its run_glue.py script (the sole deviation is
that we run each training for 6 epochs, rather than
3). For the techniques that required specialized
loss functions, we substituted the default BERT
loss function with the alternative specified by the
selective prediction technique.

4.1 Hyperparameter Tuning

In an effort to fairly evaluate each technique, we
began with smaller-scale experiments to determine
an appropriate setting of a technique’s hyperpa-
rameters for the GLUE tasks. For these experi-
ments, we used GLUETRAIN-A for training and

6We also experimented with using 1 − p⊥ (i.e. the total
probability mass accorded to non-abstention outputs) as the
confidence, but this yielded poor results.

7We did not include WNLI because the training set was
too small to train a prediction function that does better than
random guessing. We did not include QQP because we had
training difficulties that we could not resolve before the sub-
mission deadline. STS-B is a regression task, not a classifica-
tion task. For evaluating MNLI, we used matched accuracy,
since the focus of this paper is not on domain shift.

GLUETRAIN-B for validation. We selected three
GLUE tasks of various sizes and genres (one
single-sentence task, one similarity-and-paraphrase
task, and one inference task) as proxies: SST-2,
MRPC, and RTE. We ran 5 trials for each hyperpa-
rameter setting.

MCDM/MCDV
The Monte Carlo Dropout techniques each have a
single hyperparameter k: the number of decodings
of the training instance with dropout enabled. We
experimented with k ∈ {10, 30, 50}. We found
little discernible difference between k = 30 and
k = 50. Slightly better results with k = 30 versus
k = 10 convinced us to use k = 30 for further
experiments.

TRUSTSCORE

To use TRUSTSCORE, we need to encode each in-
stance as a vector. Following common practice,
we used BERT’s final layer encoding (after fine-
tuning) of the [CLS] token. To select the hyperpa-
rameter settings for TRUSTSCORE, we followed
(Jiang et al., 2018) and experimented with several
powers of two for hyperparameter α, specifically
α ∈ {0.5, 0.25, 0.125}. Also, since TRUSTSCORE

is too slow in practice to run on large training
sets, we sample N training instances (without re-
placement) prior to running the TrustScore algo-
rithm. In our tuning experiments, we tried the val-
ues N ∈ {800, 1600}. We found little difference
between the six hyperparameter settings and set
N = 800 and α = 0.25 for further experiments.

EREG

EREG has hyperparameter λ (the multiplier for
the regularization term). Following the appendix
of (Xin et al., 2021), we experimented with λ ∈
{0.01, 0.05, 0.1, 0.5}. Because EREG uses an al-
ternative loss function that can potentially affect
the overall quality of the prediction function, we
used AUPR (which blends the quality of the pre-
diction function with the quality of the selection
function) as our main evaluation metric. We found
high variance between trials, and selected λ = 0.05
(with the most consistent performance) for further
experiments. EREG is also affected by the mini-
batch size. If the minibatch size is 1, then the loss
function reduces to the base loss function for the
task. Larger minibatches increase the number of
pairwise comparisons incorporated into the regular-
ization term. For the final experiments (Section 5),
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we used8 minibatch sizes of 8 and 16.

DAC
One of the virtues of DAC is that it automatically
adjusts its weights according to the cross-entropy
loss observed during the warmup epochs, but it
still has hyperparameters ρ and αmax to determine
precisely how this is done. In the code accom-
panying (Thulasidasan et al., 2019), the default
settings are ρ = 64 and αmax = 1.0. Given these
defaults, we experimented with ρ ∈ {32, 64, 128}
and αmax ∈ {0.5, 1.0, 2.0}. The technique did not
appear to be particularly sensitive to the choice
of hyperparameters and so we kept the default set-
tings for further experiments. We used two warmup
epochs (sufficient to reach decent baseline accuracy
for all GLUE tasks), and accordingly increased the
total number of training epochs from 6 to 8.

5 Results

For final evaluation, we ran ten experiment tri-
als on the six GLUE tasks. Specifically, we
trained ten prediction functions with different ran-
dom seeds for each loss function: the basic BERT

loss (basic), BERT loss with error regulariza-
tion (ereg.b, where b ∈ {8, 16} is the mini-
batch size), and the Deep Abstaining Classifier
loss (dac). For each resulting prediction function,
we evaluated the various confidence functions. In
all experiment trials, we used the hyperparameter
settings established in Section 4. Figure 5 visual-
izes the results9 for two GLUE datasets (MRPC and
SST-2) using a violin plot10. Each “string” of the
violin corresponds to the refinement of a single trial
on GLUEDEV, while the “body” of the violin is a
kernel density estimation of the result distribution.
These results indicate that all techniques have con-
siderable variation from trial to trial, and that each
outperforms a random confidence baseline (which
has an expected refinement of 0.5, according to
Theorem 2). Beyond this, it is difficult to eyeball
the results and make an informed decision about
which technique to use. One can possibly eliminate

8Unfortunately, many GPU machines (including the ma-
chine running our experiments) do not have sufficient memory
to finetune PTLMs with larger batch sizes.

9For visual clarity, we omit certain loss/confidence
pairs from Figure 5, for instance ereg(mcdm) and
ereg(mcdv). In our experiments, the MC Dropout tech-
niques provided similar improvement for all loss functions.

10We used the seaborn package to create the plots:
https://seaborn.pydata.org/generated/
seaborn.violinplot.html.

TRUSTSCORE based on Figure 5, but what should
we make of the advantages that MCDM and MCDV
seem to offer over the basic MAXPROB approach?
The MC Dropout techniques are considerably more
expensive to run (since they require multiple inde-
pendent decodings). Are they meaningfully better
than MAXPROB?

We quantify the phrase “meaningfully better” by
estimating the likelihood that a candidate technique
outperforms the basic MAXPROB baseline. For
a candidate technique t and evaluation metric m,
define random variable Xt,m as the result of the
following trial:

• Choose a random task from a probability dis-
tribution Ptask over tasks.

• Execute the candidate selective prediction
technique t and the baseline technique (i.e.
MAXPROB) and evaluate each using metric
m (e.g. refinement or AUPR).

• If the candidate technique t outperforms the
baseline according to metric m, return 1. Oth-
erwise, return 0.

The expected value E(Xt,m) tells us the likelihood
that technique t will outperform the baseline ac-
cording to metric m . Since we performed 10 trials
for each of 6 GLUE tasks, we therefore have 60
samples11 for estimating E(Xt,m). Figure 6 shows
the E(Xt,refinement) estimate for eight techniques
(including the random confidence baseline), along
with a 95% confidence interval. Somewhere be-
tween 62% to 85% of the time (with 95% confi-
dence), both MCDM and MCDV improve upon the
MAXPROB baseline according to refinement.

On its own, refinement is sufficient to evaluate
the techniques that only modify the confidence
function (i.e. MCDM, MCDV, and TRUSTSCORE).
Techniques that employ specialized loss functions,
(e.g. error-regularization or DAC loss) should be
evaluated using both refinement and AUPR, since
these techniques might improve the efficiency of
the confidence function while simultaneously sac-
rificing the quality of the prediction function. Si-
multaneous evaluation with AUPR and refinement
allows us to distinguish whether improvements are
achieved via enhancements to the confidence or the

11In this case, the task distribution Ptask is a uniform distri-
bution over 6 GLUE tasks. Whether this is an effective proxy
for NLP tasks in general is a fair question, but the community
appears to have adopted GLUE as a useful benchmark.
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Figure 5: Results of several selective prediction techniques on six GLUE datasets. Each "string" of the violin
corresponds to the refinement of a single trial on GLUEDEV, while the "body" of the violin is a kernel density
estimation of the result distribution.

prediction function. In these experiments, AUPR
and refinement largely agree about the quality of
the loss specialization techniques, thus the tech-
niques do not appear to impact the quality of the
prediction function. In terms of improving the con-
fidence function, EREG shows promise, but the
trajectory of performance from minibatch size 8 to
minibatch size 16 suggests that EREG needs a mini-
batch size of at least 32 to be a superior alternative
to MAXPROB.

6 Related Work

Selective prediction has a long tradition in machine
learning, dating back to the 1950s (Chow, 1957).
There is an extensive literature (Hellman, 1970;
Fumera and Roli, 2002; Cortes et al., 2016) on
training classifiers with the ability to abstain (also
known as the "reject option"), usually specific to
alternative classifiers like support vector machines.

There is also a significant literature (Platt et al.,
1999; Guo et al., 2017; Kumar et al., 2018; Wang
et al., 2020; Desai and Durrett, 2020) on the topic
of calibration, i.e. the development of probabilis-
tically interpretable confidence measures. In this
paper, we restrict our focus to the relative rank-
ings of selective predictors, and not the confidence
values themselves.

While our survey focuses on techniques de-
signed to identify ambiguous instances in the evalu-
ation set (and, for certain techniques, to also ignore
label noise in the training set), there is also interest
in selective prediction techniques that operate suc-
cessfully under domain shift (Kamath et al., 2020;

Figure 6: Estimate of the likelihood E(Xt,m) that tech-
nique t outperforms the basic MAXPROB baseline ac-
cording to metric m (refinement or AUPR). The bars
show a 95% confidence interval for this estimate.

Liu et al., 2020; Wang et al., 2022), i.e. when the
distribution of evaluation instances differs from the
training instances. Evaluation of such techniques
is beyond the scope of the work described here,
but we have plans to expand the spred package to
evaluate selective prediction under domain shift.

7 Conclusion

We have provided a survey and empirical compar-
ison of a diverse set of recent selective prediction
techniques on a broad set of tasks. As a compan-
ion to the paper, the open-source Python package
spred provides reproducible results and transpar-
ent methodology. Moreover, it comes with tutorials
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and unit tests that demonstrate how new techniques
and tasks can be easily added. We hope this will
facilitate novel selective prediction research on nat-
ural language domains.

8 Limitations

While we have endeavored to include a good cross-
section of selective prediction techniques in our
empirical study, clearly it is not comprehensive of
all work in this space. Moreover, this work does not
address confidence calibration, nor does it address
the behavior of selective predictive techniques un-
der domain shift. Finally, our focus is on selective
classification – we do not address confidence esti-
mation for regression or generation tasks.
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