@inproceedings{gu-hopkins-2023-evaluation,
title = "On the Evaluation of Neural Selective Prediction Methods for Natural Language Processing",
author = "Gu, Zhengyao and
Hopkins, Mark",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.437/",
doi = "10.18653/v1/2023.acl-long.437",
pages = "7888--7899",
abstract = "We provide a survey and empirical comparison of the state-of-the-art in neural selective classification for NLP tasks. We also provide a methodological blueprint, including a novel metric called refinement that provides a calibrated evaluation of confidence functions for selective prediction. Finally, we supply documented, open-source code to support the future development of selective prediction techniques."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gu-hopkins-2023-evaluation">
<titleInfo>
<title>On the Evaluation of Neural Selective Prediction Methods for Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhengyao</namePart>
<namePart type="family">Gu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Hopkins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We provide a survey and empirical comparison of the state-of-the-art in neural selective classification for NLP tasks. We also provide a methodological blueprint, including a novel metric called refinement that provides a calibrated evaluation of confidence functions for selective prediction. Finally, we supply documented, open-source code to support the future development of selective prediction techniques.</abstract>
<identifier type="citekey">gu-hopkins-2023-evaluation</identifier>
<identifier type="doi">10.18653/v1/2023.acl-long.437</identifier>
<location>
<url>https://aclanthology.org/2023.acl-long.437/</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>7888</start>
<end>7899</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T On the Evaluation of Neural Selective Prediction Methods for Natural Language Processing
%A Gu, Zhengyao
%A Hopkins, Mark
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F gu-hopkins-2023-evaluation
%X We provide a survey and empirical comparison of the state-of-the-art in neural selective classification for NLP tasks. We also provide a methodological blueprint, including a novel metric called refinement that provides a calibrated evaluation of confidence functions for selective prediction. Finally, we supply documented, open-source code to support the future development of selective prediction techniques.
%R 10.18653/v1/2023.acl-long.437
%U https://aclanthology.org/2023.acl-long.437/
%U https://doi.org/10.18653/v1/2023.acl-long.437
%P 7888-7899
Markdown (Informal)
[On the Evaluation of Neural Selective Prediction Methods for Natural Language Processing](https://aclanthology.org/2023.acl-long.437/) (Gu & Hopkins, ACL 2023)
ACL