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Abstract

While many parallel corpora are not publicly
accessible for data copyright, data privacy
and competitive differentiation reasons, trained
translation models are increasingly available
on open platforms. In this work, we propose
a method called continual knowledge distilla-
tion to take advantage of existing translation
models to improve one model of interest. The
basic idea is to sequentially transfer knowledge
from each trained model to the distilled model.
Extensive experiments on Chinese-English and
German-English datasets show that our method
achieves significant and consistent improve-
ments over strong baselines under both homo-
geneous and heterogeneous trained model set-
tings and is robust to malicious models.1

1 Introduction

Current neural machine translation (NMT) systems
often face such a situation: parallel corpora are not
publicly accessible but trained models are more
readily available. On the one hand, many data
owners are usually unwilling to share their par-
allel corpora with the public for data copyright,
data privacy and competitive differentiation rea-
sons, leading to recent interests in federated learn-
ing for NMT (Wang et al., 2021b; Roosta et al.,
2021). On the other hand, trained NMT models are
increasingly available on platforms such as Huggin-
face (https://huggingface.co) and Opus-MT
(https://opus.nlpl.eu/Opus-MT) since these
models can be directly used without public access
to the original training data.

As a result, a question naturally arises: can we
take advantage of increasingly available trained
NMT models to enhance one NMT model of inter-
est? In this work, we propose a method called Con-
tinual Knowledge Distillation (CKD) to address

∗Corresponding authors.
1The source code is available at https://github.com/

THUNLP-MT/CKD.
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Figure 1: Continual knowledge distillation for neural
machine translation. Knowledge is continually distilled
from a sequence of teacher models to one student model.
At each time step, the current student model (i.e., ϕt)
fuses the knowledge transferred from both the current
teacher model (i.e., θ∗

t ) and the previous student model
(i.e., ϕt−1). All teacher models are frozen and the
student model is trainable. Different models are high-
lighted in different colors.

this problem for NMT. As shown in Figure 1, we as-
sume that multiple trained NMT models (i.e., teach-
ers) are available to “educate” one NMT model of
interest (i.e., student) in a sequential manner, which
means that teacher models to arrive in the future
are not accessible at the current time step. We also
assume that the training set of the student model, a
transfer set, and a test set are available, but the train-
ing set of the teachers are unavailable. CKD aims
to continually improve the translation performance
of the student model on the test set by sequentially
distilling knowledge from each incoming teacher
model to the student model.

As its name suggests, CKD is an intersection
of knowledge distillation (Hinton et al., 2015) and
continual learning (Kirkpatrick et al., 2017). On
the one hand, CKD differs from standard knowl-
edge distillation in that the knowledge is transferred
from teacher models to the student model asyn-
chronously instead of synchronously. As a result,
the knowledge transferred to the student model
from previous teacher models can be overridden by
an incoming teacher model, which is often referred
to as the catastrophic forgetting problem (Kirk-
patrick et al., 2017). The situation aggravates when
not all teacher models convey knowledge benefi-
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cial to the student model. On the other hand, CKD
is different from conventional continual learning
methods by focusing on learning one task (i.e., en-
hancing the student model) rather than learning
many different tasks. The learning process is still
very challenging as compared with standard con-
tinual learning because the original training data
of teacher models is inaccessible to the student
model. Consequently, we have to resort to knowl-
edge distillation at each time step to make the most
of teacher models.

To address these aforementioned challenges, we
propose to fuse two knowledge sources for the stu-
dent model at each time step: filtering the new
knowledge from the current teacher model (i.e.,
knowledge filtration) and inheriting the old knowl-
edge from the previous student model (i.e., knowl-
edge inheritance) simultaneously. Experimental re-
sults show that our method significantly and consis-
tently outperforms strong baselines under both ho-
mogeneous and heterogeneous teacher settings for
Chinese-to-English and German-to-English trans-
lation. And it is also robust to malicious teachers.

2 Approach

2.1 Problem Statement

Let Θ = {θ∗
1,θ

∗
2, . . . } be a sequence of frozen

trained NMT models (i.e., teacher models), where
θ∗
t denotes the t-th teacher model. Let ϕ0 be an

NMT model of interest (i.e., student model) and ϕt

be the student model at time step t. We use x =
x1, . . . , xI to denote a source-language sentence
and y = y1, . . . , yJ to denote a target-language
sentence. We use y<j = y1, . . . , yj−1 to denote a
partial translation. Dtrain = {⟨x(m),y(m)⟩}Mm=1

represents the training set of the student model.
Dtrans = {⟨x(n),y(n)⟩}Nn=1 represents the trans-
fer set that a teacher model uses to “educate” the
student model. Dtest is a test set used to evaluate
the student model. We use BLEU(Dtest,ϕt) to
denote the BLEU score the student model at time
step t obtains on the test set.

Given an initial student model ϕ0, our goal is to
maximize BLEU(Dtest,ϕt) by taking advantage
of Θ, Dtrain, and Dtrans.

2.2 Training Objective

As shown in Figure 1, the student model ϕt at
time step t is determined by the current teacher
model θ∗

t that encodes new knowledge and the
previous learned student model ϕ̂t−1 that encodes

previously learned knowledge. Therefore, the over-
all training objective of CKD is composed of three
loss functions:

ℓ(ϕt,θ
∗
t , ϕ̂t−1, Dtrain, Dtrans)

= ℓCE(ϕt, Dtrain) + λℓKF(ϕt,θ
∗
t , Dtrans)

+ (1− λ)ℓKI(ϕt, ϕ̂t−1, Dtrans), (1)

where ℓCE(ϕt, Dtrain) is the standard cross entropy
loss defined as

ℓCE(ϕt, Dtrain)

= −
M∑

m=1

J(m)∑

j=1

P (y
(m)
j |y(m)

<j ,x(m);ϕt), (2)

Note that J (m) is the length of the m-th tar-
get sentence y(m). In Eq. 1, ℓKF(ϕt,θ

∗
t , Dtrans)

is a knowledge filtration loss (see Sec. 2.3)
that filters the knowledge transferred from θ∗

t ,
ℓKI(ϕt, ϕ̂t−1, Dtrans) is a knowledge inheritance
loss (see Sec. 2.4) that inherits the knowledge trans-
ferred from ϕ̂t−1, and λ is a hyper-parameter that
balances the preference between receiving new and
inheriting old knowledge.

Therefore, the learned student model at time step
t can be obtained by

ϕ̂t = argmin
ϕt

{
ℓ(ϕt,θ

∗
t , ϕ̂t−1, Dtrain, Dtrans)

}
.

(3)

2.3 Knowledge Filtration
In standard knowledge distillation (Hinton et al.,
2015), an important assumption is that the teacher
model is “stronger” than the student model, which
means that the teacher model contains knowledge
that can help improve the student model. Unfortu-
nately, this assumption does not necessarily hold in
our problem setting because it is uncertain what the
next incoming teacher model will be. As a result,
there are two interesting questions:

1. How do we know whether the teacher model
contains knowledge useful to the student
model?

2. How do we locate and transfer the useful
knowledge from the teacher model to the stu-
dent model?

Intuitively, the teacher and the student can do
the same “test paper” in order to find where the
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Figure 2: An example that illustrates how to find where a teacher model can help a student model. Given a sentence
pair of the transfer set, both the teacher and student models try to predict a target word given the source sentence
and the partial translation. How well a model predicts can be quantified as a real-valued number. The target words
on which the teacher performs better than the student are highlighted in red. Other words are highlighted in blue.

teacher can help the student. Figure 2 shows an
example. Given a (Romanized) Chinese sentence
and its English translation, both the teacher and stu-
dent models predict every target word yj given the
source sentence x and the partial translation y<y.
The quality of a prediction can be quantified as a
real-valued number. If the teacher model performs
better than the student model on a target word (e.g.,
“Prof.”), it is likely that the teacher model contains
knowledge useful to the student model in this case.
On the contrary, the teacher model is probably not
more knowledgable than the student model regard-
ing this case if its prediction is worse than that of
the student (e.g., “will”).

More formally, we use Q(yj ,y<j ,x,ϕ) to quan-
tify how well a student model predicts a target
token. It can be defined in the following ways: 2

1. Token entropy: calculating the entropy of tar-
get tokens without using the ground truth to-
ken.

Q(yj ,y<j ,x,ϕ)

= −
∑

y∈Y
P (y|y<j ,x;ϕ)

× logP (y|y<j ,x;ϕ) (4)

where Y is the vocabulary of the target lan-
guage.

2Note that it is also possible to define sentence-level quan-
tification functions Q(y,x,ϕ). If the teacher performs bet-
ter than the student at sentence-level predictions, all target
words with the sentence are considered positive instances for
knowledge transfer. As our preliminary experiments show that
the more fine-grained word-level quantification functions are
much better than its sentence-level counterparts, we omit the
discussion of sentence-level quantification functions due to
the space limit.

2. Hard label matching: checking whether the
predicted token is identical to the ground truth.

Q(yj ,y<j ,x,ϕ)

= δ
(
yj , argmax

y
P (y|y<j ,x;ϕ)

)
(5)

where δ(y, y′) returns 1 if y is identical to y′

and 0 otherwise.

3. Token-level cross entropy: calculating token-
level cross entropy using the given model.

Q(yj ,y<j ,x,ϕ) = − logP (yj |y<j ,x;ϕ)
(6)

The quantification function for a teacher model
Q(yj ,y<j ,x,θ) can be defined likewise.

Since the transfer set Dtrans can be equivalently
seen as a collection of tuples
{〈

y
(n)
j ,y

(n)
<j ,x

(n)
〉∣∣∣j ∈ [1, J (n)], n ∈ [1, N ]

}
,

(7)
it can be divided into two parts depending on the
comparison between the predictions of teacher and
student models: a positive subset D+

trans and a
negative subset D−

trans. A tuple ⟨yj ,y<j ,x⟩ be-
longs to D+

trans if Q(yj ,y<j ,x,θ
∗
t ) is greater than

Q(yj ,y<j ,x,ϕt). Otherwise, it is a negative in-
stance that belongs to D−

trans.
After splitting the transfer set into two parts, it

is natural to apply standard knowledge distillation
using the positive subset D+

trans:

ℓKD(ϕt,θ
∗
t , D

+
trans)

=
∑

⟨yj ,y<j ,x⟩∈D+
trans

KL
(
P (yj |y<j ,x;θ

∗
t )
∣∣∣∣

P (yj |y<j ,x;ϕt)
)

(8)
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However, one problem is that D+
trans may be very

small in most cases in practice, making training
efficiency very low.

Therefore, instead of discarding the negative sub-
set D−

trans, we introduce a new loss function to
make the most of negative instances. In analogy to
humans, teachers can educate students by telling
them what not to do. We expect that the student
model can learn from D−

trans in the same way. Our
intuition is that erroneous tokens with a high prob-
ability in teacher model’s output distribution are
critical because the student is prone to make the
same mistakes. Pushing the output distribution of
the student model away from the poor target dis-
tribution may enable the student model to avoid
making the same mistakes. As a result, D−

trans can
be leveraged effectively and the overall learning
efficiency will be improved significantly. Accord-
ingly, the negative KD loss function on the negative
subset is defined as

ℓNEG(ϕt,θ
∗
t , D

−
trans)

= min
(
0, α− ℓKD(ϕt,θ

∗
t , D

−
trans)

)
(9)

where α is a hyper-parameter that controls the acti-
vation of the loss.

Finally, the knowledge filtration loss is the com-
bination of the two functions:

ℓKF(ϕt,θ
∗
t , Dtrans)

= ℓKD(ϕt,θ
∗
t , D

+
trans)+ℓNEG(ϕt,θ

∗
t , D

−
trans).

(10)

2.4 Knowledge Inheritance
To circumvent the catastrophic forgetting problem,
we introduce a loss function to inherit knowledge
learned from previous time step for the current
student model:

ℓKI(ϕt, ϕ̂t−1, Dtrans)

=
∑

⟨yj ,y<j ,x⟩∈Dtrans

KL
(
P (yj |y<j ,x; ϕ̂t−1

∣∣∣∣

P (yj |y<j ,x;ϕt)
)
. (11)

3 Experiments

To evaluate the effectiveness of our method, we
conduct experiments on Chinese-to-English and
German-to-English translation under three repre-
sentative settings including homogeneous, hetero-
geneous and malicious teacher settings.

Model Domain Training Dev. Test

A News 1,250,000 4,000 13,000
B Oral 2,500,000 4,000 12,000
C Internet 750,000 4,000 13,000
D Speech 220,000 4,000 5,000
E Subtitle 300,000 4,000 4,000

Table 1: The domain, training and evaluation corpora of
the five Transformer-base models used in the Chinese-
to-English experiments. More details of the datasets are
provided in Appendix A.

3.1 Setup
Configurations. For the Chinese-to-English
translation experiments under the homogeneous
teacher setting, both the teachers and the student
are Transformer-base models (Vaswani et al., 2017).
Besides model architecture, there are a few other
factors that may affect performance, e.g., teacher
performance, student performance, model domain,
and the order that the teachers arrive. To investi-
gate the impact of model performance and model
domain, we leverage five parallel corpora of rep-
resentative domains as shown in Table 1, among
which two are in million scale, one is in middle
scale, and the other two are in small scale. Cor-
respondingly, five Transformer-base models are
trained on these corpora, denoted as A, B, C, D,
and E, respectively. Intuitively, A and B are well-
trained while D and E are under-trained due to the
training data sizes. To investigate the impact of the
order of teachers, we enumerate all the six permu-
tations of A, B and C. In addition, we append D
and E to the end of each permutation to simulate
the “weak” teacher scenario. Therefore, we have
six configurations in total.

Specially, we use a string like “ABDE → C”
to denote a configuration, which means C is the
student, A, B, D and E are the teachers and A
arrives first, then B and so on. For simplicity, we
use the training set of C as both the training set
Dtrain and the transfer set Dtrans in CKD, and the
test set of C is leveraged as Dtest. The goal in
this configuration is to improve the performance
of C on Dtest. In summary, the six configura-
tions are “BCDE→A”, “CBDE→A”, “ACDE→B”,
“CADE→B”, “ABDE→C”, and “BADE→C”.

For clarity, the differences of other aforemen-
tioned settings with this one will be given in the
corresponding sections later.

Evaluation. We leverage the following two met-
rics to evaluate our method:
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Step Method
BCDE→A ACDE→B ABDE→C Average

BLEU↑ AD↓ BLEU↑ AD↓ BLEU↑ AD↓ BLEU↑ AD↓

0 42.84 27.53 18.06 29.48 /

1

KD 46.193.35 0.00 24.32-3.21 3.21 17.06-1.00 1.00 29.19-0.29 1.40
EWC 46.093.25 0.00 24.32-3.21 3.21 17.12-0.94 0.94 29.18-0.30 1.38
CL-NMT 46.143.30 0.00 24.28-3.25 3.25 17.09-0.97 0.97 29.17-0.31 1.41
Ours 46.003.16 0.00 28.010.48 0.00 18.980.92 0.00 31.001.52 0.00

2

KD 44.621.78 1.57 26.11-1.42 3.21 19.331.27 1.00 30.020.54 1.93
EWC 45.802.96 0.29 25.28-2.25 3.21 18.130.07 0.94 29.740.26 1.48
CL-NMT 45.242.40 0.90 27.670.14 3.25 19.091.03 0.97 30.671.19 1.71
Ours 45.893.05 0.11 28.280.75 0.00 19.181.12 0.00 31.121.64 0.04

3

KD 39.16-3.68 7.03 21.76-5.77 7.56 16.14-1.92 4.19 25.69-3.79 6.26
EWC 43.881.04 2.21 24.48-3.05 4.01 17.76-0.30 1.31 28.71-0.77 2.51
CL-NMT 43.911.07 2.23 27.23-0.3 3.69 18.450.39 1.61 29.860.39 2.51
Ours 45.893.05 0.11 28.410.88 0.00 19.151.09 0.03 31.151.67 0.05

4

KD 30.57-12.27 15.62 22.71-4.82 7.56 13.88-4.18 6.45 22.39-7.09 9.88
EWC 41.13-1.71 4.96 24.89-2.64 4.01 17.24-0.82 1.83 27.75-1.72 3.60
CL-NMT 43.130.29 3.01 27.900.37 3.69 18.590.53 1.61 29.870.40 2.77
Ours 45.893.05 0.11 28.490.96 0.00 19.151.09 0.03 31.181.70 0.05

Table 2: Results of Chinese-to-English translation under homogeneous teacher setting. “BCDE→A” denotes A
is the student model and B, C, D, and E are teacher models in step 1 to 4, respectively. “∆” denotes ∆BLEU
compared with step 0 (i.e., initial student model), and ∆BLEU scores are also reported as subscript numbers. “AD”
is the accumulative degradation defined in Eq. 12, which is the lower the better. The last two columns are numbers
averaged row-wise. Best results in step 4 are in bold.

• BLEU (Papineni et al., 2002) 3: the most
widely used evaluation metric for machine
translation.

• Accumulative Degradation (AD): measuring
the accumulative occasional quality degrada-
tion in all steps, which should be avoided as
much as possible. AD from step 1 to t is de-
fined as follows:

AD =
t∑

k=1

max(0,B(ϕk−1)−B(ϕk)), (12)

where B(·) denotes BLEU(Dtest, ·).
Baselines. Our method is compared with the fol-
lowing baseline methods:

• Knowledge Distillation (KD) (Khayrallah
et al., 2018) for NMT which applies vanilla
knowledge distillation on each token trivially.

• Elastic Weight Consolidation (EWC) (Saun-
ders et al., 2019; Thompson et al., 2019)
which is a representative continual learning
method that adds an EWC term as a penalty
to alleviate catastrophic forgetting.

• Continual Learning for NMT (CL-NMT) (Cao
et al., 2021) which is a representative work on
multi-step continual learning in NMT.

3BLEU score is computed using multi-bleu.perl on the
corresponding test set for each student model.

3.2 Implementation Details

We use byte pair encoding (BPE) (Sennrich et al.,
2016) with the vocabulary size of 32k. The hyper-
parameters of the Transformer-base models are set
mostly following Vaswani et al. (2017). We use
Adam (Kingma and Ba, 2014) optimizer, in which
β1 = 0.9, β2 = 0.98. During training, learning
rate is 7 × 10−4 and dropout rate is 0.1. Batch
size is 6, 000. λ in Eq. 1 in step t is defined as
λ = 0.9991−0.999t−1

1−0.999t following (Cao et al., 2021).
More details of hyper-parameters are provided in
Appendix B.

3.3 Quantification Function Selection

We first evaluate the three candidates for the quan-
tification function Q defined in Sec. 2.3. A proper
Q should correlate well with model performance
and generalize well to a wide range of domains.
To this end, we collect six widely used datasets of
different domains and varying sizes and evaluate
the correlations between the candidates and corpus-
level BLEU scores on them. The Pearson corre-
lation coefficients between token entropy (Eq. 4),
hard label matching (Eq. 5) and token-level cross
entropy (Eq. 6) are −0.5622, 0.8091 and 0.7792,
respectively. Both hard label matching and token-
level cross entropy are strongly correlated with
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corpus-level BLEU. However, hard label matching
can not break a tie when both the teacher and stu-
dent models’ predictions are correct or incorrect.
Therefore, we adopt token-level cross entropy as
Q in the rest of this work. Examples and more
discussions can be found in Appendix C.

3.4 Chinese-to-English Translation

Homogeneous Teacher Setting. In this setting,
all the student and teacher models are of the same
model architecture, which is Transformer-base. For
space limitation, we only show results of three con-
figurations in Table 2. The full results for all con-
figurations can be found in Appendix D.1. From
Table 2 we can observe that:

(1) Our method achieves improvements over the
initial student model in all steps and configurations,
and outperforms all baselines significantly. It in-
dicates that our method is effective for leveraging
diverse teacher models to continually improve the
performance of the student model on its test dataset.

(2) Our method achieves zero or near-zero accu-
mulative performance degradation (AD) scores in
all configurationss, indicating our method is also
effective to retain acquired knowledge. Especially,
when encountering model D (step 3), nearly all
baselines face severe quality degradation compared
with step 2, while our method even achieves gain
in ACDE → B, which further justifies the effec-
tiveness of our method.

(3) All baselines perform poorly after four steps
of distillation, indicating that the problem we aim
to resolve is challenging. Specifically, KD, the
worst one, suffers from severe performance degra-
dation as averaged ∆BLEU and AD scores are
−7.09 and 9.88, respectively. We argue this is due
to KD implicitly assumes that the teacher models
are helpful such that it is prone to less beneficial
knowledge provided by them. EWC is designed to
alleviate catastrophic forgetting and achieves better
∆BLEU and AD scores than KD. However, EWC
still fails to achieve improvement over the initial
student model, i.e., all ∆BLEU scores are nega-
tive. CL-NMT is specially designed for multi-step
continual learning in NMT and achieves the best
∆BLEU and AD scores among baselines. Never-
theless, its average ∆BLEU score is significantly
smaller than ours (0.40 v.s. 1.70) and its average
AD score is significantly worse than ours (2.77 v.s.
0.05). Overall, the problem to be resolved is chal-
lenging and our method is remarkably effective

Method
Base→Base RNN→Base Big→Base

BLEU↑ AD↓ BLEU↑ AD↓ BLEU↑ AD↓

Original 29.48 / 29.48 / 29.48 /

KD 29.580.09 0.93 28.29-1.19 1.21 29.21-0.27 1.17
EWC 29.630.15 0.90 27.83-1.65 1.65 29.39-0.09 0.32
CL-NMT 29.570.09 0.92 25.89-3.59 3.59 28.00-1.48 1.91
Ours 31.071.59 0.00 29.44-0.04 0.12 30.821.34 0.00

Table 3: Results of Chinese-to-English translation un-
der the heterogeneous teacher setting in step 1, aver-
aged over six configurations. “Base” and “Big” denote
Transformer-based and Transformer-big models, respec-
tively. And “X→Y” denotes that X is the teacher and Y
is the student.

Method
Base (M)→Base RNN (M)→Base Big (M)→Base

BLEU↑ AD↓ BLEU↑ AD↓ BLEU↑ AD↓

Original 29.48 / 29.48 / 29.48 /

KD 18.36-11.12 11.12 13.88-15.60 15.60 18.53-10.95 10.95
EWC 24.13-5.35 5.35 22.84-6.64 6.64 23.04-6.44 6.44
CL-NMT 11.14-18.34 18.34 03.16-26.32 26.32 10.90-18.58 18.58
Ours 29.480.00 0.00 29.480.00 0.00 29.480.00 0.00

Table 4: Results of Chinese-to-English translation under
the malicious teacher setting in step 1, averaged over
six configurations. “(M)” is short for “malicious”.

than baselines.
(4) Despite the promising results, slight per-

formance degradation can still be observed oc-
casionally for our method. Therefore, there is
still room for further improvement on retaining
acquired knowledge.

Heterogeneous Teacher Setting. Using logits as
the medium to transfer and retain knowledge, our
approach is model-agnostic and scalable. To jus-
tify that, we replace the Transformer-base teacher
models with RNN (Bahdanau et al., 2014) and
Transformer-big (Vaswani et al., 2017) models, and
repeat the experiments in Table 2 with other set-
tings remaining identical. Table 3 shows similar
results as Table 2 that our method outperforms all
baselines significantly and also achieves zero or
near-zero AD scores, indicating that our method
is extensible to different model architectures. In-
terestingly, all the baselines encounter serious per-
formance degradation while the ∆BLEU of our
method is nearly zero, indicating that distilling
knowledge from a teacher of a completely different
architecture may be extremely difficult. It deserves
more thoughtful investigation and we leave it as
future work.
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Method BLEU↑ AD↓

Original 32.77 /

KD 28.79-3.98 7.95
EWC 31.54-1.23 2.56
CL-NMT 31.01-1.76 3.42
Ours 33.43 0.66 0.03

Table 5: Results of extending the training data of the
Chinese-to-English teacher models to ten million scale
under the homogeneous teacher setting, averaged over
six configurations.

Malicious Teacher Setting. Robustness to mali-
cious models is critical in our scenario as only the
parameters rather than training data of teachers are
available. We simulate malicious teacher models
by shuffling the outputs of a well-trained model
within a batch so that the model answers almost
completely wrong with high confidence. We re-
peat the experiments in Table 2 with other settings
remaining identical. As shown in Table 4, our ap-
proach is far less affected by the malicious model
with three different teacher model architectures.
Moreover, it could be further explored to detect
and skip malicious models to save computational
resources directly.

3.5 Larger Scale Chinese-to-English
Translation

We scale up the dataset size of the Chinese-to-
English translation experiment under the homo-
geneous teacher setting from one million to ten
million. Other settings are similar to the original
experiments and are detailed in Appendix D.2. As
shown in Table 5, our method remains effective
while all baseline methods fail to achieve positive
quality gain (∆BLEU). This demonstrates that the
performance of the baseline methods does not im-
prove as the size of the data and performance of
the models increase, while our method remains
valid. Thus, it shows that our method is scalable
for corpus of different sizes.

3.6 German-to-English Translation

We also conduct experiments on German-to-
English datasets. Models are trained on four differ-
ent datasets from different domains. Other settings
are similar to the Chinese-to-English experiments
and are detailed in Appendix D.3. The average
values among each of the homogeneous, heteroge-
neous, and malicious teacher settings are reported
in Table 6. Due to the large domain differences

Method
Homogeneous Heterogeneous Malicious

BLEU↑ AD↓ BLEU↑ AD↓ BLEU↑ AD↓

Original 30.62 / 30.62 / 30.62 /

KD 30.680.06 0.13 30.19-0.43 0.44 17.87-12.75 12.75
EWC 30.660.04 0.18 30.39-0.23 0.25 24.26-6.36 6.36
CL-NMT 30.850.23 0.10 26.20-4.42 4.42 08.49-22.1 22.13
Ours 31.190.57 0.00 30.850.23 0.05 30.620.00 0.00

Table 6: Results of German-to-English translation in
step 1, averaged over all six setting groups.

Method Step 1 Step 4

1 Full Model 31.07 31.18
2 Removing ℓNEG 30.69 30.54
3 Replacing ℓNEG with ℓKD 30.60 30.31
4 Removing ℓKI 30.74 29.94

Table 7: Ablation study on Chinese-to-English transla-
tion under homogeneous teacher setting. BLEU scores
averaged over six configurations are reported.

of the datasets, only our method consistently ob-
tains BLEU gains and zero or near zero AD scores,
exceeding the baselines, demonstrating that our
approach is effective for different language pairs.

3.7 Ablation Study

Table 7 shows the effect of the negative KD loss
ℓNEG (Eq. 9) in knowledge filtration and the knowl-
edge inheritance loss ℓKI. Results at the beginning
(t = 1) and later step (t = 4) for Chinese-to-
English translation under the homogeneous teacher
setting are reported. We can observe that:

1. Removing either ℓNEG (row 2) or ℓKI (row
4) hurts the performance, indicating both of
them are effective.

2. Comparing row 1 with row 2, we can con-
clude that the negative subset of the transfer
set where the teacher performs worse than the
student (D−

trans) also contains valuable non-
trivial knowledge. Furthermore, trivially ap-
plying vanilla KD loss ℓKD on D−

trans (row
2 v.s. 3) brings no gain. Therefore, our pro-
posed negative KD loss is effective for making
less beneficial knowledge play a good role.

3. Without ℓKI, the performance drops severely,
especially at a later step, verifying that knowl-
edge inheritance is essential for retaining ac-
quired knowledge.
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3.8 Comparison with Multi-teacher
Knowledge Distillation

Multi-teacher KD (Freitag et al., 2017), aka ensem-
ble KD, generally requires all teachers available at
the same time, which violates the definition of our
problem and may result in enormous computational
and memory cost as teacher number grows. More-
over, it is also non-trivial to adapt it to our scenarios
due to potential unbeneficial knowledge provided
by teachers. Therefore, we do not include it as a
major baseline in the experiments above. Never-
theless, in this section, we still provide a compari-
son of our method with vanilla multi-teacher KD
which averages the outputs of all teachers as the
target distribution for analysis. The BLEU score of
vanilla multi-teacher KD averaged over six config-
urations is 30.49, lower than our 31.18, indicating
that our method is superior to vanilla multi-teacher
KD although the comparison is more favorable to
it. More details on comparison in terms of task
definition, robustness and storage requirement are
analyzed in Appendix D.4.

4 Related Work

Knowledge Distillation. Knowledge distillation
(KD) is the most widely used technique for trans-
ferring knowledge between models (Hinton et al.,
2015). Despite of their effectiveness, conventional
KD methods usually implicitly assume that the
teacher model is superior or complementary to
the student model (Gou et al., 2021). Although
recently Qin et al. (2022) allow a big model to
learn from small models, they still require that the
small models are better than the big model for the
given tasks and datasets. However, the assump-
tion does not necessarily hold in our scenario due
to the diversity of teacher models. Multi-teacher
KD (Freitag et al., 2017; You et al., 2017; Fukuda
et al., 2017; Mirzadeh et al., 2020; Liu et al., 2020),
which distills knowledge from multiple teachers
simultaneously, is highly related to this work. Gen-
erally, multi-teacher KD requires all teachers to
be available at the same time, which will result
in enormous extra memory consummation as the
number of teachers grows. More importantly, new
teachers may be released constantly (Wolf et al.,
2020), which can not be seen in advance. There-
fore, multi-teacher KD methods are not feasible to
our scenario. L2KD (Chuang et al., 2020) leverages
sequential KD to continually learn new tasks, hav-
ing different goal and challenges compared with

our scenario. Another line of related work is selec-
tive distillation (Gu et al., 2020; Wang et al., 2021a;
Shi and Radu, 2022), which selects data and losses
to accelerate KD or enhance model robustness. In
contrast, we select data for conducting different
ways of distillation in our proposed method.

Continual Learning. Continual learning (CL)
for neural machine translation (NMT) aims at learn-
ing knowledge of new domains (Thompson et al.,
2019; Liang et al., 2021; Cao et al., 2021) or lan-
guages (Neubig and Hu, 2018; Garcia et al., 2021;
Huang et al., 2022) without forgetting old knowl-
edge. Our scenario also requires learning new
knowledge but focuses on improving performance
of the student on its test set instead. Moreover, al-
leviating the negative impact of the less beneficial
knowledge conveyed by “weak” teachers is essen-
tial in our scenario, which is hardly explored in CL
for NMT. While our scenario is a multi-step pro-
cess, multi-step CL is less explored in NMT (Cao
et al., 2021; Liang et al., 2021). Zeng et al. (2019)
address a similar task of adapting from multiple
out-of-domain models to a single in-domain model.
Nevertheless, they assume the training data for the
out-of-domain models are available, which is inac-
cessible in our scenario. Besides, leveraging high-
resource language NMT models to improve low-
resource language translation has also attracted in-
tensive efforts (Neubig and Hu, 2018; Lakew et al.,
2019; Liu et al., 2021; Huang et al., 2022), which
can be a future extension of our method.

5 Conclusion and Future Work

To take advantage of increasingly available trained
neural machine translation (NMT) models to im-
prove one model of interest, we propose a novel
method named continual knowledge distillation.
Specially, knowledge from the trained models is
transferred to the interested model via knowledge
distillation in a sequential manner. Extensive exper-
iments on two language pairs under homogeneous,
heterogeneous, and malicious teacher settings show
the effectiveness of our proposed method.

In the future, we will further explore the effect of
the teacher model order. It is also worth involving
more sophisticated methods in knowledge filtration,
such as gradient-based and meta-learning-based
methods. Moreover, it is also a promising research
direction to exchange knowledge among all the
models such that all of them achieve improvement.
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Limitations

There are some limitations that have yet to be ad-
dressed. Since we use the predicted probability
distributions of the model output as a medium for
continual KD for NMT, the vocabulary of multi-
ple models needs to be consistent. Overcoming
it allows continual KD for NMT to be extended
to models with different language pairs and dif-
ferent modalities. Also, although our approach
is robust to malicious models, there are more di-
verse and sophisticated attacks in real-world that
require more research on defense. In addition, the
teacher and student models must be trained on the
same language pair. Further studies can consider
more general scenarios without the above limita-
tions. There are other approaches worth exploring
in order to address the transfer of knowledge from
models rather than their training data besides se-
quential manner. For example, it is also possible to
explore various distillation methods like organizing
teacher models into batches or pipelines.

Ethics Statement

In practice, a provider may publicly release a model
but may not wish its knowledge to be transferred
into another one. Applying our method on such
models will result in model stealing (He et al.,
2022) related ethical concerns. How to detect this
kind of misconduct still needs further exploration.
Although sharing knowledge without exposing pri-
vate data is one of the potential benefits of our
method, models produced by our method are still
vulnerable to attacks such as membership infer-
ence (Hisamoto et al., 2020), and the private train-
ing data could still be stolen from the model.
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A Datasets for Chinese-to-English
Translation

The statistics of the datasets have been shown in Ta-
ble 1. The training data for the news, oral, internet,
speech and subtitle domains are randomly sampled
from LDC 4, AI Challenger 2018 (Wu et al., 2017),
translation2019zh 5, TED transcripts (Tiedemann,
2012) and Subtitles (Lison and Tiedemann, 2016),
respectively. Newstest 2018 and NIST 02-09 from
LDC are used as the development and test set for
the news domain. The AI Challenger 2017 dataset
is used as the test set for the oral domain. For the
other corresponding domains, the development and
test sets provided along with the training sets are
used as development and test sets accordingly.

B Hyper-parameter Search

α BLEU

0.05 30.86
0.1 31.07
0.5 30.96

1 30.43
2 29.54
3 28.20

Table 8: Results under different α. The metrics are
averaged over six configurations.

ka : kb BLEU

1 : 1 31.07
1 : 0.5 31.03
1 : 2 31.06

Table 9: Results under different ratio of ka : kb. The
metrics are averaged over six configurations.

For hyper-parameter α in Eq. 9, we try multiple
values in Table 8, and choose 0.1 as the default
value.

Since α regulates how much the student output
distribution is pushed away from the negative dis-
tribution, we also try to regulate the proportion
of positive and negative KD losses that work in a
similar way. We modify Eq. 10 to:

ℓKF(ϕt,θ
∗
t , Dtrans) =

kaℓKD(ϕt,θ
∗
t , D

+
trans)+kbℓNEG(ϕt,θ

∗
t , D

−
trans)

(13)
4LDC2002E18, LDC2003E07, LDC2003E14, part of

LDC2004T07, LDC2004T08 and LDC2005T06
5https://github.com/brightmart/nlp_chinese_

corpus, version 1.0.

By adjusting ka and kb, we can regulate the weights
of positive and negative losses. As shown in Ta-
ble 9, we still use the original settings since no sig-
nificant performance improvement is found when
adjusting ka : kb.

C Exploring Knowledge Filtration
Quantification Function

C.1 Examples

In Table 10, we show three examples to demon-
strate how the default quantification function
(token-level cross entropy) works in knowledge
filtration.

• In the first case, we apply standard knowledge
distillation because the teacher model assigns
a higher probability of the ground truth token
“decorations” than student, indicating a better
distribution from the former.

• In the second case, the output from the teacher
model is discarded because the negative KD
loss exceeds the threshold. It might be a rea-
sonable choice since the output of the teacher
is too far from the ground truth token.

• In the third case, the teacher model have
slightly worse predictions than students, moti-
vating the student model not to make similar
error-prone mistakes.

C.2 Alternatives to Quantification Function

The advantage of token-level cross entropy is that
the predictions corresponding to the tokens in the
transfer set Dtrans can be divided into two mu-
tually disjoint parts depending on the comparison
between the predictions of teacher and student mod-
els. In contrast, hard label matching divides Dtrans

according to whether the teacher and student mod-
els predict the ground-truth token correctly, which
will result in four parts due ties as shown in Ta-
ble 11.

Are the advantages of these two metrics bene-
ficial for our task? Is it possible to combine the
beneficial properties? To answer the questions, we
define several metrics in Table 11 to compare these
two metrics at a fine-grained level. And the ef-
fects of these metrics are shown in Table 12. It
could be found that token-level cross entropy al-
ways performs better because fewer samples are
discarded such that more knowledge is transferred
in knowledge distillation.
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Source 每棵圣诞树上都挂满琳琅目的装点，但每棵树的顶端必定有一特大的星星

Target every christmas tree hung with dazzling decorations , but the top of each tree must have a tree big stars
Teacher Candidates: decorations P=0.396 ornamentsP=0.125 costumesP=0.033 ar@@P=0.032 jewelryP=0.022

Student Candidates: displayP=0.023 car@@P=0.0022 displaysP=0.019 ’sP=0.011 decorations P=0.010

Loss Q = 0.396 > Q = 0.010 =⇒ ⟨yj ,y<j ,x⟩ belongs to D+
trans =⇒ ℓKD = 2.542 // Teacher is informative.

Source 无量跌停并非没有前兆，前一交易日它的证券股价表现已经显得出奇地疲弱
Target measureless limit is a precursor , in the previous session its securities share price performance appears ...
Teacher Candidates: fore@@P=0.216 signP=0.144 singleP=0.104 good@@P=0.037 majorP=0.029

Student Candidates: pre@@ P=0.533 precursor@@ P=0.161 aug@@P=0.030 omenP=0.017 preP=0.012

Loss Q = 0.003 < Q = 0.161 =⇒ ⟨yj ,y<j ,x⟩ belongs to D−
trans =⇒ ℓNEG = min{0, α− (−3.921)} = 0 // Teacher is too unproductive, α = 0.1.

Source 这笔钱将提存立即中标人

Target money will be escrowed immediately to winning bidder .
Teacher Candidates: the@@P=0.394 markP=0.260 beP=0.034 pay@@P=0.034 saveP=0.019

Student Candidates: target@@P=0.331 get@@P=0.235 sign@@P=0.022 putP=0.021 getP=0.020

Loss Q = 0.001 < Q = 0.003 =⇒ ⟨yj ,y<j ,x⟩ belongs to D−
trans =⇒ ℓNEG = min{0, α− 0.085} = α− 0.085 // Teacher is somewhat informative, α = 0.1.

Table 10: Three representative examples for illustrating the effectiveness of the knowledge filtration. Ground truth
token yj and candidates matching with yj are highlighted in yellow . “Student” and “Teacher” show the top 5
predicted candidate tokens and their corresponding probabilities. α = 0.1 is the threshold here.

Metric 1{yj = k}
1{yj = k∗}

1{yj ̸= k}
1{yj ̸= k∗}

1{yj = k}
1{yj ̸= k∗}

1{yj ̸= k}
1{yj = k∗}

Trivial + KD loss + KD loss + KD loss + KD loss
Hard Label Matching Discarded Discarded Discarded + KD loss
Hard Label Matching (With Filtration) Discarded Discarded - KD loss + KD loss

Token-level CE
{

+ KD loss if ∆Q > 0

Discarded if ∆Q ≤ 0

{
+ KD loss if ∆Q > 0

Discarded if ∆Q ≤ 0
Discarded + KD loss

Token-level CE (With Filtration)
{

+KD loss if ∆Q > 0

- KD loss if ∆Q ≤ 0

{
+KD loss if ∆Q > 0

- KD loss if ∆Q ≤ 0
- KD loss + KD loss

Hybrid Metric 1
{

+KD loss if ∆Q > 0

- KD loss if ∆Q ≤ 0

{
+KD loss if ∆Q > 0

Discarded if ∆Q ≤ 0
- KD loss + KD loss

Hybrid Metric 2
{

+KD loss if ∆Q > 0

Discarded if ∆Q ≤ 0

{
+KD loss if ∆Q > 0

- KD loss if ∆Q ≤ 0
- KD loss + KD loss

Hybrid Metric 3
{

Discarded if ∆Q > 0

- KD loss if ∆Q ≤ 0

{
+KD loss if ∆Q > 0

- KD loss if ∆Q ≤ 0
- KD loss + KD loss

Table 11: Different metrics have different behaviors depending on the correctness of student’s and teacher’s
prediction k and k∗ for a given token yj . “+ KD loss” and “- KD loss” mean positive and negative KD loss. “∆Q”
denotes the difference in metric f between the student and teacher model. 1 is an indicator function.

Metric BLEU

Trivial 27.36
Hard Label Matching 29.13
Hard Label Matching (With Filtration) 30.37
Token-level CE 30.69
Token-level CE (With Filtration) 31.07
Hybrid Metric 1 31.05
Hybrid Metric 2 30.89
Hybrid Metric 3 30.22

Table 12: Results for different metrics. The metrics are
averaged over six configurations.

D Detailed Results

D.1 Chinese-to-English Translation

The full results for the Chinese-to-English homo-
geneous model setting for all configurations are
shown in Table 13. Our experiments are conducted
on NVIDIA A100 GPUs. Each distillation process
requires 48 GPU hours and is run only once due to
computational budgets.

D.2 Larger Scale Chinese-to-English
Translation

To illustrate the scalability of our method, we re-
peat Chinese-to-English translation experiments
under homogeneous model setting (Sec. 3.4) using
larger and complete corpora without sampling. As
shown in Table 15, we choose five full datasets for
news, oral, internet, speech and subtitle domains,
respectively: WMT20, AI Challenger 2018, trans-
lation2019zh, TED transcripts and Subtitles. Com-
pared with Table 1, only the training set of model
F ,G and H are replaced with bigger datasets. And
the validation sets, test sets and other settings are
kept identical. F , G, H , I , J are all Transformer-
base models. The three models F , G and H are
combined in different orders to form six groups of
experiments. To simulate the most challenging sce-
nario, I and J with weaker performance are added
at the end of these experiments to test the perfor-
mance of our method on poor models. According
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Step Method
BCDE→A CBDE→A ACDE→B CADE→B ABDE→C BADE→C Average

BLEU↑ AD↓ BLEU↑ AD↓ BLEU↑ AD↓ BLEU↑ AD↓ BLEU↑ AD↓ BLEU↑ AD↓ BLEU↑ AD↓

0 42.84 42.84 27.53 27.53 18.06 18.06 29.48 /

1

KD 46.193.35 0.00 44.471.63 0.00 24.32-3.21 3.21 26.17-1.36 1.36 17.06-1.00 1.00 19.221.16 0.00 29.570.09 0.93
EWC 46.093.25 0.00 44.591.75 0.00 24.32-3.21 3.21 26.26-1.27 1.27 17.12-0.94 0.94 19.351.29 0.00 29.570.15 0.90
CL-NMT 46.143.30 0.00 44.531.69 0.00 24.28-3.25 3.25 26.21-1.32 1.32 17.09-0.97 0.97 19.171.11 0.00 29.620.09 0.92
Ours 46.003.16 0.00 45.883.04 0.00 28.010.48 0.00 28.170.64 0.00 18.980.92 0.00 19.361.30 0.00 31.071.59 0.00

2

KD 44.621.78 1.57 46.283.44 0.00 26.11-1.42 3.21 23.96-3.57 3.57 19.331.27 1.00 17.25-0.81 1.97 29.590.11 1.89
EWC 45.802.96 0.29 46.263.42 0.00 25.28-2.25 3.21 25.92-1.61 1.61 18.130.07 0.94 18.520.46 0.83 30.650.51 1.15
CL-NMT 45.242.40 0.90 45.482.64 0.00 27.670.14 3.25 27.700.17 1.32 19.091.03 0.97 18.690.63 0.48 29.991.17 1.15
Ours 45.893.05 0.11 46.083.24 0.00 28.280.75 0.00 28.500.97 0.00 19.181.12 0.00 19.361.30 0.00 31.221.74 0.02

3

KD 39.16-3.68 7.03 39.11-3.73 7.17 21.76-5.77 7.56 21.69-5.84 5.84 16.14-1.92 4.19 16.12-1.94 3.10 25.66-3.81 5.82
EWC 43.881.04 2.21 44.021.18 2.24 24.48-3.05 4.01 24.27-3.26 3.26 17.76-0.30 1.31 18.090.03 1.26 29.91-0.73 2.38
CL-NMT 43.911.07 2.23 43.830.99 1.65 27.23-0.3 3.69 27.32-0.21 1.70 18.450.39 1.61 18.710.65 0.48 28.750.43 1.89
Ours 45.893.05 0.11 46.083.24 0.00 28.410.88 0.00 28.480.95 0.02 19.151.09 0.03 18.980.92 0.38 31.171.69 0.09

4

KD 30.57-12.27 15.62 30.31-12.53 15.97 22.71-4.82 7.56 22.66-4.87 5.84 13.88-4.18 6.45 13.99-4.07 5.23 22.35-7.12 9.45
EWC 41.13-1.71 4.96 37.41-5.43 8.85 24.89-2.64 4.01 24.96-2.57 3.26 17.24-0.82 1.83 17.59-0.47 1.76 29.85-2.27 4.11
CL-NMT 43.130.29 3.01 42.990.15 2.49 27.900.37 3.69 27.930.4 1.70 18.590.53 1.61 18.580.52 0.61 27.200.38 2.19
Ours 45.893.05 0.11 46.083.24 0.00 28.490.96 0.00 28.510.98 0.02 19.151.09 0.03 18.980.92 0.38 31.181.71 0.09

Table 13: Results of Chinese-to-English translation under homogeneous teacher setting. “BCDE→A” denotes A
is the student model and B, C, D, and E are teacher models in step 1 to 4, respectively. “∆” denotes ∆BLEU
compared with step 0 (i.e., initial student model), and ∆BLEU scores are also reported as subscript numbers. “AD”
is the accumulative degradation defined in Eq. 12, which is the lower the better. The last two columns are numbers
averaged row-wise. Best results in step 4 are in bold.

Step Method
GHIJ→F HGIJ→F FHIJ→G HFIJ→G FGIJ→H GFIJ→H Average

BLEU↑ AD↓ BLEU↑ AD↓ BLEU↑ AD↓ BLEU↑ AD↓ BLEU↑ AD↓ BLEU↑ AD↓ BLEU↑ AD↓

0 43.16 43.16 31.35 31.35 23.8 23.8 32.77 /

1

KD 43.900.74 0.00 41.54-1.62 1.62 29.92-1.43 1.43 29.70-1.65 1.65 23.70-0.10 0.10 23.69-0.11 0.11 32.08-0.70 0.82
EWC 43.990.83 0.00 41.65-1.51 1.51 29.90-1.45 1.45 29.73-1.62 1.62 23.70-0.10 0.10 23.66-0.14 0.14 32.17-0.66 0.80
CL-NMT 44.080.92 0.00 41.75-1.41 1.41 29.92-1.43 1.43 29.77-1.58 1.58 23.70-0.10 0.10 23.76-0.04 0.04 32.11-0.60 0.76
Ours 44.251.09 0.00 44.050.89 0.00 31.510.16 0.00 31.350.00 0.00 23.810.01 0.00 23.77-0.03 0.03 33.120.35 0.01

2

KD 42.19-0.97 1.71 44.060.90 1.62 28.91-2.44 2.44 28.94-2.41 2.41 22.86-0.94 0.94 22.84-0.96 0.96 31.63-1.14 1.68
EWC 43.160.00 0.83 43.03-0.13 1.51 27.83-3.52 3.52 30.21-1.14 1.62 23.01-0.79 0.79 23.71-0.09 0.14 32.40-0.94 1.40
CL-NMT 44.050.89 0.04 44.090.93 1.41 29.46-1.89 1.89 29.64-1.71 1.71 23.58-0.22 0.22 23.60-0.20 0.20 31.83-0.37 0.91
Ours 44.451.29 0.00 44.441.28 0.00 31.510.16 0.00 31.440.09 0.00 24.140.34 0.00 24.110.31 0.03 33.350.58 0.01

3

KD 35.13-8.03 8.77 34.86-8.30 10.82 22.82-8.53 8.53 22.78-8.57 8.57 18.30-5.50 5.50 18.28-5.52 5.52 25.36-7.41 7.95
EWC 41.58-1.58 2.42 40.93-2.23 3.61 27.03-4.32 4.32 29.28-2.07 2.55 22.05-1.75 1.75 23.16-0.64 0.69 29.89-2.10 2.56
CL-NMT 41.30-1.86 2.79 43.380.22 2.11 29.47-1.88 1.89 24.25-7.10 7.10 22.68-1.12 1.12 18.25-5.55 5.55 30.67-2.88 3.42
Ours 44.631.47 0.00 44.471.31 0.00 31.480.13 0.03 31.500.15 0.00 24.040.24 0.10 24.120.32 0.03 33.370.60 0.03

4

KD 39.45-3.71 8.77 39.12-4.04 10.82 26.67-4.68 8.53 26.79-4.56 8.57 20.39-3.41 5.50 20.33-3.47 5.52 28.79-3.98 7.95
EWC 41.99-1.17 2.42 41.40-1.76 3.61 29.66-1.69 4.32 30.77-0.58 2.55 22.04-1.76 1.76 23.37-0.43 0.69 31.01-1.23 2.56
CL-NMT 42.69-0.47 2.79 43.600.44 2.11 30.96-0.39 1.89 27.08-4.27 7.10 22.99-0.81 1.12 18.75-5.05 5.55 31.54-1.76 3.42
Ours 44.651.49 0.00 44.541.38 0.00 31.530.18 0.03 31.550.20 0.00 24.150.35 0.10 24.140.34 0.03 33.430.66 0.03

Table 14: Results on larger Chinese-to-English datasets. “GHIJ→F” denotes F is the student model and model G to
J are teacher models in step 1 to 4, respectively.

Model Domain Training Dev. Test

F News 20,000,000 4,000 13,000
G Oral 12,500,000 4,000 12,000
H Internet 5,200,000 4,000 13,000
I Speech 220,000 4,000 5,000
J Subtitle 300,000 4,000 4,000

Table 15: The domain, training and evaluation cor-
pora of Chinese-to-English translation large-scale exper-
iments. Compare with Table 1, news, oral and Internet
datasets are replaced with larger datasets to test the scal-
ability. Other settings are kept identical.

to the task definition illustrated above, the transfer
set of each set of experiments is the training set of
the according student model.

The results are shown in Table 14. Similar to
results in Sec. 3.4, our method outperforms base-
lines significantly and consistently, justifying that
our method is scalable and generalizes to different
corpus sizes. For example, without using any extra
data, our method yield up to +1.49, +0.20, +0.35
BLEU scores on WMT20, AI Challenger 2018 and
translation2019zh datasets, respectively.
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Step Method
LMN→K MLN→K KMN→L MKN→L KLN→M LKN→M Average

BLEU↑ AD↓ BLEU↑ AD↓ BLEU↑ AD↓ BLEU↑ AD↓ BLEU↑ AD↓ BLEU↑ AD↓ BLEU↑ AD↓

0 31.10 31.10 30.04 30.04 30.72 30.72 30.62 /

1

KD 31.180.08 0.00 31.570.47 0.00 29.62-0.42 0.42 29.84-0.20 0.20 31.330.61 0.00 30.53-0.19 0.19 30.680.06 0.13
EWC 31.340.24 0.00 31.580.48 0.00 29.61-0.43 0.43 29.85-0.19 0.19 31.330.61 0.00 30.24-0.48 0.48 30.850.04 0.18
CL-NMT 31.500.40 0.00 31.590.49 0.00 29.62-0.42 0.42 29.87-0.17 0.17 31.330.61 0.00 31.180.46 0.00 30.660.23 0.10
Ours 31.780.68 0.00 31.820.72 0.00 30.360.32 0.00 30.430.39 0.00 31.380.66 0.00 31.340.62 0.00 31.190.57 0.00

2

KD 30.96 -0.14 0.22 30.76-0.34 0.81 30.220.18 0.42 30.340.30 0.20 30.54-0.18 0.79 31.300.58 0.19 30.690.07 0.44
EWC 31.260.16 0.08 31.260.16 0.32 30.340.30 0.43 29.78-0.26 0.26 30.64-0.08 0.69 30.42-0.30 0.48 30.790.00 0.37
CL-NMT 31.550.45 0.00 30.86-0.24 0.73 29.95-0.09 0.42 30.080.04 0.17 31.020.30 0.31 31.300.58 0.00 30.620.17 0.27
Ours 31.870.77 0.00 31.930.83 0.00 30.460.42 0.00 30.540.50 0.00 31.380.66 0.00 31.330.61 0.01 31.250.63 0.00

3

KD 23.74-7.36 7.44 23.64-7.46 7.93 23.11-6.93 7.53 24.62-5.42 5.92 26.00-4.72 5.33 27.81-2.92 3.68 24.82-5.80 6.31
EWC 29.52-1.58 1.82 29.63-1.47 1.95 29.84-0.20 0.92 28.88-1.16 1.16 29.88-0.84 1.45 30.10-0.62 0.80 28.77-0.98 1.35
CL-NMT 28.64-2.46 2.91 30.30-0.80 1.29 30.00-0.04 0.42 25.07-4.97 5.18 31.150.43 0.31 27.47-3.25 3.83 29.64-1.85 2.32
Ours 31.890.79 0.00 31.940.84 0.00 30.470.43 0.00 30.550.51 0.00 31.520.80 0.00 31.540.82 0.01 31.320.70 0.00

Table 16: Results on German-to-English datasets. “LMN→K” denotes K is the student model and model L, M and
N are teacher models in step 1 to 3 respectively.

Model Domain Training Dev. Test

K News 4,500,000 4,000 8,000
L Multiple 4,300,000 4,000 8,000
M Europarl 1,300,000 4,000 8,000
N Tanzil 500,000 4,000 8,000

Table 17: The domain, training and evaluation cor-
pora of the four Transformer-base models used in the
German-to-English translation experiments. Other set-
tings are kept identical to Chinese-to-English transla-
tion.

D.3 German-to-English Translation

As shown in Table 17, the training data for German-
to-English translation are from WMT16, Tilde-
MODEL v2018 (Rozis and Skadin, š, 2017), Tanzil
v1 and Europarl (Koehn, 2005), respectively. We
sample 4, 000 sentences from the original corpus
as the development set and 8, 000 sentences as
the test set. Model N has weaker performance.
Other settings are kept identical to the Chinese-to-
English translation experiments. K, L, M , N are
all Transformer-base models. The three models K,
L and M are combined in different orders to form
six groups of experiments. To simulate the most
challenging scenario, N with weaker performance
is added at the end of these experiments to test
the performance of our method on poor models.
According to the task definition illustrated above,
the transfer set of each set of experiments is the
training set of the according student model.

As shown in Table 16, our method performs sim-
ilarly on the German-to-English language pair as it
does on the Chinese-to-English language pair un-
der the homogeneous model setting. We also repeat
the experiments under the heterogeneous and ma-

Method
Transformer-base RNN Transformer-big

BLEU↑ AD↓ BLEU↑ AD↓ BLEU↑ AD↓

Original 30.62 / 30.62 / 30.62 /

KD 30.680.06 0.13 29.91-0.71 0.71 30.46-0.16 0.17
EWC 30.660.04 0.18 30.19-0.43 0.43 30.60-0.02 0.06
CL-NMT 30.850.23 0.10 25.53-5.09 5.09 26.87-3.75 3.75
Ours 31.190.57 0.00 30.61-0.01 0.09 31.100.48 0.00

Table 18: Results for different architecture models in
step 1 on German-to-English datasets, averaged over six
configurations.

Method
Transformer-base RNN Transformer-big

BLEU↑ AD↓ BLEU↑ AD↓ BLEU↑ AD↓

Original 30.62 / 30.62 / 30.62 /

KD 20.03-10.59 10.59 16.17-14.45 14.45 19.56-11.06 11.06
EWC 24.29-6.33 6.33 23.40-7.22 7.22 25.13-5.49 5.49
CL-NMT 11.67-18.95 18.95 5.09-25.53 25.53 11.90-18.72 18.72
Ours 30.620.00 0.00 30.620.00 0.00 30.620.00 0.00

Table 19: Results for malicious models in step 1 on
German-to-English datasets, averaged over six configu-
rations.

licious model settings. As shown in Table 18 and
Table 19, our method is also superior to the base-
lines under these settings for German-to-English
translation.

D.4 Comparison with Multi-teacher
Knowledge Distillation

Multi-teacher distillation differs with our method
in three aspects:

• Applicable scenario. Vanilla multi-teacher
distillation averages the outputs of all teacher
models as the target distribution, which re-
quires all teacher models available at the same
time, violating the task definition that a se-
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Method BCDE→A CBDE→A ACDE→B CADE→B ABDE→C ABDE→C

Multi-teacher KD 45.72 45.72 26.94 26.94 18.82 18.82
Ours 45.89 46.08 28.49 28.51 19.15 18.98

Table 20: BLEU scores of multi-teacher KD and our method. Multi-teacher KD violates the task definition and is
not applicable in our scenario.

quence of teacher models are distilled in many
steps. It is impossible to get all teacher models
at early steps. Thus, vanilla multi-teacher dis-
tillation cannot be used as a baseline method.

• Robustness. Vanilla multi-teacher distillation
averages the output of all teacher models and
is vulnerable to D−

trans.

• Storage requirement. The memory foot-
print of vanilla multi-teacher distillation will
exceed the available memories of GPUs as
the number of teacher models increases. A
straightforward way to alleviate the problem
is storing the output of teachers in a similar
way as the aforementioned knowledge inher-
itance. However, it is non-trivial to achieve
a good balance between storage requirement
and performance. Let |Dtrans| be token num-
bers of target sentences in Dtrans, Nstep be the
number of steps, and NV be the output vocab-
ulary size. The following three high-potential
methods all face problems:

– Storing logits: It leaves room for inte-
grating knowledge filtration. However,
its storage requirement is|Dtrans| ·NV ·
Nstep, which is impractical since Nstep

can be arbitrarily large.

– Storing top-1 tokens: It requires constant
storage of |Dtrans|. However, knowledge
filtration is hard if not impossible to be
developed.

– Storing moving average of the logits: Its
storage requirement is also constant, i.e.,
|Dtrans| · NV . However, it is prone to
D−

trans and knowledge filtration is also
hard to be integrated.

In contrast, our knowledge inheritance has
been shown to be effective and requires a con-
stant size of storage (|Dtrans| ·NV ). Moreover,
we still try our best to apply multi-teacher dis-
tillation on continual KD for NMT by storing
the output logits of all teacher models. The

results in Table 20 show no performance ad-
vantage over our method.

Overall, our proposed method is superior to
vanilla multi-teacher distillation for continual KD
for NMT.

E Exploring Loss Function of Knowledge
Filtration

In this section, we will study the effects of inverse
KL loss and modifying sources of knowledge fil-
tration loss. All experiments are conducted under
the homogeneous model setting on the Chinese-to-
English language pair.

E.1 Inverse KL Loss

Trivial KL loss is zero-avoiding and concentrates
on a single mode, while inverse KL loss covers the
broad range and is zero-pursing.

KL(P1||P2) = −
∑

i

P1(i) ln
P2(i)

P1(i)
(14)

InvKL(P1||P2) = −
∑

i

P2(i) ln
P1(i)

P2(i)
(15)

The BLEU scores of the trivial KL loss and inverse
KL loss are 31.07 and 30.29, respectively. There-
fore, the trivial KL loss performs better in our task.

E.2 Effect of Knowledge Filtration Loss

In the knowledge filtration loss ℓKF, ℓKD moti-
vates the model to learn from student, while ℓNEG

motivates the model to learn against student. Intu-
itively, ℓNEG is calculated from poor predictions
from teacher models, and these error-prone distri-
butions might provide empirical knowledge that
motivates the student model not to make the same
mistakes as the teachers. The output distributions
from the student model could be improved by push-
ing them away from poor distributions of corre-
sponding tokens output by teacher models. Con-
versely, random distributions are not beneficial to
the student model. To verify this, we replace ℓNEG

with the following noise:
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Source of Noise Sample Sample Size BLEU

Uniform distribution 1 30.91
Normal distribution 1 30.86
Shuffled Batch (Attached) 1 29.98
Shuffled Batch (Attached) 5 29.99
Shuffled Batch (Detached) 1 30.52
Shuffled Batch (Detached) 5 30.62

Negative KD Loss 31.07

Table 21: Results for replacing negative KD loss with
noise sample. The metrics are averaged over six config-
urations.

• Noise sampled from uniform distribu-
tion. The probability distribution that re-
places the original negative loss is obtained
by sampling from a uniform distribution and
passing through a softmax layer.

• Noise sampled from normal distribu-
tion. The probability distribution that re-
places the original negative loss is obtained
by sampling from a normal distribution and
passing through a softmax layer.

• Noise from shuffled batch. We randomly
pick up a prediction distribution as the noise
distribution from the batch from which the
original negative sample is. It is worth noting
that this kind of noise is usually single-peaked,
high-confidence, and more similar to the orig-
inal negative sample compared to the above
two noises.

– Attached The negative KD loss here is
included when calculating the gradient
of the sampled negative noise sample;

– Detached The negative KD loss here is
excluded when calculating the gradient
of the sampled negative noise sample.

As shown in Table 21, performance is degraded
when negative KD loss is derived from noise, thus
illustrating that negative samples assist student
models in avoiding errors and improving the ef-
ficiency of knowledge distillation.
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