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Abstract
Knowledge distillation (KD) is a promising
technique for model compression in neural ma-
chine translation. However, where the knowl-
edge hides in KD is still not clear, which may
hinder the development of KD. In this work,
we first unravel this mystery from an empiri-
cal perspective and show that the knowledge
comes from the top-1 predictions of teachers,
which also helps us build a potential connec-
tion between word- and sequence-level KD.
Further, we point out two inherent issues in
vanilla word-level KD based on this finding.
Firstly, the current objective of KD spreads its
focus to whole distributions to learn the knowl-
edge, yet lacks special treatment on the most
crucial top-1 information. Secondly, the knowl-
edge is largely covered by the golden infor-
mation due to the fact that most top-1 predic-
tions of teachers overlap with ground-truth to-
kens, which further restricts the potential of KD.
To address these issues, we propose a novel
method named Top-1 Information Enhanced
Knowledge Distillation (TIE-KD). Specifically,
we design a hierarchical ranking loss to en-
force the learning of the top-1 information from
the teacher. Additionally, we develop an iter-
ative KD procedure to infuse more additional
knowledge by distilling on the data without
ground-truth targets. Experiments on WMT’14
English-German, WMT’14 English-French
and WMT’16 English-Romanian demonstrate
that our method can respectively boost
Transformerbase students by +1.04, +0.60 and
+1.11 BLEU scores and significantly outper-
form the vanilla word-level KD baseline. Be-
sides, our method shows higher generalizability
on different teacher-student capacity gaps than
existing KD techniques.

1 Introduction

In recent years, neural machine translation (NMT)
has made marvelous progress in generating high-
quality translations (Bahdanau et al., 2014; Gehring

∗Yufeng Chen is the corresponding author.

et al., 2017; Vaswani et al., 2017; Liang et al.,
2021b, 2022), especially with some exquisite and
deep model architectures (Wei et al., 2020; Li et al.,
2020; Liu et al., 2020; Wang et al., 2022). De-
spite their amazing performance on translation
tasks, high computational and deployment costs
still prevent these models from being applied in
real life. On this problem, knowledge distillation
(KD) (Liang et al., 2008; Hinton et al., 2015; Kim
and Rush, 2016; Wu et al., 2020; Chen et al., 2020;
Wang et al., 2021; Liang et al., 2021a) is regarded
as a promising solution for model compression,
which aims to transfer the knowledge from these
strong teacher models into compact student mod-
els.

Generally, there are two categories of KD tech-
niques, i.e., word-level KD (Hinton et al., 2015;
Kim and Rush, 2016; Wang et al., 2021) and
sequence-level KD (Kim and Rush, 2016). (1)
Word-level KD is conducted on each target token,
where it shrinks the Kullback-Leibler (KL) diver-
gence (Kullback and Leibler, 1951) between the
predicted distributions from the student and the soft
targets from the teacher. In these soft targets, the
knowledge was previously deemed to come from
the probability relationship between negative can-
didates (i.e., the correlation information) (Hinton
et al., 2015; Tang et al., 2020; Jafari et al., 2021).
(2) Sequence-level KD instead requires no soft tar-
get and directly encourages students to maximize
the sequence probability of the final translation de-
coded by the teacher. Although both techniques
work quite differently, they still achieve similarly
superior effectiveness. Therefore, we raise two
heuristic questions on KD in NMT:

• Q1: Where does the knowledge actually come
from during KD in NMT?

• Q2: Is there any connection between the word-
and the sequence-level KD techniques?

To answer these two questions, we conduct an
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empirical study that starts from word-level KD to
find out where the knowledge hides in the teacher’s
soft targets and then explore whether the result can
be expanded to sequence-level KD. As a result, we
summarize several intriguing findings:

i. Compared to the correlation information, the
information of the teacher’s top-1 predictions
(i.e., the top-1 information) actually deter-
mines the benefit of word-level KD (§3.1).

ii. The correlation information can be success-
fully learned by students during KD but fails
to improve their final performance (§3.2).

iii. Extending the top-1 information to top-k does
not lead to further improvement (§3.3).

iv. The top-1 information is important even when
the teacher is under-confident in its top-1 pre-
dictions (§3.4).

v. Similar importance of the top-1 information
can also be verified on sequence-level KD
(§3.5).

These findings sufficiently prove that 1) the knowl-
edge actually comes from the top-1 information
of the teacher during KD in NMT, and 2) the
two kinds of KD techniques can be connected
from the perspective of the top-1 information.

On these grounds, we further point out that there
are two inherent issues in vanilla word-level KD.
Firstly, as the source of teachers’ knowledge, the
top-1 information receives no special treatment
in the training objective of vanilla word-level KD
since the KL divergence directly optimizes the en-
tire distribution. Secondly, since most top-1 predic-
tions of strong teachers overlap with ground-truth
tokens (see the first row of Tab.1), the additional
knowledge from teachers beyond the golden infor-
mation is poor and the potential of word-level KD
is largely limited (see the second row of Tab.1). To
address these issues, we propose a new KD method
named Top-1 Information Enhanced Knowledge
Distillation (TIE-KD) for NMT. Specifically, we
first design a hierarchical ranking loss that can en-
force the student model to learn the top-1 informa-
tion through ranking the top-1 predictions of the
teacher as its own top-1 predictions. Moreover, we
develop an iterative KD procedure to expose more
input data without ground-truth targets for KD to
exploit more knowledge from the teacher.

Datasets En-De En-Fr En-Ro
Top-1 Overlap Rate 68% 78% 94%

∆ from Word-level KD +0.61 +0.13 +0.18

Table 1: The overlap rates between the top-1 predic-
tions of teachers and ground-truth tokens on WMT’14
English-German (En-De), WMT’14 English-French
(En-Fr) and WMT’16 English-Romanian (En-Ro) and
the corresponding improvement (∆) of BLEU scores
brought by word-level KD on the test set of these tasks1.

We evaluate our TIE-KD method on three
WMT benchmarks, i.e., WMT’14 English-German
(En-De), WMT’14 English-French (En-Fr) and
WMT’16 English-Romanian (En-Ro). Experi-
mental results show that our method can boost
Transformerbase students by +1.04, +0.60, +1.11
BLEU scores and significantly outperforms the
vanilla word-level KD approach. Besides, we test
the performance of existing KD techniques in NMT
and our TIE-KD under different teacher-student ca-
pacity gaps and show the stronger generalizability
of our method on various gaps.

Our contributions are summarized as follows2:

• To the best of our knowledge, we are the first
to explore where the knowledge hides in KD
for NMT and unveil that it comes from the
top-1 information of the teacher, which also
helps us build a connection between word-
and sequence-level KD.

• Further, we point two issues in vanilla word-
level KD and propose a novel KD method
named Top-1 Information Enhanced Knowl-
edge Distillation (TIE-KD) to address them.
Experiments on three WMT benchmarks
demonstrate its effectiveness and superiority.

• We investigate the effects of current KD tech-
niques in NMT under different teacher-student
capacity gaps and show the stronger general-
izability of our approach to various gaps.

2 Background

2.1 Neural Machine Translation
Given a source sentence with M tokens x =
{x1, x2, . . . , xM} and the corresponding target sen-
tence with N tokens y = {y1, y2, . . . , yN}, NMT

1We random sample 3000 target sentences in the training
set of each task to calculate the approximate overlap rates.

2The code is publicly available at: https://github.com/
songmzhang/NMT-KD.
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(a) vanilla word-level KD (b) w/o correlation info (c) w/o top-1 info (d) w/o KD

Figure 1: Removing different information from the original soft targets provided by the teacher during word-level
KD. Note that the soft target in “w/o KD” is equivalent to the soft target of label smoothing.

models are trained to maximize the probability of
each target token conditioning on the source sen-
tence by the cross-entropy (CE) loss:

Lce = −
N∑

j=1

log p(y∗j |y<j ,x; θ), (1)

where y∗j and y<j denote the ground-truth target
and the target-side previous context at time step j,
respectively. And θ is the model parameter.

2.2 Word-level Knowledge Distillation
Word-level KD (Kim and Rush, 2016) aims to min-
imizes the KL divergence between the output distri-
butions of the teacher model and the student model
on each target token. Formally, given the probabil-
ity distribution q(·) from the teacher model, the KL
divergence-based loss is formulated as follows:

Lkd = LKL = (2)
N∑

j=1

DKL

(
q(yj |y<j ,x; θt)

∣∣∣∣p(yj |y<j ,x; θs)
)
,

where θt and θs denote the model parameters of
the teacher and the student, respectively.

Then, the overall loss function of word-level KD
is the linear interpolation between the CE loss and
the KL divergence loss:

Lword-kd = (1− α)Lce + αLkd. (3)

2.3 Sequence-level Knowledge Distillation
Sequence-level KD (Kim and Rush, 2016) encour-
ages the student model to imitate the sequence prob-
abilities of the translations from the teacher model.
To this end, it optimizes the student model through
the following approximation:

Lseq-kd = −
∑

y∈Y
Q(y|x; θt) logP (y|x; θs)

≈ − logP (ŷ|x; θs), (4)

where Y denotes the hypothesis space of the
teacher and ŷ is the approximate result through
the teacher’s beam search.

3 Probing the Knowledge of KD in NMT

In this section, we start from word-level KD and
offer exhaustive empirical analyses on 1) the de-
termining information in word-level KD (§3.1);
2) whether the correlation information has been
learned (§3.2); 3) whether there are more bene-
fits when extending the top-1 to top-k information
(§3.3) and 4) the importance of the top-1 informa-
tion on soft targets with different confidence (§3.4).
Then we expand the conclusion to sequence-level
KD (§3.5) and lastly revisit KD for NMT from a
novel view (§3.6).

3.1 Which Information Determines the
Performance of Word-level KD?

In word-level KD, the relative probabilities be-
tween negative candidates in the soft targets from
the teacher contain rich correlation information,
which is previously deemed to carry knowledge
from the teacher (Hinton et al., 2015; Tang et al.,
2020; Jafari et al., 2021). However, in practice,
strong teachers usually have high confidence in
their top-1 predictions while retain little probabil-
ity mass for other candidates. Hence, to study the
mystery of KD, it is necessary to first investigate
the real effects of the correlation information and
the top-1 prediction information during KD and
then figure out which one actually determines the
performance of KD.

To this end, during word-level KD, we separately
remove the top-1 information and the correlation
information from the original soft targets of the
teacher (as depicted in Fig.1) and then observe the
corresponding performance. Besides the BLEU
score, we also introduce a new metric, namely the
Top-1 Agreement (TA) rate, which calculates the
overlap rate of the top-1 predictions between the
student and the teacher on each position under the
teacher-forcing mode. As shown in Tab.2, the per-
formance slightly increases when we remove the
probabilities of all other candidates except for the
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Task Model TA BLEU

En-De

(a) vanilla word-level KD 88.98 26.66
(b) w/o correlation info 88.69 26.76
(c) w/o top-1 info 87.49 26.43
(d) w/o KD 87.22 26.37

En-Fr

(a) vanilla word-level KD 89.31 34.94
(b) w/o correlation info 89.19 35.09
(c) w/o top-1 info 88.34 34.33
(d) w/o KD 88.33 34.69

En-Ro

(a) vanilla word-level KD 83.98 34.29
(b) w/o correlation info 84.27 34.30
(c) w/o top-1 info 83.73 34.02
(d) w/o KD 83.34 34.04

Table 2: Top-1 Agreement rates (%) and BLEU scores
(%) of different soft targets during KD on the validation
sets of the three tasks. Deeper colors represent better
performance on the corresponding metrics.

top-1 ones in soft targets (see Fig.1(b))3. However,
when we only remove the top-1 information and
keep the remaining correlation information (see
Fig.1(c))4, the performance of KD drops close to
the baseline without any KD. Moreover, we ob-
serve that the TA rates are well correlated with the
final BLEU scores among these students. There-
fore, we conjecture that the top-1 information is
the one that actually determines the performance
of word-level KD (answer to Q1).

3.2 Can Student Models Really Learn the
Correlation Information?

To further confirm the above conjecture, we exam-
ine whether the student models have successfully
learned the correlation information of the teacher
during KD. To achieve this, we design two metrics
to measure the ranking similarities between token
rankings from the student and the teacher, named
top-k edit distance and top-k ranking distance.

Top-k Edit Distance. Given the top-k predic-
tions of the teacher at time step j as [yt1j , ..., ytkj ]
and the ones of the student as [ys1j , ..., yskj ], the
top-k edit distance can be expressed as:

Dedit =
1

N

N∑

j

f([yt1j , ..., ytkj ], [ys1j , ..., yskj ]),

3Considering the regularization effect, we do not add a
uniform distribution to complement the removed probability.
Please refer to Appendix B for more detailed explanations.

4Note that we do not simply remove the probability of the
top-1 prediction, but add this probability to the ground-truth
token to maintain the correctness of the distribution, i.e., the
soft target is unchanged if its top-1 prediction is correct.

Task Model Dedit ↓ Drank ↓ BLEU

En-De

(a) vanilla Word-KD 2.506 1.571 26.66
(b) w/o correlation info 2.697 1.791 26.76
(c) w/o top-1 info 2.601 1.656 26.43
(d) w/o KD 2.739 1.820 26.37

En-Fr

(a) vanilla Word-KD 2.515 1.588 34.94
(b) w/o correlation info 2.616 1.696 35.09
(c) w/o top-1 info 2.495 1.563 34.33
(d) w/o KD 2.587 1.657 34.69

En-Ro

(a) vanilla Word-KD 2.915 2.000 34.29
(b) w/o correlation info 3.025 2.138 34.30
(c) w/o top-1 info 2.893 1.998 34.02
(d) w/o KD 2.967 2.083 34.04

Table 3: Ranking similarities between the students and
the teachers and the corresponding BLEU scores (%)5.

where f(·, ·) calculates the edit distance.

Top-k Ranking Distance. For each ytij in
[yt1j , ..., ytkj ], this metric measures the average rank-
ing distance between its original rank i from the
teacher, and the corresponding rank from the stu-
dent, denoted as rs(y

ti
j ):

Drank =
1

Nk

N∑

j

k∑

i

min(k, |i− rs(y
ti
j )|).

We compare the students above based on these
two metrics and list the results in Tab.3. Clearly, the
students perform better on both Dedit and Drank

when the soft targets contain correlation informa-
tion ((a),(c) vs. (b),(d)), indicating that student
models can successfully learn the correlation in-
formation from the teacher. However, this ranking
performance fails to bring better performance of
KD, as measured by BLEU scores. Thus, these
results negate the previous perception that the cor-
relation information carries the knowledge during
KD, which also supports our conjecture in Sec.3.1.

3.3 Does Knowledge Increase with Top-k
Information?

As the importance of the top-1 information for
transferring knowledge in word-level KD has been
validated, we further investigate whether more
knowledge can be exploited by extending top-1
information to top-k information6. Similar to
Fig.1(b), we keep the top-k probabilities in the
original soft target and remove others to extract its
top-k information. However, the results in Tab.4
give a negative answer that more information does

5Here we set k to 5 for both Dedit and Drank since differ-
ent k does not change the conclusion in our experiments.

6Equivalent to vanilla word-level KD when k = |V |.
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k 1 3 5 30 |V |

BLEU
En-De 26.76 26.74 26.76 26.70 26.66
En-Fr 35.09 34.91 34.79 34.79 34.94
En-Ro 34.30 34.38 34.28 34.30 34.29

Table 4: BLEU scores (%) of word-level KD with top-k
information on the validation set of the three tasks. |V |
is the vocabulary size.

Figure 2: BLEU scores (%) of KD with different infor-
mation in three intervals of soft targets on the validation
set of the WMT’14 En-De task.

not bring significantly more knowledge. Thus, we
can believe that almost all the knowledge of the
teacher in word-level KD comes from the teacher’s
top-1 information, even though the whole distribu-
tion is distilled to the student.

3.4 Does Top-1 Information Work in All Soft
Targets?

Although the previous results have coarsely located
the knowledge in word-level KD on the top-1 in-
formation of the teacher, it is still not clear whether
this holds for all types of soft targets, especially
when the teacher is under-confident in its top-1
predictions. Towards this end, we divide the soft
targets of the teacher into three intervals (Wang
et al., 2021) based on their top-1 probabilities:
(0.0, 0.4], (0.4, 0.7], and (0.7, 1.0). Then we sepa-
rately conduct the same KD processes as described
in Fig.1, only using the soft targets in one of these
intervals. Surprisingly, the results in Fig.2 show
that even when the teacher is not so confident (i.e.,
qmax ≤ 0.7) in its top-1 predictions, using only the
top-1 information (i.e., the blue bars) still achieves
better performance than using the full information
in corresponding soft targets. However, in these
cases, removing the top-1 information in soft tar-
gets largely degrades the performance of the stu-
dents. We conjecture that these under-confident top-
1 predictions of the teacher can serve as hints for
students to learn the difficult ground-truth labels,

ID top-1 (≈70%) non-top-1 (≈30%) BLEU
1 ✓ ✓ 26.86
2 ✓ ✗ 26.83
3 ✗ ✓ 2.36
4 ✓(use fixed 30%) ✗ 26.06
5 ✓ ✓+ word-level top-1 info 26.96

Table 5: BLEU scores (%) of sequence-level KD on
the validation set of the WMT’14 En-De task when we
separately use the top-1 and the non-top-1 targets of the
teacher in the teacher’s translations during KD.

while the correlation information in these cases car-
ries more noise than real knowledge for students.

3.5 Expanding to Sequence-level KD

Inspired by the analyses on word-level KD, we
move on to sequence-level KD and decompose its
loss function in Eq.(4) into a word-level form:

Lseq-kd ≈ − logP (ŷ|x; θs)

= −
N∑

j

log p(ŷj |ŷ<j ,x; θs), (5)

where ŷj is the teacher-decoded target for students
at time step j. Considering the similar word-level
form, it is intuitive to speculate that the top-1 infor-
mation may also matter in sequence-level KD. To
verify this, we divide the targets ŷj into the top-1
and the non-top-1 predictions of the teacher7 and
investigate the respective effects of these targets
by separately using them during sequence-level
KD. As shown in Tab.5, there is only a negligible
performance change when we only use the top-1
targets for KD (row 1 vs. row 2). However, if we
only use the non-top-1 targets, the BLEU score
drastically drops (row 1 vs. row 3). Moreover, con-
sidering the different proportions of the two kinds
of targets in the teacher’s translations (i.e.,70% vs.
30%), we also use a fixed part (the same amount
as the non-top-1 targets) of the top-1 targets for a
fair comparison, and the performance is still steady
(row 2 vs. row 4) and much better than using only
the non-top-1 targets (row 3 vs. row 4). Interest-
ingly, by adding additional word-level top-1 infor-
mation to the non-top-1 part, the performance of
sequence-level KD further improves (row 1 vs. row
5). Therefore, we can also confirm the importance
of the top-1 information in sequence-level KD.

7There are about 70% top-1 predictions and 30% non-top-
1 predictions selected by the teacher’s beam search during
decoding.
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3.6 Rethinking KD in NMT from the
Perspective of the Top-1 Information

Through the above analyses, we verify the impor-
tance of the teacher’s top-1 information on both
KD techniques, which actually reflects a potential
connection between them. A brief theoretical anal-
ysis on this connection is provided in Appendix A.
In short, the two kinds of techniques share a unified
objective that imparts the teachers’ top-1 predic-
tions to student models at each time step. Thus, we
believe that they are well connected on their similar
working mechanisms (answer to Q2).

Further, we revisit word-level KD from this per-
spective and find two inherent issues. Firstly, the
KL divergence-based objective in vanilla word-
level KD directly optimizes whole distributions of
students, while lacking specialized learning of the
most important top-1 information. Secondly, since
the top-1 predictions of the teacher mostly overlap
with the ground-truth targets, the knowledge from
the teacher is largely covered by the ground-truth
information, which largely limits the potential of
word-level KD. Therefore, we claim that the per-
formance of the current word-level KD approach is
far from perfect and the solutions to these problems
are urgently needed.

4 Top-1 Information Enhanced
Knowledge Distillation for NMT

To address the aforementioned issues in word-
level KD, in this section, we introduce our method
named Top-1 Information Enhanced Knowledge
Distillation (TIE-KD), which includes a hierarchi-
cal ranking loss to boost the learning of the top-1
information from the teacher (§4.1) and an iterative
knowledge distillation procedure to exploit more
knowledge from the teacher (§4.2).

4.1 Hierarchical Ranking Loss

To help student models better grasp the top-1 in-
formation during distillation, we design a new loss
named hierarchical ranking loss. To gently achieve
this goal, we first encourage the student to rank the
teacher’s top-k predictions as its own top-k predic-
tions and then rank the teacher’s top-1 prediction
over these top-k predictions. Formally, given the
student’s top-k predictions as [ys1j , ..., yskj ] and the
teacher’s top-k predictions as [yt1j , ..., ytkj ], the hi-

Algorithm 1 Iterative Knowledge Distillation

Input: source and target data in current mini-batch
(x,y); student model S; teacher model T ; it-
eration times N ;

1: Initialize y0 = y; Lkd = 0;
2: Compute Lce based on Eq.(1)
3: for i in 1, 2, ..., N do
4: pi = S(x;yi−1) ▷ probability

distributions from the student model
5: qi = T (x;yi−1) ▷ probability

distributions from the teacher model
6: Compute Likd(pi, qi) based on Eq.(7)
7: Lkd ← Lkd + Likd
8: yi = argmax(pi) ▷ student predictions

as inputs in the next iteration
9: end for

10: Lword-kd ← (1− α)Lce + α
NLkd

erarchical ranking loss Lhr can be expressed as:

Lhr =
N∑

j

( k∑

u

k∑

v

max
{
0,

1{q(ytuj ) > q(ysvj )}(p(ysvj )− p(ytuj ))
}

+

k∑

u

max
{
0, p(ytuj )− p(yt1j )

})
,

(6)

where p(·) and q(·) are the probabilities from the
student model and the teacher model, respectively.
And 1{·} is an indicator function.

In this way, the student model can be enforced to
rank the top-1 predictions of the teacher to its own
top-1 places, and thus it can explicitly enhance the
learning of the knowledge from the teacher. Then,
we add this loss to the original KL divergence loss,
i.e., Eq.(2), forming a new loss for KD:

Lkd = LKL + Lhr. (7)

4.2 Iterative Knowledge Distillation

Given that the large overlap between the top-1 pre-
dictions and ground-truth targets limits the amount
of additional knowledge from the teacher during
word-level KD, introducing data without ground-
truth targets for KD could be helpful to mitigate this
issue. Inspired by previous studies on decoder-side
data manipulation (Zhang et al., 2019; Goodman
et al., 2020; Liu et al., 2021a,b; Xie et al., 2021),
we design an iterative knowledge distillation proce-
dure to expose more target-side data for KD.
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Methods WMT’14 En-De WMT’14 En-Fr WMT’16 En-Ro
BLEU COMET BLEU COMET BLEU COMET

Student (Transformerbase) 27.42±0.01 48.11±1.04 40.97±0.14 62.19±0.11 33.59±0.15 50.96±0.43

+ Word-KD (Kim and Rush, 2016) 28.03±0.10 51.59±0.23 41.10±0.11 63.81±0.14 33.77±0.01 53.15±0.26

+ Seq-KD (Kim and Rush, 2016) 28.22±0.02 51.23±0.15 41.44±0.02 63.12±0.14 33.69±0.02 50.63±0.11

+ BERT-KD (Chen et al., 2020)† 27.53 - - - - -
+ Seer Forcing (Feng et al., 2021) 27.56±0.10 50.60±0.12 40.97±0.01 62.95±0.39 33.77±0.09 51.41±0.60

+ CBBGCA (Zhou et al., 2022)† 28.36 - 41.54 - - -
+ Annealing KD (Jafari et al., 2021) 27.91±0.10 51.58±0.03 41.20±0.13 63.59±0.09 33.67±0.09 52.22±1.02

+ Selective-KD (Wang et al., 2021) 28.24±0.21 52.15±0.42 41.25±0.04 64.24±0.01 33.74±0.02 53.05±0.28

+ TIE-KD (ours) 28.46∗±0.01 52.63∗±0.09 41.57∗±0.08 65.06∗±0.44 34.70∗±0.07 55.76∗±0.21

Teacher (Transformerbig) 28.81 53.20 42.98 69.58 34.70 57.04

Table 6: BLEU scores (%) and COMET (Rei et al., 2020) scores (%) on three translation tasks. Results with † are
taken from the original papers. Others are our re-implementation results using the released code with the same
setting in Sec.5.2 for a fair comparison. We report average results over 3 runs with random initialization. Results
with ∗ are statistically (Koehn, 2004) better than the vanilla Word-KD with p < 0.01.

Specifically, as shown in Algorithm 1, at each
training step, we conduct KD for N iterations (line
3), by using the predictions of the student in the
current iteration as the decoder-side inputs for KD
in the next iteration (line 8). Generally, these pre-
dictions can be regarded as similar but new inputs
compared to the original target inputs. Meanwhile,
there is no ideal ground-truth target for these inputs
since they are usually not well-formed sentences.
Then during each iteration, we collect the loss of
KD according to Eq.(7) (lines 4∼7) and average
it across all the iterations (line 10). Since all the
supervision signals are from the teacher after the
first iteration, the knowledge of the teacher model
will be more exploited during the following itera-
tions and thus the potential of word-level KD can
be more released.

5 Experiments

5.1 Datasets
We conduct experiments on three commonly-used
WMT tasks, i.e., the WMT’14 English to German
(En-De), WMT’14 English to French (En-Fr) and
WMT’16 English to Romanian (En-Ro). For all
these tasks, we share the source and the target vo-
cabulary and segment words into subwords using
byte pair encoding (BPE) (Sennrich et al., 2016)
with 32k merge operations. More statistics of the
datasets can be found in Appendix C.1.

5.2 Implementation Details
All our experiments are conducted based on the
open-source toolkit fairseq (Ott et al., 2019) with
FP16 training (Ott et al., 2018). By default, we
follow the big/base setting (Vaswani et al., 2017)

to implement the teacher/student models in our
experiments. More training and evaluation details
can be referred to Appendix C.2. For word-level
KD-based methods, we set the α in Eq.(3) to 0.5
following Kim and Rush (2016). For our method,
we set top-k in Sec.4.1 to 5 and iteration time N
in Sec.4.2 to 3 on all three tasks. The selection of
top-k and N are shown in Appendix D.

5.3 Main Results
We compare our proposed method with existing
KD techniques in NMT (the detailed description
of these compared techniques can be referred to
Appendix C.3) on three WMT tasks. To make the
results more convincing, we report both BLEU and
COMET (Rei et al., 2020) scores in Tab.6. Using
Transformerbig as the teacher, our method can boost
the Transformerbase students by +1.04/+0.60/+1.11
BLEU scores and +4.52/+2.57/+4.80 COMET
scores on three tasks, respectively. Compared to the
vanilla Word-KD baseline, our method can outper-
form it significantly on all translation tasks, which
verifies the effectiveness of our proposed solutions.
Additionally, as a word-level KD method, our TIE-
KD can outperform Seq-KD on all three tasks and
even achieves fully competitive results with the
teacher on En-Ro, which demonstrates that the po-
tential of Word-KD can be largely released by our
method.

6 Analysis

6.1 Ablation Study
To separately verify the effectiveness of our solu-
tions for the two issues in vanilla word-level KD,
we conduct an ablation study on WMT’14 En-De
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Methods Validation Set Test Set
BLEU TA BLEU TA

vanilla Word-KD 26.66 88.98 28.03 88.46
+ Lhr 26.96 89.30 28.25 88.93
+ iterative KD 27.02 89.16 28.28 88.74
+ both (TIE-KD) 27.13 89.50 28.46 89.11

Table 7: Ablation study on the WMT’14 En-De task.

task and record the results in Tab.7. When only
adding hierarchical ranking loss to vanilla word-
level KD, the BLEU scores and the TA rates gain by
+0.3/+0.22 and +0.32/+0.47 on the validation/test
set, respectively. It reflects that KL divergence only
provides a loose constraint on the learning of the
top-1 information from the teacher, while our hier-
archical ranking loss helps to explicitly grasp this
core information. When only using iterative KD,
the student also improves by +0.36/+0.25 BLEU
scores and +0.18/+0.28 TA rates. It indicates that
our iterative KD can effectively release the poten-
tial of word-level KD by introducing data without
ground-truth targets. When combined together, the
two solutions finally compose our TIE-KD and can
yield further improvement on both metrics. There-
fore, the two issues in word-level KD are orthogo-
nal and our proposed solutions are complementary
to each other.

6.2 Combination With Sequence-Level KD

According to (Kim and Rush, 2016), word-level
KD can be well combined with sequence-level KD
and yields better performance. As a word-level
KD approach, our TIE-KD can also theoretically
be combined with sequence-level KD. We verify
this on the WMT’14 En-De task and list the results
in Tab.8. Like Word-KD, our TIE-KD can also
achieve better performance when combined with
Seq-KD and is also better than “Word-KD + Seq-
KD”, indicating the superiority of our method and
its high compatibility with sequence-level KD.

6.3 Can a Stronger Teacher Teach a Better
Student in NMT?

Among the prior literature on KD (Cho and Hari-
haran, 2019; Jin et al., 2019; Mirzadeh et al., 2020;
Guo et al., 2020; Jafari et al., 2021; Qiu et al., 2022),
a general consensus is that a large teacher-student
capacity gap may harm the quality of KD. We also
check this problem in NMT by using teachers of
three model sizes. Besides the default configura-
tion (i.e., Transformerbig) in our experiments above,

Methods BLEU ∆

Student (Transformerbase) 27.42 ref.
Word-KD 28.03 +0.61
Seq-KD 28.22 +0.80
TIE-KD 28.46 +1.04
Word-KD + Seq-KD 28.48 +1.06
TIE-KD + Seq-KD 28.66 +1.24
Teacher (Transformerbig) 28.81 +1.39

Table 8: Combination with sequence-level KD and
word-level KD methods on the WMT’14 En-DE task.

Figure 3: Performance of KD techniques with different
teacher models on the test set of the WMT’14 En-De
task.

we also add Transformerbase setting as the weaker
teacher and Transformerdeep-big setting with 18 en-
coder layers and 6 decoder layers as the stronger
teacher8. We compare our method with word- and
sequence-level KD under these teachers in Fig.3
and draw several conclusions:

(1) The stronger teacher can bring improvement to
sequence-level KD but fails to word-level KD,
where the reason may be the less additional
knowledge from the stronger teacher due to its
higher top-1 accuracy (68%→70%).

(2) As a word-level KD method, our TIE-KD in-
stead brings conspicuous improvement with
the stronger teacher, indicating that our method
can exploit more knowledge from the teacher.

(3) Under the weaker teacher, the student from our
method even significantly surpasses the teacher,
while other methods are largely limited by the
performance of the teacher, demonstrating the

8To stably train a deeper Transformer, we use Admin (Liu
et al., 2020) in layer normalization.
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high generalizability of our TIE-KD to differ-
ent teacher-student capacity gaps.

6.4 Why is the Top-1 Information Important
in KD?

The decoding process of language generation mod-
els can be regarded as a sequential decision-making
process (Yu et al., 2017; Arora et al., 2022). As
mentioned in Sec.3.5, during decoding, beam
search tends to pick the top-1 predictions of the
NMT model on each beam and finally selects the
most probable beam. Thus, the top-1 informa-
tion (including both the top-1 word index and its
corresponding probability) of the teacher model
largely represents its decision on each decoding
step, which is exactly what we expect the student
model to learn from the teacher through KD in
NMT. Therefore, the top-1 information can be seen
as the embodiment of the knowledge of the teacher
model in NMT tasks and should be emphatically
learned by the student models.

7 Related Work

Kim and Rush (2016) first introduce word-level
KD for NMT and further propose sequence-level
KD for better performance. Afterward, Wang et al.
(2021) investigate the effectiveness of different
types of tokens in KD and propose selective KD
strategies. Moreover, Wu et al. (2020) distill the
internal hidden states of the teacher models into
the students and also obtain promising results. In
the field of non-autoregressive machine translation
(NAT), KD from autoregressive models has become
a de facto standard to improve the performance of
NAT models (Gu et al., 2017; Zhou et al., 2019;
Gu et al., 2019). Also, KD has been used to en-
hance the performance of multilingual NMT (Tan
et al., 2019; Sun et al., 2020). Besides, similar
ideas can be found when introducing external in-
formation to NMT models. For example, Baziotis
et al. (2020) use language models as teachers for
low-resource NMT models. Chen et al. (2020) dis-
till the knowledge from fine-tuned BERT into NMT
models. Feng et al. (2021) and Zhou et al. (2022)
leverage KD to introduce future information to the
teacher-forcing training of NMT models.

Differently, in this work, 1) we aim to explore
where the knowledge hides in KD and unveil that
it comes from the top-1 information of the teacher
and further improve KD from this perspective; 2)
we try to build a connection between two kinds of

KD techniques in NMT and reveal their common
essence, providing new directions for future work.

8 Conclusion

In this paper, we explore where the knowledge
hides in KD for NMT and unveil that it comes from
the top-1 information of the teacher. This finding re-
flects the connection between word- and sequence-
level KD and reveals the common essence of both
KD techniques in NMT. From this perspective,
we further propose a top-1 information enhanced
knowledge distillation (TIE-KD) to address the two
issues in vanilla word-level KD. Experiments on
three WMT tasks prove the effectiveness of our
method. Besides, we investigate the performance
of the existing KD techniques in NMT and our
method under different teacher-student capacity
gaps and show the stronger generalizability of our
method on various gaps.

Limitations

Although our method has achieved outstanding per-
formance compared to current KD techniques, it
is still a word-level KD method and also suffers
from some limitations in vanilla word-level KD,
e.g., the exposure bias as analyzed in Appendix A.
How to design a unified and more powerful KD
method from the perspective of the connection be-
tween word- and sequence-level KD still remains
unsolved. We will leave this for the future work.
Moreover, our study focuses on the mainstream
KD techniques in NMT, which transfer knowledge
through teachers’ predictions, while some other
KD techniques, like directly distilling the hidden
states (Wu et al., 2020), are not within the scope of
this study and thus not included.
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A A Theoretical Analysis on the
Connection Between Word- and
Sequence-level KD

We can directly consider the KL divergence loss
of word-level KD in Eq.(2) as its training objective
and convert it into the equivalent form of the cross-
entropy loss. For simplicity, we omit the θt in q(·)
and θs in p(·) in following formulas:

Lword
kd =

N∑

j=1

DKL

(
q(yj |y<j ,x)

∣∣∣∣p(yj |y<j ,x)
)

⇔ −
N∑

j=1

∑

k∈V
q(yj = k|y<j ,x)×

log p(yj = k|y<j ,x), (8)

where V denotes the whole target-side vocabulary.
Then we can further separate the cross-entropy loss
into the loss on the top-1 prediction yt1j and the
losses on other candidates in the vocabulary:

Lword
kd = −

N∑

j=1

∑

k∈V
q(yj = k|y<j ,x)×

log p(yj = k|y<j ,x)

= −
N∑

j=1

(
q(yt1j |y<j ,x) log p(y

t1
j |y<j ,x)

+
∑

k∈V\{yt1j }

q(yj = k|y<j ,x)×

log p(yj = k|y<j ,x)
)

= −
N∑

j=1

(
q(yt1j |y<j ,x) log p(y

t1
j |y<j ,x)

+R(yt1j )
)
, (9)

where R(yt1j ) represents the cross-entropy loss on
the remaining candidates except for the top-1 pre-
diction yt1j and can be regarded as a regularization
term for the former one. As empirically verified in
Sec.3, we can do the following approximation by

omitting R(yt1j ) in Eq.(9):

Lword
kd = −

N∑

j=1

(
q(yt1j |y<j ,x) log p(y

t1
j |y<j ,x)

+R(yt1j )
)

≈ −
N∑

j=1

q(yt1j |y<j ,x) log p(y
t1
j |y<j ,x).

(10)

Thus, we obtain the approximate form of the train-
ing objective of word-level KD.

Now we consider the training objective of
sequence-level KD in Eq.(5). According to the
results in Sec.3.5, we can also assume that opti-
mizing using all targets is approximately equal to
optimizing using top-1 targets:

Lseqkd = −
N∑

j=1

log p(ŷj |ŷ<j ,x)

≈ −
N∑

j=1

1{ŷj = yt1j } log p(yt1j |ŷ<j ,x),

(11)

where 1{·} is an indicator function.
Lastly, if we replace the different weight func-

tions before the log(·) function in Eq.(10) and
Eq.(11) with one function f(·):

f(j) =





q(yt1j |y<j ,x), word-level

1{ŷj = yt1j }, sequence-level,

then we can derive a unified form of the objective
for these two kinds of KD techniques:

Lunikd = −
N∑

j=1

f(j) log p(yt1j |ỹ<j ,x), (12)

where ỹ<j is the golden context y<j in word-
level KD and the model-generated context ŷ<j in
sequence-level KD.

In this unified form, the only two variables are
the weight function f(·) and the target-side previ-
ous context ỹ<j in the condition of the probability
p(·). From this expression, it is clear that student
models are encouraged to learn the top-1 predic-
tions of the teacher to obtain teachers’ knowledge
at each time step in both KD techniques. Therefore,
we claim that the working mechanisms behind the
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two kinds of KD techniques are the same to some
extent, although they look quite distinct on the sur-
face.

Notably, we also conjecture that the context dif-
ference may explain why sequence-level KD gen-
erally outperforms word-level KD. Autoregressive
models trained with teacher-forcing suffer from
exposure bias due to the gap between the golden
context in training and the model-generated con-
text in inference (Bengio et al., 2015; Zhang et al.,
2019). According to the above analysis, the same
thing also happens in word-level KD. However,
sequence-level KD circumvents this problem by
conditioning on model-generated contexts during
distillation, thus leaving no gap between training
and inference. This conjecture can also be veri-
fied by the performance of sequence-level KD on
WMT’16 En-Ro, where the teacher’s translations
achieve considerably high similarities (BLEU score
> 62) with the original target sentences, and the im-
provement brought by sequence-level KD is much
less than the one on other datasets since the model-
generated context is too close to the golden context.

B Why Not Re-normalize the Soft Target
in “w/o correlation info”?

We would like to explain this from the perspective
of the loss function. As we analyzed in Eq.(9), the
loss of vanilla word-level KD is:

Lword
kd = −

N∑

j=1

(
q(yt1j |y<j ,x) log p(y

t1
j |y<j ,x)

+
∑

k∈V\{yt1j }

q(yj = k|y<j ,x)×

log p(yj = k|y<j ,x)
)
. (13)

Based on this, we remove all other probabilities in
the soft target of the teacher except for the top-1
one to remove the “correlation information", i.e.,
the second term of the loss in Eq.(13) is discarded:

Lnocorrkd = −
N∑

j=1

q(yt1j |y<j ,x) log p(y
t1
j |y<j ,x).

In this objective, the effect of KD is fully domi-
nated by the top-1 information of the teacher. If
we try to re-normalize the soft target with an addi-
tional uniform distribution, the result of KD will be
affected by the regularization term of this uniform

distribution:

Lnocorrkd = −
N∑

j=1

(
q(yt1j |y<j ,x) log p(y

t1
j |y<j ,x)

+ u
∑

k∈V\{yt1j }

log p(yj = k|y<j ,x

︸ ︷︷ ︸
uniform regularization

)
)
,

where u =
1−q(y

t1
j |y<j ,x)

|V|−1 . Another way to
re-normalize the distribution is to directly let
q(yt1j |y<j ,x) as 1, but the original top-1 proba-
bility information from the teacher will be lost.
Therefore, we keep the modified soft target in “w/o
correlation info" unnormalized.

C Experimental Details

C.1 Statistics of the Datasets
For the En-De task, the training data contains
nearly 4.5M sentence pairs. We choose new-
stest2013 and newstest2014 as the validation set
and the test set, respectively. For the En-Fr task,
there totally remains 35.8M sentence pairs after the
cleaning procedure. Then we choose newstest2013
and newstest2014 as the validation set and the test
set, respectively. For the En-Ro task, we directly
use the pre-processed data from Mehta et al. (2020)
and there are about 608K sentence pairs in the
training data. Then newsdev2016 is selected as the
validation set and newstest2016 is the test set. The
overall statistics of the datasets are listed in Table
9.

Dataset #Train #Valid #Test Vocab
WMT’14 En-De 4.5M 3000 3003 37184
WMT’14 En-Fr 35.8M 3000 3003 36528
WMT’16 En-Ro 608K 1999 1999 34976

Table 9: Statistics of the datasets for three WMT tasks.

C.2 Implementation Details and Model
Configurations

Training. To assure the reproducibility of our
experimental results, we provide comprehensive
training details and model configurations of our
experiments in Tab.10. All our experiments are
conducted on 4 NVIDIA RTX 3090 GPUs with gra-
dient accumulation step 2, and each batch on each
GPU contains approximately 4096 tokens. We use
Adam optimizer (Kingma and Ba, 2014) with 4000
warmup steps to optimize models. To obtain strong

8075



Hyperparameters WMT’14 En-De WMT’14 En-Fr WMT’16 En-Ro
Student Teacher Student Teacher Student Teacher

Embedding Dim 512 1024 512 1024 512 1024
FFN Dim 2048 4096 2048 4096 2048 4096
Encoder Layers 6 6 6 6 6 6
Decoder Layers 6 6 6 6 6 6
Attention Heads 8 16 8 16 8 16
Residual Dropout 0.1 0.3 0.1 0.3 0.1 0.3
Attention Dropout 0.1 0.1 0.1 0.1 0.1 0.1
Activation Dropout 0.1 0.1 0.1 0.1 0.1 0.1
Label Smoothing 0.1 0.1 0.1 0.1 0.1 0.3
Learning Rate 7e-4 5e-4 7e-4 5e-4 7e-4 5e-4
Learning Rate Decay inverse sqrt inverse sqrt inverse sqrt inverse sqrt inverse sqrt inverse sqrt
Warmup Steps 4000 4000 4000 4000 4000 4000
Layer Normalization PostNorm PostNorm PostNorm PostNorm PostNorm PostNorm
Model Parameters 63.2M 214.4M 62.8M 213.8M 62.0M 212.2M
Training Steps 200K 300K 200K 300K 20 epochs 30 epochs

Table 10: Training hyperparameters and model configurations of our experiments.

teachers and enlarge the gaps between teacher mod-
els and student models, we train teachers for 50%
more steps than the corresponding students. Then
we use the checkpoint with the highest BLEU of
the teacher on the validation set to conduct distilla-
tion.

Evaluation. During inference, we set beam size
to 4 and length penalty to 0.6 for En-De and En-
Fr. For En-Ro, we set beam size to 5 and length
penalty to 1.2. For a more convincing evaluation,
we use multibleu.perl to calculate case-sensitive
BLEU and unlabel-comet9 to calculate COMET
scores (Rei et al., 2020) for all three tasks. For stu-
dent models, we average the last 5 checkpoints for
evaluation following Vaswani et al. (2017). We use
the paired bootstrap resampling methods (Koehn,
2004) for the statistical significance test. For the
En-De task and the En-Fr task, we evaluate and
save the checkpoint every 5000 training steps. For
the En-Ro task, since the models tend to overfit,
we only train students for 20 epochs and save the
checkpoint after every epoch.

C.3 Compared Systems and Hyperparameters
Transformer. We follow the standard base/big
model configurations (Vaswani et al., 2017) to im-
plement the student/teacher models.

Word-KD. The standard method to conduct
word-level KD in NMT proposed by Kim and Rush
(2016).

9https://github.com/Unbabel/COMET

Seq-KD. Kim and Rush (2016) also propose a
sequence-level KD approach that directly substi-
tutes the original target-side training data with the
translations of the teacher from beam search. In our
experiments, the hyperparameters of beam search
keep the same with the inference stage.

BERT-KD. Chen et al. (2020) propose to distill
the knowledge from BERT (Devlin et al., 2018) for
text generation tasks.

Seer Forcing. Feng et al. (2021) design a seer
forcing method for NMT to distill future informa-
tion to the teacher forcing. Following the sugges-
tion in (Feng et al., 2021), we set the α in their
paper to 0.5 for both En-De and En-Fr, and 0.25
for En-Ro. Besides, we set the seer dropout to 0.1
for En-De and En-Fr and 0.2 for En-Ro.

CBBGCA. Zhou et al. (2022) also propose to dis-
till bi-directional contextual information in CMLM
for uni-directional training of NMT based on the
confidence of the NMT model.

Annealing KD. Our implementation of the
method in (Jafari et al., 2021) which gradually an-
neals the temperature of the teacher during KD.
Different from the original paper, we use the KL
divergence as the loss function of KD instead of
Mean Squared Error (MSE) due to its better per-
formance on NMT tasks. In our carefully chosen
recipe, we set the max temperature to 1.1 and grad-
ually reduce it to 1.0 during the first 2/3 epochs.
Then we use vanilla CE loss to train the student
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model for the remaining 1/3 epochs.

Selective-KD. Wang et al. (2021) investigate the
effectiveness of different data for distillation and
propose a knowledge selection method for selecting
more valuable data for word-level KD. In our ex-
periments, we choose the global-level selection that
performs better according to Wang et al. (2021).

D Hyperparameter Selection

D.1 Effect of Hierarchical Ranking Range k

In this section, we investigate the effect of k in
hierarchical ranking loss on our method. We search
k in [3, 5, 10, 20] and compare their performance
on the validation set of the WMT’14 En-De task.
As shown in Fig.4, our method performs best when
k is set to 5. Thus, we keep k to 5 for all three tasks
in our experiments.

Figure 4: BLEU scores of our method with different k
on the validation set of the WMT’14 En-De task.

D.2 Effect of Iteration Times N

Since our method includes several iterations of KD,
we further investigate the effects of the iteration
times on the performance of our method. Intu-
itively, with more iteration times, more knowledge
will be exploited from the teacher, while the com-
putational cost will also increase. To check this,
we try each iteration time in [1, 2, 3, 4] and record
the corresponding performance and training time
in Fig.5. It is obvious that the performance of
our method gradually improves with N increasing,
while the training time per step also linearly in-
creases. Balancing the cost and the performance,
we choose 3 as the final iteration time.

Figure 5: BLEU scores of our method with different
iteration times N on the validation set of the WMT’14
En-De task and the corresponding training costs.

8077



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Section 9 (Limitations)

� A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Section 0,1 (Abstract & Introduction)

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 5,6

�3 B1. Did you cite the creators of artifacts you used?
Section 5,6

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Section 5,6

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Section 5,6

�3 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Section 5, Appendix B

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Appendix B

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Appendix B

C �3 Did you run computational experiments?
Section 1,3,5, Appendix B,C,D,E

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Appendix B

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

8078

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 5, Appendix C

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 5

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Appendix B

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

8079


