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Abstract

Recently, speech-text pre-training methods
have shown remarkable success in many speech
and natural language processing tasks. How-
ever, most previous pre-trained models are usu-
ally tailored for one or two specific tasks, but
fail to conquer a wide range of speech-text
tasks. In addition, existing speech-text pre-
training methods fail to explore the contextual
information within a dialogue to enrich utter-
ance representations. In this paper, we propose
Speech-text dialog Pre-training for spoken dia-
log understanding with ExpliCiT cRoss-Modal
Alignment (SPECTRA), which is the first-ever
speech-text dialog pre-training model. Con-
cretely, to consider the temporality of speech
modality, we design a novel temporal position
prediction task to capture the speech-text align-
ment. This pre-training task aims to predict the
start and end time of each textual word in the
corresponding speech waveform. In addition,
to learn the characteristics of spoken dialogs,
we generalize a response selection task from
textual dialog pre-training to speech-text dialog
pre-training scenarios. Experimental results
on four different downstream speech-text tasks
demonstrate the superiority of SPECTRA in
learning speech-text alignment and multi-turn
dialog context.1

1 Introduction

In recent years, speech-text pre-training, which
learns universal feature representations from a large
training corpus (Chen et al., 2018; Li et al., 2021;
Bapna et al., 2021), has achieved significant suc-
cess in both uni-modal (Schneider et al., 2019;
Dosovitskiy et al., 2020) and multi-modal (Lu et al.,
2019; Radford et al., 2021) downstream tasks. Ex-
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Today I am joined by my best friend for a gazillion years? 
My best friend Ruth here as my mental and emotional support. 
…
Hey guys. Meet me. I've just give a little spiel about myself.
My name's [MASK] like sounds like Bros.
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Figure 1: An illustration of SPECTRA, which considers
dialogue context and explicit alignment between text
and speech during pre-training, and generalizes well on
various downstream tasks.

isting speech-text pre-training works mainly em-
ployed multi-modal self-supervised pre-training ob-
jectives, such as cross-modal masked data model-
ing (Li et al., 2021; Kang et al., 2022a) and cross-
modal contrastive learning (Sachidananda et al.,
2022; Elizalde et al., 2022), which align the speech
utterance representation to the corresponding text
sentence representation.

Despite the remarkable progress of previous
speech-text pre-training models, there are still sev-
eral technical challenges to constructing an effec-
tive and unified speech-text pre-training model for
spoken dialog understanding, which are not ad-
dressed well in prior works. First, previous models
are mainly tailored for specific speech-text tasks,
such as speech-to-text translation (Liu et al., 2020b)
and speech-language understanding (Chung et al.,
2021), failing to conquer a wide range of speech-
text tasks. Although Tang et al. (2022) proposed a
unified speech-text pre-training for speech transla-
tion and recognition, it fails to exploit the tempo-
rality of an input speech sequence and cannot learn
the fine-grained speech-text alignment.

Second, limited exploration has been attempted
to bridge the gap between plain speeches/texts and
human conversations. In particular, existing speech-
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text pre-training methods fail to explore the context
information within a dialog. Nevertheless, spoken
dialog understanding needs to effectively process
context information so as to help the system better
understand the current utterance, since humans may
omit previously mentioned entities/constraints and
introduce substitutions to what has already been
mentioned.

In this paper, we propose Speech-text dialog
Pre-training for spoken dialog understanding with
ExpliCiT cRoss-Modal Alignment (SPECTRA),
which is the first-ever speech-text dialog pre-
training model. We illustrate the framework of
our method in Figure 1 and details in Figure 2.
The backbone of SPECTRA is composed of a text
encoder, a speech encoder, and a fusion module,
learning semantic/acoustic information and the in-
teraction between them, and pre-trained on a large-
scale real-world multi-modal (speech-text) dialog
corpus. We propose two pre-training objectives to
learn better context-aware speech/text representa-
tions for spoken dialog understanding (Dai et al.,
2022; Zhang et al., 2022b). Specifically, to con-
sider the temporality of speech modality, we design
a novel temporal position prediction task to cap-
ture the speech-text alignment by predicting the
start and end time of each textual word in the cor-
responding speech waveform. In addition, to learn
the characteristics of spoken dialogs (Gao et al.,
2023; Qian et al., 2023), we devise a cross-modal
response selection objective to consider the context
information within each dialog.

Our contributions are summarized as follows:

• To the best of our knowledge, we are the first
to propose a speech-text dialog pre-training
model for spoken dialog understanding, which
fully exploits the characteristics of multi-
modal (speech/text) dialogs.

• We introduce two pre-training objectives (tem-
poral position prediction and multi-modal re-
sponse selection) to effectively learn speech-
text alignment and dialog context information.

• We conduct extensive experiments on five
benchmark datasets belonging to four down-
stream speech-text tasks, including emotion
recognition in conversation (ERC), multi-
modal sentiment analysis (MSA), spoken lan-
guage understanding (SLU), and dialog state
tracking (DST). We believe that the release of

the pre-trained model and source code would
push forward the research in this area.

2 Related Work

Uni-modal Pre-training In recent years, pre-
trained language models (PLMs), such as BERT
(Kenton and Toutanova, 2019), RoBERTa (Liu
et al., 2019), and GPT (Radford et al., 2019a) have
been proposed and applied to many NLP tasks,
yielding impressive performances. PLMs benefit
from the rich linguistic knowledge in large-scale
corpora(He et al., 2022b,a). Inspired by the suc-
cess of PLMs in NLP tasks, several speech pre-
training models, such as Wav2vec (Schneider et al.,
2019), HuBERT (Hsu et al., 2021), and WavLM
(Chen et al., 2022), were proposed to learn high-
quality universal speech representations from mas-
sive speech data.

Multimodal Pre-training Compared to multi-
modal pre-training for vision-and-language tasks,
speech-text pre-training is relatively less explored.
SpeechBERT (Chuang et al., 2020) jointly trained
multimodal representations based on a single BERT
for spoken question-answering. CTAL (Li et al.,
2021) extended the original Transformer to cross-
modal by modifying the attention mechanism of the
Transformer decoder. ST-BERT (Kim et al., 2021)
combined a pre-trained acoustic model with BERT
and took phoneme posterior and subword-level to-
kenized text as input. Kang et al. (2022b) explored
multimodal pre-training model in extremely low-
resource data scenarios. CLAM (Sachidananda
et al., 2022) employed contrastive and multirate
information inherent in audio and lexical inputs to
align acoustic and lexical information. STPT (Tang
et al., 2022) proposed a multi-task learning frame-
work to integrate different modalities in speech-text
pre-training.

Multimodal Dialog Systems The demand for
multimodal dialog systems (Lin et al., 2022) is
increasing due to the ubiquitous multimodal data.
Liao et al. (2018) presented a knowledge-aware
multimodal dialog (KMD) model, which leveraged
reinforcement learning to generate human-like re-
sponses given multimodal (text-image) dialog con-
text. Cui et al. (2019) considered the explicit user
requirements in the attribute level and dynami-
cally encoded the multimodal (text-image) dialog
context based on users’ attention. Sunder et al.
(2022) proposed an end-to-end spoken language

7901



Text Encoder Speech 
Encoder

ℒ!"# ℒ$%$ ℒ$&$

Modality Fusion Module

Temporal Position Prediction
0.05 0.18

0.320.16
0.34

0.50 0.97
0.53

0.64
0.67

· · · ·

Context Query

They won five games success- -ively

0 1

<s> … · · · ·

ℒ'((

Cross-modal Response Selection
…

</s>

Query!"#T Query!T Query!"#S Query!S

… Query!"#T Query$%&'T Query!"#S Query!S

… Query!"#T Query!T Query!"#S Query$%&'S

… Query!"#T Query$%&'T Query!"#S Query$%&'S

Label =0

Label =1

Label =2

Label =3

…

…

Figure 2: The overview of SPECTRA. The left part shows the illustration of the temporal position prediction task
and the cross-modal response selection task. The right part shows the overall structure of the pre-trained model.

understanding model, which trained a semantically
rich BERT-based conversation model along with a
speech-based model.

Different from previous works, SPECTRA is
the first-ever speech-text dialog pre-training model,
which bridges the gap between plain texts/speeches
and human conversations.

3 Method

In this section, we introduce the model architecture
and pre-training objectives of SPECTRA.

3.1 The Backbone Architecture
Figure 2 shows the overall structure of our model
SPECTRA, which consists of a text encoder, a
speech encoder, and a modality fusion module.
During pre-training, we first convert paired text and
speech inputs into uni-modal embeddings, which
are then fed into the text encoder and speech en-
coder respectively to obtain uni-modal representa-
tions. Finally, we concatenate text representations
and speech representations as input of our modal-
ity fusion module to get fused representations for
speech-text pre-training.

3.1.1 Data Preparation
Before diving into our model, we first prepare in-
put text and speech sequences for our model. Let
D = {T1, T2, ..., Tn} denotes a conversation with
n dialog turns, where every single dialog turn Ti

consists of a slice of raw speech waveform si and
its corresponding text ti = {wi1,wi2, ...,wim}.

Here, wij is the j-th word of ti, and is annotated
with its corresponding start/end time in the speech,
denoted as sij /eij . m is the sentence length of ti.
For each dialog turn Ti where i > 1, we construct
a sample Xi with current utterance Ti = {ti, si},
previous k (k ≥ 1) turns of textual dialog history
{ti−k, , ..., ti−2, ti−1} and the previous speech di-
alog history si−1. In this way, each sample Xi con-
sists of k+1 turns of text and 2 turns of speeches,
where the speeches correspond to the latest 2 turns
of text. Note that we only use 2 turns of speech
in pre-training for efficiency, since the length of
speech representation is much longer than its cor-
responding text representation.

3.1.2 Text Embeddings
For each input element, its vector representation
is a summation of the corresponding token
embedding, absolute position embedding and
segment embedding. Specifically, we first
concatenate all text sentences of each sample
Xi in temporal order to construct the text input:
Ii=<s>ti−k</s>ti−k+1</s>...</s>ti−1</s>ti</s>.
Note that we use special token <s> to mark the
start of the whole sequence, and </s> to mark the
end of each turn. Then, we encode each token in
Ii using a pre-trained RoBERTa (Liu et al., 2019)
tokenizer. We assign learnable segment embedding
et,1 to tokens of ti and the last </s> token, and et,0
for the rest of the tokens. The detailed tokenizing
and encoding process is described in Appendix A.
We denote xi as the input text embeddings of Ii.
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3.1.3 Uni-modal Encoders
Text Encoder Inspired by the remarkable suc-
cess of uni-modal pre-trained models on various
downstream tasks, we employ RoBERTa (Liu et al.,
2019) as our text encoder. We pass xi into text
encoder to obtain the sequence representations:

Ht,i = RoBERTa(xi) (1)

where Ht,i ∈ Rn×dh denotes the output hidden
states of the last layer of RoBERTa, n is the length
of input Ii, and dh is the dimension of hidden state.

Speech Encoder We design our speech encoder
based on the WavLM structure (Chen et al., 2022)
with three key modules: a feature extractor, a fea-
ture projection module and a Transformer encoder
module. The feature extractor consists of 8 tempo-
ral convolutional layers and a layer normalization.
We implemented the first seven convolutional lay-
ers to be the same as WavLM, and added another
convolutional layer with 512 channels, 5 strides
and 5 kernels size, in order to shorten the length of
the output speech features. As a result, each output
token of speech features represents approximately
200ms of speech with a stride of 100ms.

The feature projection layer is a layer normal-
ization followed by a fully connected layer con-
verting the size of speech features from 512 to dh.
The Transformer encoder module is equipped with
a convolution-based relative position embedding
layer and 12 WavLM Transformer layers. For each
sample, we directly input speech waveforms si−1

and si into our speech encoder, and denote the out-
puts of the feature projection layer for si−1 and si
as fi−1 and fi:

fi−1 = Proj(Conv(si−1)) (2)

fi = Proj(Conv(si)) (3)

Then, we obtain a speech sequence ai by concate-
nating fi−1 and fi together with a separation token
[SEP] and a starting token [CLS]:

ai = [CLS]fi−1[SEP]fi (4)

where ai ∈ R(mi−1+mi+2)×dh denotes the concate-
nated sequence. mi−1 and mi are the lengths of
si−1 and si, respectively. We pass ai as the input of
the Transformer encoder module to get the speech
sequence representations:

Hs,i = WavLM(ai) (5)

where Hs,i ∈ R(mi−1+mi+2)×dh denotes the hid-
den states of the last Transformer layer.

3.1.4 Modality Fusion Module
To integrate two modalities, we employ a sin-
gle self-attention Transformer layer as our modal-
ity fusion module. We first concatenate the text
sequence representation Ht,i and the speech se-
quence representation Hs,i together. Then, we
assign text and speech representations with learn-
able modality embeddings em,0 and em,1 respec-
tively, and add the modality embeddings to the
concatenated representations as the input of our
modality fusion module. Finally, we obtain output
hidden representations of modality fusion module
Hi ∈ R(n+mi−1+mi+2)×dh as the speech-text joint
representations.

3.2 Pre-training Tasks

We introduce two novel pre-training objectives for
our SPECTRA model, empowering SPECTRA to
capture speech-text alignment and multimodal dia-
log context effectively.

3.2.1 Temporal Position Prediction
Existing speech-text pre-training works mainly
learn from prior visual-text pre-training models.
These works ignore that speeches are temporal
sequences, and thus fail to learn fine-grained
speech-text alignment. In this work, we propose a
novel temporal position prediction (TPP) objective,
which utilizes the textual part of the hidden rep-
resentations Hi to predict the starting and ending
time of each word in the speech waveform.

In particular, for each word wij in utterance ti
with its start/end time annotations sij /eij , we de-
note its first/last token in Hi as hsij /heij . The goal
of the TPP pre-training objective is to predict its
starting and ending time in si with hsij and heij ,
respectively. We use squared error loss to optimize
the TPP task:

LTPP(ti) =
1

2

((
Wstarthsij −

sij
La

)2

(6)

+

(
Wendheij −

eij
La

)2
)

where Wstart,Wend ∈ Rdh×1 are learnable pa-
rameters. La is the maximum speech length limit.
By normalizing sij and eij over La, we guarantee
that the starting and ending time falls into [0,1].
Here, we only calculate the TPP loss for the words
in the last two turns of dialog (i.e., ti−1 and ti) for
each sample Xi. We calculate the average TPP loss

7903



over all words within those two turns as the TPP
loss of dialog Xi:

LTPP =
1

li−1 + li
[
∑

j

LTPP(wi−1,j) +
∑

j

LTPP(wi,j)]

(7)

where li−1 and li denote the total lengths of tran-
scripts ti−1 and ti in sample Xi.

3.2.2 Cross-modal Response Selection
Inspired by the success of response selection tasks
in textual dialog systems (Bao et al., 2019), we
design a cross-modal response selection objective.
For each sample Xi, we randomly replace the text
query ti or speech query si with the utterances or
speech from other dialogs in the dataset. In this
way, for each sample Xi, we can obtain three kinds
of corrupted samples as negatives: (1) only the
speech query is randomly substituted; (2) only the
text query is randomly substituted; (3) both text
and speech queries are randomly substituted. Note
that both text and speech queries remain unchanged
as positive as illustrated in Figure 2

Since the output of the first <s> token can be
viewed as the representation of the whole speech-
text sample, we apply a softmax function following
a fully connected layer on top of the hidden state
of token <s> as a four-way classifier, predicting
which case the current example belongs to. We
utilize the cross-entropy loss to optimize the cross-
modal response selection task, denoted as LCRS.

3.2.3 Cross-modal Masked Data Modeling
Following previous works (Li et al., 2021), we also
adopt the cross-modal representations Hf for cross-
modal masked language modeling (CMLM) and
cross-modal masked acoustic modeling (CMAM)
objectives. For masked language modeling, we
follow the setup of RoBERTa (Liu et al., 2019) to
dynamically mask out textual input tokens with a
probability of 15%. For masked acoustic model-
ing, we follow Baevski et al. (2020) and Liu et al.
(2020a) to mask continuous speech frames.

We modify the implementation of the original
masked acoustic modeling method in previous
works to increase the average number of masked
speech frames in each sample. We provide the de-
tails of masked acoustic modeling in Algorithm 1 in
Appendix B. The speech token masking step is per-
formed between the feature extractor and feature
projection. We employ the cross-entropy loss for
the CMLM task (LCMLM) and the mean absolute
error loss for the CMAM task (LCMAM).

3.2.4 Joint Pre-training Objective
We combine four pre-training objectives to form
a joint pre-training objective for speech-text pre-
training:

L = αLTPP + LCRS + LCMLM + LCMAM (8)

3.3 Fine-tuning on Downstream Tasks
We fine-tune SPECTRA on four downstream tasks,
including multimodal sentiment analysis (MSA),
emotion recognition in conversation (ERC), spoken
language understanding (SLU), and dialog state
tracking (DST).

We use the hidden state of <s> token in Hi, de-
noted as hi , and pass it through a prediction head
with two fully-connected layers and a GELU ac-
tivation (Hendrycks and Gimpel, 2016) between
them to get the prediction:

yi = W(2)σ(W(1)hi + b(1)) + b(2) (9)

where σ denotes the GELU activate function,
W(1) ∈ Rdh×dh , W(2) ∈ Rdh×do , b(1) ∈ Rdh ,
b(2) ∈ Rdo are new learnable parameters in the
fine-tuning stage. The output size do for MSA task
is 1, and for ERC and SLU it is the correspond-
ing number of classes. We adopt the squared error
loss as the fine-tuning loss function for MSA. The
cross-entropy loss is utilized for the rest of tasks.

4 Experiments

4.1 Pre-training Data
In this paper, we adopt Spotify100K (Clifton et al.,
2020) to pre-train SPECTRA, which is a real-world
scene speech-text dialog dataset. Spotify100K con-
tains 105,360 podcast episodes, with nearly 60,000
hours of speeches covering a variety of genres, sub-
ject matter, speaking styles, and structure formats.
The corpus also provides automatically-generated
word-level textual transcripts, marking the starting
and ending time in the speech for each word.

For a fair comparison with previous speech-text
pre-training studies, we only use the first 960 hours
of speech as well as the corresponding transcripts
to pre-train our SPECTRA model.

4.2 Experimental Setup
Baselines In addition to state-of-the-art down-
stream models tailored for MSA, ERC, SLU and
DST (see Section 4.3-4.6), we also compare SPEC-
TRA with three types of pre-training models,
including the text modality pre-training model
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Task Dataset Metric Previous SOTA SPECTRA

Multimodal Sentiment Analysis (MSA)
MOSI Acc2 84.40 (MIB (Mai et al., 2022)) 87.50 (+3.10)

MOSEI Acc2 86.20 (BBFN (Han et al., 2021)) 87.34 (+1.14)

Emotion Recognition in Conversation (ERC) IEMOCAP Acc 66.52 (M2FNET (Chudasama et al., 2022)) 67.94 (+1.42)

Spoken Language Understanding (SLU) MIntRec Acc20 72.16 (MAG-BERT (Rahman et al., 2020)) 73.48 (+1.32)

Dialog State Tracking (DST) SpokenWoz JGA 20.90 (SPACE+WavLM+TripPy (Si et al., 2023)) 21.96 (+1.06)

Table 1: The comparison between the key metrics of our model and the previous SOTA method on five datasets.

RoBERTa (Liu et al., 2019), speech modality pre-
training model WavLM (Chen et al., 2022), and
speech-text multimodal pre-training model CTAL
(Li et al., 2021).

Experimental Settings during Pre-training We
use the first 960 hours of speech and textual tran-
scripts of Spotify100K dataset for pre-training. We
cut the speech waveform into slices of a maximum
length of 10 seconds and view each slice with the
corresponding transcripts as a single dialog turn,
forming 356,380 dialog turns in total. By using
these dialogs and setting k to a maximum of 7,
we construct 350,784 samples, where each sample
consists of 2~8 dialog turns of texts and 2 turns of
speeches.

Besides, we use pre-trained models RoBERTa-
base and WavLM-base+ to initialize our text and
speech encoder, respectively. Since our speech
encoder has one more convolution layer than
WavLM-base+, we only initialize the first seven
convolution layers with pre-trained parameters and
randomly initialize the last layer. Both text and
speech encoders have 12 Transformer layers with
a hidden size dh of 768. We pre-train our SPEC-
TRA model for 100 epochs on 8 Tesla-A100 GPUs
with a batch size of 20 per GPU. We use AdamW
(Loshchilov and Hutter, 2018) to optimize our
model with a peak learning rate of 1× 10−4 and a
linear warmup for the first 1% of updates.

Experimental Settings during Fine-tuning For
SpokenWoz dataset, each dialog turn consist of two
utterances, one from the user and the other from
the system. For other datasets, each dialog turn
is a single utterance. For all datasets we truncate
the speech length of each dialog turn to a maxi-
mum of 10 seconds. We fine-tune our pre-trained
checkpoint on each downstream dataset using an
AdamW (Loshchilov and Hutter, 2018) optimizer
with a peak learning rate of 2× 10−5 and a cosine
annealing warmup.

4.3 Fine-tuning on MSA

For MSA task (Hu et al., 2022), our model aims to
predict the positive or negative sentiment polarities
of the given multi-modal input. We conduct experi-
ments on two multi-modal datasets MOSI (Zadeh
et al., 2016) and MOSEI (Zadeh et al., 2018) to
evaluate the effectiveness of our model for the MSA
task. We adopt the accuracy over positive/negative
sentiments classification (denoted as Acc2) as the
evaluation metric for our model and baselines. The
experimental results are reported in Table 1.

From the results, we can observe that our model
achieves substantially better performance than pre-
vious state-of-the-art (SOTA) methods on both
datasets. In particular, for the MOSI dataset, the ac-
curacy increases by 3.10% over the strongest base-
line MIB (Mai et al., 2022). In addition, as shown
in Table 2, our SPECTRA also significantly out-
performs the speech modality pre-training model
WavLM and speech-text pre-training model CTAL.

4.4 Fine-tuning on ERC

ERC task requires the model to predict the emotion
category of an utterance given a speech clip with its
transcripts and dialog history. Here, we fine-tune
our model with the widely-used IEMOCAP dataset
(Busso et al., 2008), and follow the settings with
Chudasama et al. (2022) to perform a 6-way clas-
sification task. For each sample, we construct 11
turns of text and 2 turns of speech with a maximum
text length of 512.

In Table 1, we report the accuracy of six-way
classification for our model and previous SOTA
method M2FNET (Chudasama et al., 2022). In
addition, from Table 2, we can observe that our
method outperforms uni-modal pre-training mod-
els, as well as speech-text pre-training baseline
CTAL. Compared with the uni-modal baselines
RoBERTa and WavLM, our model benefits from
multi-modal pre-training tasks that capture interac-
tions and alignments between modalities. Com-
pared with CTAL, our model is equipped with
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Settings
MLM

&
MAM

TPP CRS
Pre-training

Data

Turns of
Textual
Dialog
History

MSA ERC SLU DST

MOSI MOSEI IEMOCAP MIntRec SpokenWoz

Acc2 Acc2 Acc Acc20 JGA

RoBERTa - - - - - 85.67 85.88 64.53 71.24 20.76
WavLM - - - - - 65.85 77.90 46.90 16.63 -
CTAL ✓ - - 960h - 72.56 80.77 55.12 53.26 15.79

SPECTRA ✓ ✓ ✓ 960h 7 87.50 87.34 67.94 73.48 21.96

(a) 0 1 82.16 84.30 33.17 69.21 17.59
(b) ✓ ✓ ✓ 360h 7 85.98 86.02 66.01 72.36 20.34
(c) ✓ ✓ 960h 7 85.52 86.19 66.15 71.69 20.87
(d) ✓ ✓ 960h 7 87.35 86.85 65.94 72.58 20.45
(e) ✓ ✓ ✓ 960h 1 87.20 86.93 64.98 73.03 19.78

Table 2: Ablation test results. Here, setting (a) and (b) mean w/o multi-modal pre-training and using less pre-training
data. Setting (c), (d) and (e) indicate w/o TTP task, w/o CRS task and w/o full turns of textual history, respectively.

better speech-text alignment and multi-turn dialog
context information with the help of TPP and CRS
pre-training tasks.

4.5 Fine-tuning on SLU

We also conduct experiments on the spoken lan-
guage understanding (SLU) task, which aims to
predict the user intent (Lin and Xu, 2019) given a
spoken utterance with the textual transcript. We use
MIntRec (Zhang et al., 2022a) as the experimental
dataset for SLU and adopt classification accuracy
for the evaluation metric.

From Table 1 and 2, we can observe that SPEC-
TRA obtains significantly better results than previ-
ous methods. In particular, our SPECTRA model
improves the results of RoBERTa and the previous
SOTA method MAG-BERT (Rahman et al., 2020)
by 1.55% and 2.47%, respectively. Compared to
WavLM and CTAL, our model can capture seman-
tic information in textual data and the context in-
formation within each dialog.

4.6 Fine-tuning on DST

For dialogue state tracking, we use a large-scale,
cross-modal dataset called SpokenWoz (Si et al.,
2023). The dataset was collected by crowdsourcing
recordings through phone calls using the Appen
platform2. Transcriptions were obtained using a
commercial ASR system, and speech-text pairs
were annotated using a schema similar to MultiWoz
(Eric et al., 2019). SpokenWoz consists of 204k
turns, 5.7k dialog, and 249 hours of recordings.We
adopt joint goal accuracy (JGA) as the evaluation
metric, which compares the predicted and ground-

2https://appen.com/

truth dialogue states at each turn. We follow Trippy
(Heck et al., 2020) and substitute its context model
BERT with our SPECTRA model.

As shown in Table 1, our model outperforms the
previous SOTA method, SPACE+WavLM+TripPy.
In addition, our model also surpasses the three pre-
training baselines by a noticeable margin. This
demonstrates better speech-text alignment is criti-
cal to tackling complicated conversations.

5 Analysis

5.1 Ablation Study
To better understand the effectiveness of our SPEC-
TRA pre-training method, we investigate the influ-
ence of pre-training components and dialog history
on the overall performance of SPECTRA. We re-
port the ablation test results in Table 2.

Impact of Pre-training To demonstrate the ef-
ficiency of multi-modal pre-training, we directly
use uni-modal encoders and randomly initialize the
modality fusion module. We observe a significant
performance drop by comparing (a) “w/o multi-
modal pre-training” to other pre-training settings
on all five datasets. In particular, setting (a) directly
collapses on the ERC task, which is a complicated
and conversational scenario. This verifies the ne-
cessity of cross-modal pre-training and aligning
speech-text modalities. In addition, by comparing
SPECTRA and setting (b) “using less pre-training
data”, we can find that using more pre-training data
can further improve the performance of our model.

Impact of TPP and CRS By comparing the set-
ting (c) “w/o TPP” to SPECTRA, the performances
on all five datasets drop to different extents, which
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(a) Case #1: SPECTRA (b) Case #1: w/o TPP

(c) Case #2: SPECTRA (d) Case #2: w/o TPP

Figure 3: Visualization of self-attention weights of the fusion module in our model and the model pre-trained
without TPP (w/o TPP). The upper and lower tokens stand for text and speech tokens, respectively.

Case Ground-Truth By SPECTRA By “w/o TPP” Given Text

#1 Leave ✓ Leave ✗ Complain I am going to sit in traffic for 45 minutes and return this.

#2 Inform ✓ Inform ✗ Praise That’s Tommy. He’s lead organizer, total badass.

Table 3: Intent prediction results on test samples from the MIntRec dataset.

verifies the generalization and effectiveness of our
TPP pre-training task. Specifically, the perfor-
mance drops significantly on SpokenWoz, which
requires the model to have a stronger ability to
align two modalities. This demonstrates that our
TPP pre-training task empowers the model with
stronger alignment modeling ability. For setting
(d) “w/o CRS” with SPECTRA, the performance
drops significantly on multi-turn dialog tasks such
as ERC and DST. This suggests that the CRS task
is essential to model multi-turn dialog context.

Impact of Dialog History In setting (e) “using 1
turn of textual dialog history”, each instance con-
sists of 2 turns of paired speech and text.The model
performance drops substantially on ERC and DST
downstream tasks by comparing it with SPECTRA.
This demonstrates that increasing dialog history in
the pre-training stage is beneficial to the tasks that
require multi-turn dialog context.

5.2 Case Study

To have a straightforward understanding of how
we learn cross-modal interaction in our proposed

SPECTRA model, we conduct a case study by pro-
viding two cases sampled from the MIntRec dataset.
These two cases are incorrectly predicted by the
model pre-trained without TPP but correctly pre-
dicted by our SPECTRA model. In Figure 3, we
visualize the self-attention weights of the fusion
layer in our model as well as the model pre-trained
without TPP (denoted as w/o TPP). From Figure
3(a) and 3(c), we observe that there are rich cross-
modal interactions in the fusion layer of the pro-
posed SPECTRA model. Our model can capture
fine-grained information between text and speech
for more accurate classification. In contrast, we
also visualize the self-attention weights of the w/o
TPP model in Figure 3(b) and 3(d). Both cases
show that text and speech sequences seldom con-
nect to each other in self-attention layers.

In Table 3, we also illustrate the intent prediction
results obtained by SPECTRA and w/o TPP. From
the results, we can observe that our model can
attend to both text and speech sequences effectively
to predict correct intent results. However, w/o TPP
is confused by the wrong labels since it hardly
attends to speech tokens, which indicates that it
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has the propensity to omit useful information that
exists in speech exclusively.

6 Conclusion

In this paper, we proposed our model SPECTRA,
the first speech-text dialog pre-training model. Con-
sidering the temporality of speech and text modali-
ties, we introduced a novel temporal position pre-
diction pre-training task to learn word-level speech-
text alignment. To capture multi-modal dialog con-
text in our model, we generalized the response
selection task into multi-modal scenarios. Exten-
sive experiments show that our pre-training method
can learn better cross-modal interactions as well
as multi-modal contextual information and signifi-
cantly outperformed other strong baselines. In the
future, we would like to extend speech-text dialog
pre-training to more modalities or generative tasks.

Limitations

We analyze the limitations of this work, so as to
further improve the performance of our model in
future work. Based on our empirical observation,
we reveal several limitations, which can be divided
into two primary categories. (1) First, our proposed
SPECTRA method relies on large-scale spoken
dialog corpora with explicit word-level speech-text
alignment annotation, such as Spotify100K. This
limits the generality of our model on more spoken
dialog corpora.

In the future, we would like to develop a semi-
supervised pre-training method to leverage both
labelled and unlabeled datasets. (2) Second, our
method is mainly designed for speech-text under-
standing and has not been fully explored for gen-
erative tasks. We plan to devise dialog generation
per-training objective to empower the model with
better generation ability. (3) Third, the work only
involves speech and text modalities. We are inter-
ested in handling more modalities, such as images
or videos, to enrich cross-modal information in
joint representations.
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Algorithm 1 Method to mask speech tokens

Require: the output of temporal convolution layer f = Conv(s) with the shape of l× 512, where s is the
input speech waveform.

Ensure: Masked convolutional feature output f̃ and masked indices mf .
1: f̃ = s; mf = [0, 0, ..., 0] with the length of l.
2: Randomly picks an integer n from [20, 50] as the length of masked continuous speech frames.
3: for i = 0; i < l; i++ do
4: Draw a random number r from U(0, 1);
5: if r < 0.15 then ▷ Mask the continuous speech frames from index i to i+ n− 1
6: mf [i : i+ n] = 1;
7: for j = 0; j < n and i+ j < l; j ++ do
8: Draw a random number t from U(0, 1);
9: if t < 0.8 then

10: f̃ [i+ j] = 0;
11: else if t < 0.9 then
12: Replace f̃ [i+ j] with a random speech frame in f ;
13: end if
14: end for
15: i = i+ n− 1
16: end if
17: end for

A Implementation details of the tokenizer

We describe how we convert each Ii into input
embeddings xi. First, we split the sequence Ii into
list of tokens using a BBPE algorithm (Radford
et al., 2019b) and convert each token into its index
according to the dictionary of our tokenizer. Then,
we pass the token indexes to the pre-trained token
embedding layer of RoBERTa model to get the
token embedding of each token. Finally, we sum
up the token embedding, the absolute positional
embedding and the segment embedding (et,0 or
et,1) to get the input text embedding of every token
in Ii.

B Method to Mask Speech Tokens

We report our method to mask speech tokens in
Algorithm 1. We note that masked speech tokens
are set to 0 at 80% of the time, a random token
10%, and an un-altered 10%. In our experiments,
the maximum length of speech features fi is 99
since the longest slice of our speech input is 10 sec-
onds. We estimate the expectation of the number
of masked frames of our method and the original
MAM method proposed by Liu et al. (2020a) by
simulating both masking steps for 1,000,000 times
and calculating the average number of masked to-
kens. Simulation results show that our method
masks approximately 57% of tokens in the se-

quence, while the original MAM method masks
around 15%.
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