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Abstract
With emerging online topics as a source for
numerous new events, detecting unseen / rare
event types presents an elusive challenge for
existing event detection methods, where only
limited data access is provided for training. To
address the data scarcity problem in event detec-
tion, we propose MetaEvent, a meta learning-
based framework for zero- and few-shot event
detection. Specifically, we sample training
tasks from existing event types and perform
meta training to search for optimal parame-
ters that quickly adapt to unseen tasks. In
our framework, we propose to use the cloze-
based prompt and a trigger-aware soft verbal-
izer to efficiently project output to unseen event
types. Moreover, we design a contrastive meta
objective based on maximum mean discrep-
ancy (MMD) to learn class-separating features.
As such, the proposed MetaEvent can perform
zero-shot event detection by mapping features
to event types without any prior knowledge.
In our experiments, we demonstrate the effec-
tiveness of MetaEvent in both zero-shot and
few-shot scenarios, where the proposed method
achieves state-of-the-art performance in exten-
sive experiments on benchmark datasets Few-
Event and MAVEN.

1 Introduction

Event detection tasks have experienced significant
improvements thanks to the recent efforts in de-
veloping language-based methods (Lu et al., 2021;
Pouran Ben Veyseh et al., 2021). One of such meth-
ods is pretrained large language models, which can
be fine-tuned for detecting events upon input con-
text (Liu et al., 2019; Cong et al., 2021). However,
the detection of unseen or rare events remains a
challenge for existing methods, as large amounts
of annotated data are required for training in a su-
pervised fashion (Shang et al., 2022; Zhang et al.,
2022c). For instance, existing models often fail to
detect unseen event types due to the lack of domain
knowledge, as demonstrated in Figure 1.
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Figure 1: Existing event detection model fails to detect
rare / unseen events (green input) upon deployment.

To detect unseen event types (i.e., zero-shot
learning), existing methods leverage external
knowledge or contrastive learning to build class-
separating features (Lyu et al., 2021; Zhang et al.,
2022a,b). Similarly, it is possible to leverage lim-
ited annotated examples (i.e., few-shot learning) for
event detection. For instance, prototypical features
can be constructed to match event types upon infer-
ence (Deng et al., 2020; Cong et al., 2021). Prompt-
based methods align with the pretraining objective
of language models to improve detection perfor-
mance (Li et al., 2022a,b). Specifically, a cloze-
based prompt template (e.g., A <mask> event)
is incorporated as part of the input, and the pre-
diction can be obtained by decoding the <mask>
prediction. As such, prompt-based methods exploit
the masked language modeling (MLM) pretraining
task by constructing similar input examples.

Nevertheless, no existing method is designed for
both zero-shot and few-shot event detection, as it
is a non-trivial problem to combine both settings
under a unified framework. Previous efforts either
address the zero-shot or the few-shot setting, yet
detecting both unseen and rare events can be help-
ful in various scenarios (e.g., detecting emergency
events online), which renders current approaches
less effective in real-world applications. Addition-
ally, event detection comprises of two subtasks:
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trigger identification and classification. Some meth-
ods provide an incomplete solution by solely per-
forming the classification task, while many other
approaches execute both tasks at the cost of reduced
performance (Schick and Schütze, 2021; Li et al.,
2022b). This is because existing methods heav-
ily rely on trigger words for classification, which
causes drastic performance drops in the case of
trigger mismatch or ambiguity (Ding et al., 2019).

In this paper, we propose a meta learning frame-
work MetaEvent for zero- and few-shot event de-
tection. We consider both settings and optimize
language models to identify unseen / rare events via
a unified meta learning framework. That is, given
zero / limited number of annotated examples per
event type, our objective is to maximize the model
performance in detecting such events. To this end,
we develop a solution to integrate the trigger iden-
tification and classification subtasks for efficient
forward passing in meta training. Moreover, we de-
sign a trigger-aware soft verbalizer to identify event
types in our prompt-based event detection model.
For optimization, we propose a meta objective func-
tion based on contrastive loss to learn generalizable
and class-separating event features. In training, the
model is first updated and evaluated upon the sam-
pled zero- or few-shot tasks, then the meta loss
is computed to derive gradients w.r.t. the initial
parameters, such that the updated model learns to
generalize to the target tasks even without labeled
examples. In other words, MetaEvent learns from
seen tasks, yet with the objective to generalize in
rare and unseen scenarios. Therefore, the result-
ing model can optimally adapt to the target task
upon deployment. We demonstrate the effective-
ness of MetaEvent by evaluating zero- and few-shot
event detection tasks on benchmark datasets, where
MetaEvent consistently outperforms state-of-the-
art methods with considerable improvements.

We summarize our contributions as follows1:

1. To the best of our knowledge, we are the first
to propose a unified meta learning framework
for both zero- and few-shot event detection.
MetaEvent is designed to exploit prompt tun-
ing and contrastive learning for quick adapta-
tion to unseen tasks.

2. We propose an integrated trigger-aware model
in MetaEvent for efficient meta training. In

1We adopt publicly available datasets in the
experiments and release our implementation at
https://github.com/Yueeeeeeee/MetaEvent.

particular, our trigger-aware soft verbalizer
leverages both the prompt output and attentive
trigger features to identify event types.

3. We design a novel contrastive loss as the meta
objective of MetaEvent. Our contrastive loss
encourages class-separating and generalizable
features to improve event matching in both
zero- and few-shot event detection.

4. We demonstrate the effectiveness of
MetaEvent with extensive experiments, where
MetaEvent outperforms state-of-the-art base-
line methods with considerable improvements
in both zero- and few-shot event detection.

2 Related Work

2.1 Event Detection

Event detection refers to the task of classifying
event types upon input text. While event detection
has achieved progress under the supervised train-
ing paradigm (Ji and Grishman, 2008; Lin et al.,
2020; Wadden et al., 2019; Liu et al., 2020; Du and
Cardie, 2020; Lu et al., 2021; Liu et al., 2022), zero-
and few-shot classification remains a challenge due
to the lack of prior knowledge and annotated exam-
ples. For the zero-shot setting, relevant literature
focuses on predefined event knowledge or heuris-
tics to classify unseen events (Huang et al., 2018;
Huang and Ji, 2020; Lyu et al., 2021; Zhang et al.,
2021b; Yu et al., 2022; Yu and Ji, 2023; Zhan et al.,
2023). Similarly, zero-shot contrastive learning
requires unlabeled examples in training to learn
class-separating features (Zhang et al., 2022b). Un-
der the few-shot setting, prototypical networks
and prompt-based tuning improve detection per-
formance via prototype matching and alignment to
language pretraining (Deng et al., 2020; Cong et al.,
2021; Schick and Schütze, 2021; Lai et al., 2021; Li
et al., 2022b). Overall, existing approaches focus
on either zero- or few-shot event detection without
considering a unified framework for both settings.
Moreover, current zero-shot methods require addi-
tional resources for training, making such methods
less realistic in real-world event detection. As such,
we propose a meta learning framework MetaEvent
for both zero- and few-shot event detection, where
neither prior knowledge nor unlabeled examples
are required to detect unseen events.
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2.2 Prompt Learning

Prompt learning uses a predefined template with
slots (i.e., A <mask> event) to instruct language
models on the desired task, where the slot predic-
tion is used to derive the final output (Brown et al.,
2020; Liu et al., 2021). By leveraging the pre-
training objective and designing prompt templates,
pretrained large language models can be adapted
for zero- or few-shot downstream tasks (Houlsby
et al., 2019; Raffel et al., 2020). Soft and multi-
task prompts further improve the zero- and few-
shot performance of language models on unseen
tasks (Lester et al., 2021; Sanh et al., 2021). Cloze-
based prompts are proposed for the event detection
task, where the predicted output can be mapped
to the event types using verbalizer or mapping
heuristics (Schick and Schütze, 2021; Li et al.,
2022b; Zhang et al., 2022b). Nevertheless, previ-
ous prompt methods adopt the inefficient two-step
paradigm (i.e., trigger identification and classifi-
cation) and are not designed for both zero- and
few-shot event detection. Therefore, we integrate
both steps with a trigger-aware soft verbalizer for
efficient forward passing in meta training. More-
over, we consider both zero- and few-shot scenarios
with our prompt-based meta learning framework
MetaEvent. By leveraging the proposed compo-
nents, our approach demonstrates considerable im-
provements compared to existing methods.

2.3 Meta Learning

Meta learning (i.e., learning to learn) has demon-
strated superiority in few-shot learning (Finn et al.,
2017; Nichol et al., 2018; Rajeswaran et al., 2019).
Existing methods learn class-wise features or pro-
totypes in the metric space for quick adaptation to
few-shot tasks (Vinyals et al., 2016; Snell et al.,
2017; Sung et al., 2018). Model-agnostic meta
learning (MAML) leverages the second-order opti-
mization to find the optimal initial parameters for a
new task (Finn et al., 2017). Approximation meth-
ods of second-order MAML demonstrates com-
parable performance while requiring significantly
reduced computational resources (Finn et al., 2017;
Nichol et al., 2018; Rajeswaran et al., 2019). Meta
learning has also been applied to tasks like online
learning, domain adaptation and multi-task learn-
ing (Finn et al., 2019; Li and Hospedales, 2020;
Wang et al., 2021a). For event detection, meta
learning is proposed to improve the performance
on small-size data via memory-based prototypi-

cal networks and external knowledge (Deng et al.,
2020; Shen et al., 2021).

To the best of our knowledge, meta learning-
based methods for both zero- and few-shot event
detection is not studied in current literature. How-
ever, detecting unseen and rare events is neces-
sary in many applications. An example can be
detecting emergency events on social media, where
both unseen and rare events can be present (e.g.,
pandemic, safety alert etc.). Therefore, we pro-
pose MetaEvent: a meta learning framework for
zero- and few-shot event detection. MetaEvent ex-
ploits seen events via trigger-aware prompting and
a carefully designed meta objective, and thereby
improving the zero- and few-shot performance with
class-separating and generalizable features.

3 Preliminary

We consider the following event detection problem
setup, whereN -wayK-shot examples are available
for training each task (K is 0 for zero-shot setting).
Our goal is to train a model f that maximizes the
performance in unseen tasks.
Problem: Our research focuses on zero- and few-
shot event detection based on a collection of tasks
{T i}Mi=1. For each task T i, a N -way K-shot
training set and a held-out evaluation set are pro-
vided (i.e., Dtrain

i ,Dtest
i ∈ T i). The training of

MetaEvent is two-fold: (1) an initial model is up-
dated using the training sets in each sampled task
to achieve local convergence (i.e., inner-loop op-
timization); (2) the updated models are used to
compute a meta loss on the corresponding evalua-
tion sets, followed by deriving the gradients w.r.t.
the initial model using our meta learning algorithm
(i.e., outer-loop optimization). In particular, the
input for each task T i include:

• Training set: Dtrain
i contains K examples for

each of the N classes. An example comprises
of context x(j)

c , trigger x(j)
c and label y(j) (i.e.,

Dtrain
i = {(x(j)

c ,x
(j)
t , y(j))}N∗K

j=1 ). In the few-
shot setting, Dtrain

i is used to tune the model,
while Dtrain

i is an empty set for zero-shot setting.
Training set is also known as support set.

• Evaluation set: Similarly, a held-out evaluation
set Dtest

i from the same input & label space
is used to compute the meta loss in training.
Upon deployment, the model can be updated
with Dtrain

i and should perform well on Dtest
i .

Evaluation set is often referred to as query set.
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Figure 2: The proposed MetaEvent. The left subfigure illustrates the optimization process w.r.t. the initial parameter
set θ with meta learning, and the right subfigure describes the proposed event detection model in MetaEvent.

Pipeline: We are interested in learning an encoder
model f parameterized by θ. Conventional event
detection methods compute trigger as an interme-
diate variable, followed by the event type classi-
fication. As such, we formulate fθ with contexts
as input and event features as output, followed by
some classifier CLF to map the features to the de-
sired event type (i.e., y = CLF(fθ(xc))). Our goal
is to find the optimal parameter set θ that quickly
adapts to an unseen task T i using Dtrain

i and max-
imizes the performance on evaluation set Dtest

i .
Mathematically, this is formulated as optimization
of θ over a collection of M evaluation tasks:

min
θ

1

M

M∑

i=1

L(Alg(θ,Dtrain
i ),Dtest

i ), (1)

where L represents the loss and Alg represents the
gradient descent optimization algorithm.

4 Methodology

4.1 Model Design
To efficiently perform prompt-based meta training
for event detection, we design a one-step model
that integrates the trigger identification and classifi-
cation stages. This is because a two-step approach
(e.g., P4E (Li et al., 2022b)) requires extensive com-
putational resources to obtain the gradients in the
inner- and outer-loop optimization in MetaEvent.
Consequently, we design an efficient model (as
illustrated in Figure 2) that integrates attentive trig-
ger features to avoid additional forward passes.

Different from existing trigger-aware meth-
ods (Ding et al., 2019), the proposed model in-
novatively uses both attentive trigger features and

prompt output to predict the event types. The at-
tentive trigger features t can be computed using an
integrated trigger classifier and attention weights
from the pretrained language model. Specifically, a
trigger classifier is trained upon each token features
to perform binary classification (i.e., whether input
token is trigger token). In inference, the classifier
predicts the probabilities p of input tokens being
classified as trigger words. To better estimate the
importance of predicted trigger tokens, we design
an attentive reweighting strategy to select informa-
tive trigger features from the input context. The
idea behind our attentive reweighting strategy is
to leverage attention scores from the model to se-
lect more relevant features. The attention scores
reveal different importance weights of the context
tokens and thus, can be used to compute ‘soft’ trig-
ger features based on the semantics. Formally, our
attentive reweighting strategy computes weights
w ∈ RLc using trigger probabilities p and atten-
tion scores A ∈ RH×Lc×Lc of the context span
from the last transformer layer. The weight of the
i-th token wi in w is computed via

wi = σ

(
p⊙ 1

H

H∑

j

( Lc∑

k

Aj,k

))

i

, (2)

where H is the number of attention heads, Lc is the
context length, ⊙ and σ denote elementwise prod-
uct and softmax functions. Base on input xc and
w, the attentive trigger features t can be computed
as the weighted sum of token features, i.e.,

t =

Lc∑

i=1

wifθ(xc)i. (3)
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For the event classification, we design a prompt-
based paradigm using a predefined prompt and a
trigger-aware soft verbalizer. Specifically, we pre-
process the input context by prepending the prompt
‘A <mask> event’ to transform the prediction into
a masked language modeling (MLM) task. The
pretrained encoder model and MLM head fill the
<mask> position with a probability distribution v
over all tokens. Then, our trigger-aware soft ver-
balizer maps the predicted distribution v to an out-
put event type. Unlike predefined verbalizer func-
tions (Li et al., 2022b), we design a learnable ver-
balizer based on MLM predictions v and attentive
trigger features t. For the N -way few-shot set-
ting, the trigger-aware soft verbalizer with weights
W ∈ R(|v|+|t|)×N and bias b ∈ RN predicts the
output label with GELU activation via

ŷ = argmax(GELU([v; t])W + b). (4)

For zero-shot event detection, we use the concate-
nated features [v; t] to project input to unseen event
types via the Hungarian algorithm.

4.2 Meta Training

Provided with the training and evaluation sets from
sampled tasks, we present the formulation of our
MetaEvent and our methods for the zero- and few-
shot training. The designed framework leverages
meta training to search for optimal parameters θ.
Once trained, the event detection model quickly
adapts to unseen tasks even without examples (Finn
et al., 2017; Yue et al., 2023).

Given a set of tasks {T i}Mi=1 and model f pa-
rameterized by θ, MetaEvent aims at minimizing
the overall evaluation loss of the tasks (as in Equa-
tion (1)). MetaEvent consists of an inner-loop op-
timization stage (i.e., Alg) and an outer-loop opti-
mization staget that minimizes the overall loss w.r.t.
θ. For the inner-loop update, Alg denotes gradient
descent with learning rate α, i.e.:

Alg(θ,Dtrain) = θ − α∇θL(θ,Dtrain) = ϕ,
(5)

we denote the updated parameter set with ϕ. In the
outer-level optimization, we are interested in learn-
ing an optimal set θ that minimizes the meta loss
on the evaluation sets. The learning is achieved by
differentiating through the inner-loop optimization
(i.e., Alg) back to the initial parameter set θ, which
requires the computation of second-order gradients
or first-order approximation (as shown in Figure 2).

Specifically, we derive the gradients w.r.t. θ:

dL
dθ

=
dϕ

dθ
∇ϕL(Alg(θ,Dtrain),Dtest), (6)

notice that Alg(θ,Dtrain) is equivalent to ϕ. Com-
ponent ∇ϕL(Alg(θ,Dtrain),Dtest) refers to first-
order gradients w.r.t. the task-specific parameter
set ϕ (i.e., L → ϕ). The left component dϕ

dθ
tracks parameter-to-parameter changes from ϕ to θ
through Alg (i.e., ϕ → θ), which involves the com-
putation of the Hessian matrix. As the estimation
of the matrix dϕ

dθ requires extensive computational
resources, we provide both first-order and second-
order implementations for MetaEvent.
Zero-Shot MetaEvent: For the zero-shot evalua-
tion, the learned initial parameter set should be di-
rectly evaluated on Dtest for an unseen task. There-
fore, directly optimizing Equation (1) is not feasi-
ble for zero-shot event detection, as Dtrain is not
provided. For optimization, however, training event
types can be used for inner-loop optimization of
the model. As such, we sample Dtrain and Dtest

from different training tasks to improve the model
generalization on unseen events. Specifically for
training task T j , we optimize

min
θ

L(Alg(θ,Dtrain ∼ {T i}Mi=1,i ̸=j),Dtest
j ),

(7)
where Dtrain is a disjoint training set sampled from
{T i}Mi=1,i ̸=j . As a result, the model ‘learns to
adapt’ to unseen events by optimizing on differ-
ent training and evaluation sets. To improve the
performance on unseen event types via Hungarian
algorithm, we additionally design a contrastive loss
term in the meta objective to learn class-separating
features, which is introduced in Section 4.3.
Few-Shot MetaEvent: In the few-shot event detec-
tion, we directly sample training tasks and optimize
the model as in Equation (1). Similar to the zero-
shot MetaEvent, the parameters are updated upon
the tasks separately (i.e., ϕ) in each iteration based
on the initial parameters θ. Then, the meta loss
L and gradients w.r.t. θ are computed for each
task using the updated ϕ and the evaluation sets.
In our implementation, we adopt layer- and step-
adaptive learning rates for inner-loop optimization
and cosine annealing to improve the convergence
of MetaEvent (Antoniou et al., 2018).

4.3 Meta Objective
We now introduce our training objective L for
MetaEvent. Based on the proposed model in Sec-
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tion 4.1, our loss function contains two classifica-
tion losses: trigger classification loss Ltrigger and
event classification loss Levent (i.e., negative log
likelihood loss). To enlarge the inter-class event
discrepancy for improved zero- and few-shot per-
formance, we additionally propose a contrastive
loss Lcon. based on the maximum mean discrep-
ancy (MMD) (Gretton et al., 2012; Yue et al., 2021,
2022b,a). In particular, we measure the discrepancy
between two different event types by estimating the
MMD distance. MMD computes the distance be-
tween two event distributions using an arbitrary
number of input features drawn from these event
types. Mathematically, MMD distance between
input features X and Y can be computed as:

D(X,Y ) =
1

|X||X|

|X|∑

i=1

|X|∑

j=1

k(ψ(x(i)), ψ(x(j)))

+
1

|Y ||Y |

|Y |∑

i=1

|Y |∑

j=1

k(ψ(y(i)), ψ(y(j)))

− 2

|X||Y |

|X|∑

i=1

|Y |∑

j=1

k(ψ(x(i)), ψ(y(j))),

(8)
where k represents the Gaussian kernel and ψ rep-
resents the feature mapping function defined by the
transformer network (i.e., feature encoder).

Based on the MMD distance, we further com-
pute the inter-class distances for all pairs of event
types. Suppose Xi represents the set of trigger-
aware event features (i.e., concatenation of [v; t] as
in Section 4.1) of the i-th class, the contrastive loss
can be formulated for the N -way setting as:

Lcon. = − 1

N(N − 1)

N∑

i=1

N∑

j=1,j ̸=i

D(Xi,Xj),

(9)
in which we compute N × (N − 1) pairs of inter-
class distances, such inter-class distances are maxi-
mized (by taking the negative values) in the meta
objective function to encourage class-separating
features in MetaEvent, and therefore improves both
zero- and few-shot performance in event detection.
Overall Objective: We now combine the men-
tioned terms into a single optimization objective
for MetaEvent in Equation (10). In our objective
function, Levent and Ltrigger represent the event
and trigger classification loss (i.e., negative log
likelihood loss), and Lcon. denotes the contrastive
loss based on MMD. The overall objective con-

tains three terms and Lcon. is weighted by a scaling
factor λc (to be chosen empirically):

L = Levent + Ltrigger + λcLcon.. (10)

4.4 Overall Framework

The overall framework of MetaEvent is presented
in Figure 2. The right subfigure illustrates the pro-
posed model that integrates attentive trigger fea-
tures for prompt-based event detection. The left
subfigure illustrates the meta training paradigm
of MetaEvent, where the initial parameter θ is
updated and evaluated upon sampled tasks using
the proposed contrastive loss in Equation (10).
Then the gradients w.r.t. θ can be computed (via
second-order optimization or first-order approxi-
mation) to update the initial model. Unlike previ-
ous works (Schick and Schütze, 2021; Cong et al.,
2021; Li et al., 2022b; Zhang et al., 2022b), we
design a trigger-aware model for efficient training
and inference on event detection tasks. Moreover,
we propose a meta learning framework MetaEvent
with a fine-grained contrastive objective function
for zero- and few-shot event detection, which en-
courages generalizable and class-separating fea-
tures across both seen and unseen event types.

5 Experiments

5.1 Settings

Model: Following previous work (Wang et al.,
2021b; Li et al., 2022b), we select RoBERTa as
the base model in MetaEvent (Liu et al., 2019).
Evaluation: To validate the proposed method, we
follow (Chen et al., 2021; Cong et al., 2021; Li
et al., 2022b) to split the datasets into train, val-
idation and test sets. For evaluation metrics, we
adopt micro F1 score as main performance indica-
tor. For the zero-shot setting, we additionally adopt
adjusted mutual information (AMI) and Fowlkes
Mallows score (FM) to evaluate clustering perfor-
mance. See evaluation details in Appendix A.
Datasets and Baselines: To examine MetaEvent
performance, we adopt publicly available datasets
FewEvent and MAVEN (Deng et al., 2020; Wang
et al., 2020) and state-of-the-art baseline methods
for comparison. For zero-shot baselines, we adopt
SCCL (Zhang et al., 2021a), SS-VQ-VAE (Huang
and Ji, 2020), BERT-OCL (Zhang et al., 2022b)
and ZEOP (Zhang et al., 2022b). For the few-shot
setting, we choose BERT-CRF (Devlin et al., 2019),
PA-CRF (Cong et al., 2021), Prompt+QA (Li et al.,
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Method FewEvent MAVEN

F1 ↑ AMI ↑ FM ↑ F1 ↑ AMI ↑ FM ↑
SCCL 0.3184 0.2371 0.2436 0.2424 0.1546 0.1483
SS-VQ-VAE 0.3670 0.3462 0.2758 0.1934 0.1192 0.1838
BERT-OCL 0.3296 0.5326 0.4016 0.1446 0.1915 0.1160
ZEOP 0.4869 0.4065 0.3392 0.2444 0.1274 0.1642
ZEOP* 0.5655 0.5135 0.4360 0.2383 0.1366 0.1484
MetaEvent 0.6837±0.0689 0.6884±0.0315 0.7247±0.0807 0.3686±0.0412 0.2352±0.0521 0.2569±0.0392

Table 1: Zero-Shot event detection results (10-way for both datasets).

2022b) and P4E (Li et al., 2022b) as baselines2.
Dataset and baseline details are in Appendix A
Implementation: We use the roberta-base vari-
ant in our implementation, our default model is
trained with AdamW optimizer with zero weight
decay and cosine annealing for meta learning rate
of 1e − 5. For inner-loop optimization, we use
layer- and step-adaptive learning rates with an in-
tial learning rate of 1e − 3, where the model is
updated 50 times in each task. We select the best
model on the validation set for evaluation on the
test set. For baseline methods, we follow the re-
ported training procedure and hyperparameter set-
tings from the original works unless otherwise sug-
gested. More implementation and experiment de-
tails are provided in Appendix A.

5.2 Zero-Shot Results
We first report zero-shot results on all datasets in
Table 1, which is divided into two parts by the used
datasets. We perform 10-way event detection on
unseen tasks from the disjoint test sets and report
the evaluation results, the best results are marked
bold, the second best results are underlined. We
observe: (1) the zero-shot performance on Few-
Event is comparatively higher than MAVEN for
both baselines and MetaEvent, possibly due to the
increased coverage of event domains in MAVEN.
(2) MetaEvent performs the best on both datasets,
in particular, MetaEvent achieves 35.9% average
improvements on F1 compared to the second best-
performing method. (3) Despite lower performance
on MAVEN, MetaEvent outperforms all baseline
methods with up to 50.8% improvements on F1,
suggesting the effectiveness of the proposed meta
training algorithm in detecting unseen events.

We further study the effectiveness of the pro-
posed contrastive loss quantitatively in zero-shot

2We additionally select the adapted ZEOP*, PA-CRF* and
P4E* as improved variants of the baselines, see Appendix A.2.
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Figure 3: Sensitivity analysis of λc.

Figure 4: Feature visualization of MetaEvent w/o (left
subfigure) and w/ (right subfigure) contrastive learning.

experiments by varying scaling factor λc. Specif-
ically, we choose λc from 0 to 5 and evaluate the
performance changes on both datasets. The results
are visually presented in Figure 3, from which we
observe: (1) by applying the contrastive loss (i.e.,
λc ̸= 0) in the meta objective, the zero-shot per-
formance consistently improves regardless of the
choice of λc; (2) despite huge improvements, care-
fully chosen λc is required for the best zero-shot
performance (up to ∼ 100% increases across all
metrics). Overall, the contrastive objective pro-
posed in MetaEvent is particularly effective in
learning class-separating features, and thereby im-
proves the zero-shot event detection performance.

We additionally present qualitative analysis of
our zero-shot results by comparing the feature vi-
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Method FewEvent MAVEN

F1 (K=5) ↑ F1 (K=10) ↑ F1 (K=5) ↑ F1 (K=10) ↑
BERT-CRF 0.4406 0.6673 0.4814 0.6468
PA-CRF 0.5848 0.6164 0.4257 0.4918
PA-CRF* 0.6364 0.7069 0.5316 0.6562
Prompt + QA 0.6523 0.6750 0.4786 0.6543
P4E 0.8198 0.8550 0.6064 0.6951
P4E* 0.9070±0.0220 0.9270±0.0110 0.6390±0.0090 0.7260±0.0150
MetaEvent 0.9318±0.0216 0.9576±0.0052 0.9306±0.0026 0.9486±0.0003

Table 2: Few-shot event detection results (10-way for FewEvent and 45-way for MAVEN).

Method F1 (K=5) ↑ F1 (K=10) ↑
MetaEvent 0.9318 0.9576
w/o Trigger 0.9170 0.9367
w/o Verbalizer 0.8117 0.8516
w/o Meta Learner 0.6257 0.6390

Table 3: Ablation study of MetaEvent.

sualization (via T-SNE) with and without the pro-
posed contrastive loss. We use color to represent
different event types and present the visualization
in Figure 4. With the contrastive loss (right subfig-
ure), the model generates class-separating features
on unseen events compared to MetaEvent trained
without contrastive loss (left subfigure). Examples
of the same event type are also more aggregated,
showing improved clustering results, which can
be combined with trigger predictions for identify-
ing unseen event types. In sum, the proposed con-
trastive loss demonstrates effectiveness in zero-shot
settings and consistently outperforms baselines.

5.3 Few-Shot Results
To examine the effectiveness of our method for
both zero- and few-shot scenarios, we also per-
form few-shot experiments on both datasets. The
5-shot and 10-shot event detection experiment re-
sults are presented in Table 2, where all evaluation
event types are used (10-way for FewEvent and
45-way for MAVEN3). We observe: (1) all base-
line methods and MetaEvent achieve improved per-
formance in few-shot event detection compared
to the zero-shot results. For example, MetaEvent
achieves 36.3% F1 improvement in 5-shot setting
on FewEvent. (2) For MAVEN, the average perfor-
mance of all baseline methods are comparatively

3Similar to (Chen et al., 2021), we perform binary clas-
sification for each of the event types in MAVEN as multiple
event labels may exist on the same input context.

Method F1 (K=5) ↑ F1 (K=10) ↑
Prompt A 0.9318 0.9576
Prompt B 0.9363 0.9644
Prompt C 0.9272 0.9527
Prompt D 0.9236 0.9592

Table 4: Analysis of different prompt design.

lower than FewEvent, indicating the challenge of
few-shot classification with increased number of
event types. (3) MetaEvent achieves the best re-
sults, outperforming the second best method in F1
by 3.0% (on FewEvent) and 38.1% (on MAVEN)
on average across both few-shot settings. Overall,
MetaEvent achieves state-of-the-art performance
in event detection even only with few examples.

We now perform ablation studies in the few-shot
setting to evaluate the effectiveness of the proposed
component in MetaEvent. In particular, we remove
the proposed attentive trigger features (i.e., trig-
ger), trigger-aware soft verbalizer (i.e., verbalizer)
and outer-loop optimization (i.e., meta learner) in
sequence to observe the performance changes on
FewEvent. The results are reported in Table 3. For
all components, we observe performance drops
when removed from MetaEvent. In the 5-shot
setting, F1 score reduces by 1.6% and 12.9% re-
spetively when removing the attentive trigger fea-
tures and trigger-aware soft verbalizer. The results
suggest that proposed components are effective for
improving few-shot event detection.

Finally, we study the influence of prompt designs
and report the results on FewEvent in Table 4. In
particular, we select from prompt A: ‘A <mask>
event’, B: ‘This text describes a <mask>
event’, C: ‘This topic is about <mask>’ and
D: ‘[Event: <mask>]’. From the results we ob-
serve: for 5-shot event detection, prompt A and B
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perform the best while prompt B and D achieves
better performance with 0.9644 and 0.9592 F1 in
10-shot setting. On average, prompt B outperforms
all other prompt designs in the F1 metric, indicat-
ing that well-designed instructions may slightly
improve few-shot event detection results.

6 Conclusion

In this paper, we design a meta learning frame-
work MetaEvent for zero- and few-shot event de-
tection. MetaEvent proposes to leverage attentive
trigger features for efficient inference and predicts
via a trigger-aware soft verbalizer. Moreover, the
proposed MetaEvent trains the model to search
for the optimal parameter set for quick adapta-
tion to unseen event detection tasks. Extensive
experiment results demonstrate the effectiveness
of MetaEvent by consistently outperforming state-
of-the-art methods on benchmark datasets in both
zero- and few-shot event detection.

7 Limitations

While the proposed MetaEvent achieves significant
improvements in both zero- and few-shot event
detection, MetaEvent requires additional computa-
tional resources due to the layer- and step-adaptive
learning rates and the outer-loop optimization,
which may cause increased computational costs for
training MetaEvent. Moreover, we have not inves-
tigated the benefits of task scheduling techniques
and similarity-based meta learning in MetaEvent
to fully explore the training event types. Conse-
quently, we plan to study efficient meta learning
with advanced training task scheduling for further
improvements in zero- and few-shot event detec-
tion as future work.
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A Implementation

A.1 Datasets
We adopt FewEvent and MAVEN for our experi-
ments, the details of the datasets are reported below.
FewEvent is a dataset designed for few-shot event
detection (Deng et al., 2020). We follow the pre-
processing of (Cong et al., 2021; Li et al., 2022b)
and present the data statistics in Table 5. FewEvent
contains 100 event types with three disjoint sets of
event classes in training, validation and test sets.
The dataset is based on ACE and TAC-KBP with
new event types from Freebase and Wikipedia.

Train Valid Test

Classes 80 10 10
Examples 68506 2173 697

Table 5: Dataset statistics of FewEvent.

MAVEN is a large event detection dataset with
over 150 event types and over 80k event mentions
in total (Wang et al., 2020). We follow the pre-
processing of (Chen et al., 2021; Li et al., 2022b)
and present the data statistics in Table 6. MAVEN
covers an enlarged set of event types with increased
examples per class. Unlike FewEvent, the event
types in the validation and test sets are overlapping.
Since MAVEN provide multi-label examples, we
perform binary classification for each of the event
types, we additionally sample 10 times the negative
examples for both training and evaluation.

Train Valid Test

Classes 125 45 45
Examples 79906 1532 1555

Table 6: Dataset statistics of MAVEN.

A.2 Baseline Methods
We introduce the details of the zero-shot baseline
methods, followed by the baseline methods in the
few-shot setting. For zero-shot methods that lever-
age unseen event examples in training (e.g., ZEOP),
we adapt the baseline methods by dividing the train-
ing set into seen and unseen event types. As such,
unseen examples can be sampled from the train-
ing set and no examples from the evaluation event
types are participated in training.

Supporting Clustering with Contrastive
Learning (SCCL) is a clustering-based approach

for unsupervised classification. SCCL is used to
detect new event types based on unseen event men-
tions. The contextual feature of trigger tokens are
used in our experiments (Zhang et al., 2021a).

Semi-supervised Vector Quantized Varia-
tional Autoeocoder (SS-VQ-VAE) leverages vari-
ational autoencoder to learn discrete event features.
SS-VQ-VAE is trained on seen event types and an-
notations and can be adapted for zero-shot event
detection (Huang and Ji, 2020).

BERT Ordered Contrastive Learning (BERT-
OCL) designs an ordered contrastive learning
method for clustering unseen event types. The
Euclidean distance is used to compute pair-wise
distance between examples for reducing intra-class
distances and increasing inter-class distances (De-
vlin et al., 2019; Zhang et al., 2022b).

Zero-Shot Event Detection with Ordered Con-
trastive Learning (ZEOP & ZEOP*) leverages
prompt learning and ordered contrastive loss based
on both instance-level and class-level distance for
zero-shot event detection. ZEOP first identifies trig-
ger tokens then predicts event types by clustering,
while ZEOP* predicts without inference on trigger
words (Zhang et al., 2022b).

The following methods are the few-shot baseline
methods used in our experiments.

BERT Conditional Random Field (BERT-
CRF) uses BERT encoder with a conditional ran-
dom field classifier used to classify tokens. BERT-
CRF can be fine-tuned on event detection tasks
with limited examples (Devlin et al., 2019).

Prototypical Amortized Conditional Random
Field (PA-CRF & PA-CRF*) improves upon
BERT-CRF by estimating transition scores and
class uncertainty based on label prototypes and
Gaussian distributions. PA-CRF* memories the
prototypes and recomputes them in each iteration to
achieve improved performance (Cong et al., 2021).

Prompt + Question Answering (Prompt+QA)
leverages both prompt-based classification and
question answering to: (1) make inference on the
event type with predefined prompt and a verbalizer;
(2) perform QA task to query the trigger tokens
based on the previous classification results (Du and
Cardie, 2020; Li et al., 2022b).

Prompt-Guided Event Detection (P4E &
P4E*) proposed a prompt-based approach to first
identify event types, followed by trigger local-
ization using the previous output. P4E achieves
state-of-the-art performance by prompt-tuning pre-
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trained language models on event detection tasks.
P4E* only performs event type classification with-
out inference on trigger words (Li et al., 2022b).

A.3 Implementation Details
For our evaluation method, we follow the previ-
ous works (Chen et al., 2021; Cong et al., 2021;
Li et al., 2022b; Zhang et al., 2022b) and split
the datasets into train, validation, and test sets.
The validation sets are used for selecting the best
model (with validation F1 score) to perform evalu-
ation. For baseline implementation, we follow the
reported training procedure and hyperparameter
settings from the original works unless otherwise
suggested. However, for baseline methods that re-
quire unlabeled examples from unseen classes in
training (e.g., ZEOP), we modify such methods by
sampling event types from the training set as un-
seen events. As such, the baseline methods can be
trained without test event types being participated
in the optimization. As a result, we observe slight
performance drops compared to the original im-
plementation (Zhang et al., 2022b). For few-shot
event detection baseline methods, the results are
directly taken from (Li et al., 2022b).

In MetaEvent optimization, the outer-loop learn-
ing rates are selected from [1e− 5, 2e− 5, 3e− 5],
the initial inner-loop learning rates are selected
from [1e−4, 1e−3]4, the learning rate of adaptive
learning rate is 1e−4. MetaEvent uses the AdamW
optimizer without cosine annealing learning rate
scheduler in meta optimization. For inner-loop, the
maximum batch size is 50 and we leverage per-
layer per-step adaptive learning rates and perform
50 updates in total (Antoniou et al., 2018). We
adopt [2, 3] as the number of tasks, number of itera-
tions are selected from [250, 500] depending on the
task and size of the dataset. The model is validated
every 25 iterations, the best model in validation
is used to evaluate on the test split. For hyperpa-
rameter, see sensitivity analysis in Section 5. All
reported results are based on first-order meta learn-
ing approximation and experiments are performed
on multiple NVIDIA A40 GPUs.

B Additional Results

In this section, we present additional results on
zero-shot performance of MetaEvent. Specifi-
cally, we provide additional clustering metrics for

4For inner-loop optimization, the verbalizer weights are
initialized with 10 times the base learning rate (i.e., inner-loop
learning rate) for faster convergence.

Metric FewEvent MAVEN

Reported F1 0.6837 0.3686
Rand Score 0.9164 0.8387
Adjusted Rand 0.6780 0.2001
Normalized MI 0.6719 0.3248
Homogeneity Score 0.6779 0.3305

Table 7: Additional zero-shot results of MetaEvent.

MetaEvent on both datasets, with the results pre-
sented in Table 7. We adopt the following cluster-
ing metrics: (1) rand score (Rand Score); (2) ad-
justed rand score (Adjusted Rand); (3) normalized
mutual information (Normalized MI) and (4) home-
geneity score (Homogeneity Score). Surprisingly,
the rand score and adjusted rand score demonstrates
significant difference on MAVEN, suggesting dis-
proportionate label distribution in MAVEN. For the
rest metrics on both datasets, we observe similar
magnitude of performance as reported in Section 5.
Moreover, we present additional visualization re-
sults on FewEvent below with varying λc values.
Compared to Figure 4, we observe that cluster ag-
gregation worsens with reduced λc values.

Figure 5: Feature visualization (λc = 0.1).

Figure 6: Feature visualization (λc = 0.5).
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