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Abstract

Current relation extraction methods suffer from
the inadequacy of large-scale annotated data.
While distant supervision alleviates the prob-
lem of data quantities, there still exists do-
main disparity in data qualities due to its re-
liance on domain-restrained knowledge bases.
In this work, we propose S2ynRE, a frame-
work of two-stage Self-training with Synthetic
data for Relation Extraction. We first lever-
age the capability of large language models
to adapt to the target domain and automati-
cally synthesize large quantities of coherent,
realistic training data. We then propose an ac-
companied two-stage self-training algorithm
that iteratively and alternately learns from syn-
thetic and golden data together. We conduct
comprehensive experiments and detailed abla-
tions on popular relation extraction datasets
to demonstrate the effectiveness of the pro-
posed framework. Code is available at https:
//github.com/BenfengXu/S2ynRE.

1 Introduction

Relation extraction systems aim at discovering rela-
tional knowledge between entities by reading from
unrestricted texts (Cardie, 1997). Although neural
methods, especially pre-trained language models,
have greatly advanced the state-of-the-art relation
extraction capability (Zeng et al., 2014; Wu and He,
2019), they still require large quantities of training
data (Han et al., 2020). However, high-quality an-
notations are usually very expensive to obtain, mak-
ing low-resource relation extraction a very practical
challenge in many real-world scenarios.

Distant supervision (Mintz et al., 2009), which
automatically annotates relational statements by
aligning entities with an existing knowledge
bases (Bollacker et al., 2008; Vrandečić and
Krötzsch, 2014), has been widely explored as an
effective way to construct large scale relational
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dataset. Many recent works exploit such data in
a pretraining stage to learn relational representa-
tions (Baldini Soares et al., 2019; Peng et al., 2020;
Qin et al., 2021). Although this line of meth-
ods have seen certain improvements, they still in-
evitably raise the concern that the distantly anno-
tated data can vary considerably from downstream
tasks both in target schema and in context distribu-
tions, thus may not be able to offer optimal trans-
ferability. For instance, due to the reliance on ex-
isting knowledge bases, current works mostly re-
sort to Wikidata as the source of relational triples
and Wikipedia (Vrandečić and Krötzsch, 2014) as
the corpus for distant supervision. This circum-
scribes distant data to only factual knowledge be-
tween world entities, while downstream tasks may
be of other special interests involving various do-
mains, ranging from semantic relation between
nominals (Hendrickx et al., 2009) to chemical-
protein interactions (Kringelum et al., 2016).

Meanwhile, recent advances in large-scale pre-
trained language models (LLM) (Radford et al.,
2019; Brown et al., 2020; Raffel et al., 2020) have
demonstrated their great potential in generating
realistic texts of various domains (Radford et al.,
2019). Accordingly, several very recent works have
explored the possibility to exploit LLM as an al-
ternative training data pool (Schick and Schütze,
2021; Vu et al., 2021). However, these attempts
are confined to NLI task, while still not effectively
explored in the area of relation extraction.

In this paper, we study the construction of syn-
thetic data for relation extraction tasks to simul-
taneously address both training data scarcity in
low resource scenarios and domain disparity in dis-
tant supervision. We employ LLM to estimate and
adapt to the target domain distribution with only
a few training instances, and synthesize a large
amount of ones accordingly. The procedure is over-
all very simple but also carefully designed with
two critical choices: 1) we linearize relational state-

8186

https://github.com/BenfengXu/S2ynRE
https://github.com/BenfengXu/S2ynRE


ments into natural language sequences where en-
tity pairs are indicated by special marker tokens;
2) we resort to unconditional generation instead of
label-conditioned ones, which relaxes the require-
ments for strict label-semantic correspondence but
increases sample availability and diversity.

We experiment with both GPT2 and the recent
very large LLMs like GPT-3.5. For standard size
generative LMs like GPT2-Large, we first finetune
it to adapt to the target domain, while for the capa-
ble GPT-3.5 model, we directly apply In-Context
Learning (Brown et al., 2020; Xu et al., 2023). We
empirically found finetuned GPT2-Large produces
synthetic data of equivalent quality to prompted
GPT-3.5. In general, it is observed that with only a
few accessible samples, we are able to successfully
synthesize a large amount of domain-customized
training data with satisfactory quality.

To effectively learn from such synthetic data,
we novelly advocate a two-stage self-training al-
gorithm. The approach in general follows the self-
training framework (Yarowsky, 1995; Xie et al.,
2020), which is widely employed to exploit unla-
beled data. Typically, such methods iteratively an-
notate and learn pseudo labels for unlabeled data to
bootstrap the model’s performance. Distinctively,
we make a two-stage adaptation where in each of
the iterations, the model is firstly trained on syn-
thetic instances, then on golden ones. Such se-
quential training procedure favors golden data with
more importance since they are introduced in the
latter stage of the training curriculum.

We refer to our method as S2ynRE, a frame-
work of two-stage Self-training with Synthetic data
for Relation Extraction. The contributions of this
paper is three-fold:

• Conceptual Contribution We exploit LLM
to generate large quantities of domain adap-
tive synthetic data for low-resource relation
extraction, and challenge the long-prevailing
distant supervised methods restricted by KB
domain coverages. The proposed solution
novelly mitigates the problems of both data
scarcity and domain disparity.

• Technical Contribution We propose a novel
two-stage self-training algorithm to effec-
tively learn from unlabeled synthetic data and
golden data together. We demonstrate that this
is a non-trivial adaptation that significantly
outperforms standard self-training widely em-
ployed in semi-supervised learning.

• Experimental Contribution We conduct
comprehensive experiments on 6 popular re-
lation extraction datasets to investigate, ana-
lyze the propose method and make compar-
isons. We achieve new state-of-the-art for
low-resource relation extraction. Compared to
standard finetuning baseline, we obtain up to
17.18% absolute improvements, and 11.09%
on average across all datasets.

2 Related Works

Relation Extraction Relation extraction is one
of the fundamental tasks in natural language pro-
cessing (Cardie, 1997), where lots of research ef-
forts have been made to advance the state-of-the-
art methods (Zeng et al., 2014; Zhou et al., 2016;
Zhang et al., 2018; Baldini Soares et al., 2019),
as well as the low-resource scenario (Han et al.,
2018; Sainz et al., 2021; Dong et al., 2021; Chen
et al., 2022). One of the most prominent methods
is distant supervision (Mintz et al., 2009), which
automatically constructs annotated relational data
by aligning corpus with existing knowledge base.
Many recent works investigate how to learn effec-
tively with such distant data (Baldini Soares et al.,
2019; Peng et al., 2020; Ding et al., 2021; Qin
et al., 2021). Generally, they propose various pre-
text tasks that pre-train a model to learn relational
representation. We will further explain some of
these works for comparison in Section 5.3.

Learning from Synthetic Data Built upon mas-
sive corpora, pre-trained language models are
promising at producing texts of eligible quality,
resulting in a surge of research interests in its
usage for data augmentation (Feng et al., 2021).
One straightforward way is to introduce mask
corruptions in the way language models are pre-
trained, then collect predictions as augmented
data (Kobayashi, 2018; Ng et al., 2020). Later
works further developed such technique into condi-
tional augmentation (Wu et al., 2019; Kumar et al.,
2020). Nevertheless, these methods are mostly edit-
ing existing instances, which limits the diversity
and scale of augmented data.

With increasingly powerful LLMs, recent works
turn to direct synthesis of new instances (Schick
and Schütze, 2021; Wang et al., 2021; Meng et al.,
2022; Ye et al., 2022). Different from this work,
most of them focus on zero-shot language under-
standing where no labeled data is available (Schick
and Schütze, 2021; Wang et al., 2021; Meng et al.,
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2022; Ye et al., 2022). They investigate ways
to generate label-conditioned data by prompting
LLMs, but these methods can hardly be applied
to low-resource or full data scenarios while still
preserving effectiveness.

With the existence of labeled data, synthetic data
needs to be of higher quality to bring further utility.
Several works thus propose to finetune the genera-
tor (Anaby-Tavor et al., 2020; Vu et al., 2021; He
et al., 2021). There are also explorations for learn-
ing from synthetic and golden data together, includ-
ing threshold-based confidence filtering (Anaby-
Tavor et al., 2020), classical semi-supervised learn-
ing (He et al., 2021) or restricting the usage of
synthetic data within a supplemental intermediate
task (Vu et al., 2021).

For structured learning tasks, Ding et al. (2020)
similarly formulates NER task data as sequential
language. Specifically for relational data synthe-
sis, Papanikolaou and Pierleoni (2020) explore the
biomedical domain and Chia et al. (2022) focus on
zero-shot setting of triplet extraction. By contrast,
Syn2RE distinguishes not only in applied scenario
and synthesis strategy, but also in the two-stage
learning framework, which is specially designed
for improved synthetic data adaptation.

3 Preliminary

This section formulates the task of relation extrac-
tion and the baseline models used throughout all
experiments.

Task Formulation A typical relation extraction
task is defined by a corpus of relational statements
and a set of relations, i.e., schema S. Assume
the training dataset Dtr = {(xi, si, oi)}Ni=1 and its
corresponding labels Y tr = {yi}Ni=1, where xi is a
sequence of words {wi

l}Ll=1, yi ∈ S, si = [wsstart :
wsend

] and oi = [wostart : woend
] are subject and

object entities within the context. The target is
to learn a function fθ(xi, si, oi) that predicts the
correct relation label yi.

Baseline Model As S2ynRE is a data-centric
framework, we keep the model architecture sim-
ple but competitive, which is the vanilla finetuning
of pre-trained language models. Instead of auto-
regressive LMs, we use auto-encoding networks
like BERT as they usually perform better on lan-
guage understanding downstream tasks. Follow-
ing Baldini Soares et al.’s (2019) comprehensive
study of building relation extractors, we inject spe-

cial marker tokens to the input word sequence:

xmarked = (..., [Sub], s, [\Sub], ...

..., [Obj], o, [\Obj], ...)
(1)

After the encoding process of transformer, the rep-
resentation h in corresponding positions will be
concatenated for classification:

ŷ = softmax(W|S|[h[Sub];h[Obj]]) (2)

where W |S| is a feedforward network and the pre-
dicted categorical distribution ŷ will be trained
against y using cross-entropy loss.

4 Methodology

4.1 Relational Data Synthesis
Training instances of relation extraction task is
of specific structure (xi, si, oi), i.e., the relational
statement is expected to be a sentence containing
exact two entities as subject and object. Inspired
by Paolini et al. (2021), we linearize relational
data into marked natural language sequence as in
Eq 1. The synthesizer can be built upon any exist-
ing LLMs. In this paper, we explore both GPT2
and the even larger GPT-3.5 as two representative
LLMs and respectively employ finetuning or in-
context learning treatment.

4.1.1 Finetuning for GPT2
The finetuning process is performed in the same
autoregressive way as how it is pre-trained:

L = −
L+4∑

l=1

logP (wl|w0, ..., wl−1;LLM) (3)

where {wl} = xmarked, and a <bos> token is
prepended as w0. Note that we ignore relation
labels y in training data and approach it as uncondi-
tional generation. This eliminates the noise caused
by label-semantic inconsistency, and leaves it to
model itself to learn from unlabeled synthetic data.

After the finetuning is completed, we simply
prepend the <bos> token to prompt the generation,
and repeatedly perform inference using multino-
mial sampling until we obtain the expected scale
of synthetic data Dsyn. We show in appendix G
that these synthetic data are coherent, realistic, and
most importantly, customized to the target domain.

We elaborate on the framework of S2ynRE (see
Fig. 2) in this section, including the construction
of an LLM-based synthesizer, and the two-stage
self-training algorithm.
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a former [Sub] prostitute [\Sub] finds a professional job with the help of a training [Obj] program [\Obj] .
the [Sub] river [\Sub] once powered a [Obj] grist mill [\Obj] .
[Sub] driving [\Sub] with sleep [Obj] deprivation [\Obj] has similar effects as driving under the influence .
the [Sub] pollution [\Sub] is being spread to [Obj] air [\Obj] rapidly .
the executioners have carried the [Sub] scholar [\Sub] into [Obj] exile [\Obj] .
The above is an illustrations of several structured relational sentences, the [Sub] and [Obj] mark the start 
position of entities, and [\Sub] and [\Obj] mark the end. Between entity pairs abstractive relations are entailed. 
Now please help me write more sentences, with similar topic, domain and the same sub-obj format, but 
diversified in entities, relations and semantics.

Prompt

Response
Here are some additional sentences:
• The [Sub] talented artist [\Sub] had her work displayed in a [Obj] prestigious gallery [\Obj].
• [Sub] Heavy rainfall [\Sub] caused severe [Obj] flooding [\Obj] in the area.
• The [Sub] innovative startup [\Sub] received funding from a [Obj] venture capital firm [\Obj].
• [Sub] Dangerous levels of lead [\Sub] were found in the [Obj] drinking water supply [\Obj].
• The [Sub] experienced pilot [\Sub] safely landed the plane during a [Obj] thunderstorm [\Obj].
• [Sub] Online scam artists [\Sub] are becoming increasingly clever in their [Obj] phishing schemes [\Obj].
• The [Sub] newly-elected president [\Sub] promised to create more [Obj] job opportunities [\Obj].
• [Sub] Harsh winter weather conditions [\Sub] caused several [Obj] car accidents [\Obj] on the icy roads.
• The [Sub] successful entrepreneur [\Sub] sold his company for a [Obj] significant profit [\Obj].
• [Sub] Severe cuts to the education budget [\Sub] have led to a [Obj] decline in academic performance [\Obj].

In-Context
Demonstration
(5-shot)

Instruction

Synthetic
Data

GPT-3.5GPT2

Large Scale
Synthetic Data

Low-resource
Data

Finetuning

Generation

Linearization: The [Sub] coffee [\Sub] is made with virginia [Obj] milk [\Obj] and is rich in antioxidants.

Figure 1: Illustration of relational data synthesis. We either finetune GPT2 or employ in-context learning for even
larger LLM like GPT-3.5.

4.1.2 In-Context Learning for GPT-3.5
Even larger LLMs naturally exhibit few-shot learn-
ing capabilities, and can be elicited through very
few in-context demonstrations (Brown et al., 2020;
Xu et al., 2023). We directly prepend 5-shot exem-
plars and provide a specific instruction asking the
LLM to generate more examples. The process is
illustrated in Figure 1.

4.2 Two Stage Self-training
Self-training is a widely adopted learning algo-
rithm for semi-supervised learning. Typically, to
jointly learn from an unlabeled dataset and a la-
beled dataset, it iteratively samples from the unla-
beled set, assigns them with pseudo labels, merges
them with the labeled dataset, and re-trains the
model. In this paper, we argue that this design
of naive merging is built upon a strong assump-
tion that the unlabeled dataset must be in the exact
distribution with the labeled ones, for which the
synthetic data does not strictly satisfy.

In S2ynRE, differently, we make a two-stage
adaptation: where synthetic data and golden data
are trained sequentially (Figure 2). We start from
a base model initialized using any auto-encoding
language models, e.g., BERT (Devlin et al., 2019),
and train it on Dtr to produce a teacher model η, as
introduced in Section 3. We first use η to annotate
the unlabeled synthetic data Dsyn:

ŷsyn
i = η(xsyn

i , si, oi) (4)

and we keep Ŷsyn = {ŷsyn
i } as soft pseudo la-

bels of Dsyn, note that here theˆdenotes soft as
we keep the categorical distribution intact instead
of keeping its argmax. Inspired by Li and Qian
(2021), to further eliminate fluctuations in pseudo
labels, we train multiple teachers using different
random seeds, and the pseudo labels annotated by
k-th teacher is referred to as Ŷsyn

k .
We then re-initialize a new student model θ, and

apply a two-stage training strategy. In stage-one
training, student θ is trained on synthetic data using
soft pseudo labels:

θ′ ← LKD(θ,Dsyn, {Ŷsyn
k }Kk=1) (5)

This can be seen as a distillation procedure that
transfers knowledge from η to θ based on synthetic
data DSyn. And LKD is calculated as:

LKD =
1

K

K∑

k=1

DKL(ŷ
syn
i ‖ θ(xsyn

i , si, oi))

(6)
where DKL is the Kullback-Leibler divergence.
Then in stage-two training, we take from θ′, and
train it on labeled training dataset:

θ′′ ← LCE(θ
′,Dtr,Y tr) (7)

where LCE is the standard cross-entropy loss, and
θ′′ is the resulting model in this iteration. We then
use θ′′ as the teacher model η for the next iter-
ation to re-annotate Dsyn, and this procedure is
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Figure 2: The overall framework of S2ynRE. We iteratively train the student model on both synthetic and golden
data via a two-stage self-training strategy. Note that in iteration t = 1, stage-two is directly applied. The exemplary
instance is sampled from our synthetic data for SemEval.

repeated T times. Following the standard practice
of self-training, in each iteration, we incrementally
sample 1/T more synthetic data from Dsyn until
in iteration T, where Dsyn will be running out of
new instances. The entire two-stage self-training
process can be formulated as Algorithm 1.

Algorithm 1: Two-stage Self-training.
Input: Golden training dataset Dtr, Y tr,

synthetic dataset Dsyn

/* ===== Iteration 1 ===== */

t = 1;
Dsyn

1 = ∅;
Initialize θ from auto-encoding LM;
θ1 ← Train(θ,Dtr,Y tr) ; // Eq.7

θTea
1 ← θ1; // assign teacher model

/* ===== Iteration 2∼T ===== */

repeat
t = t+ 1;
Dsyn

t = Dsyn
t−1 ∪Dsyn[ t−1T : t

T ];
Ŷsyn

t ← Annotate(θTea
t−1 ,Dsyn

t );
// Eq.4

Re-initialize θ from auto-encoding LM;
/* stage-one training */

θ′t ← Train(θ,Dsyn
t , Ŷsyn

t ); // Eq.5

/* stage-two training */

θ′′t ← Train(θ′t,Dtr,Y tr) ; // Eq.7

θTea
t ← θ′′t ; // update teacher model

until performance converges or t reaches
maximum iteration limit T;

Output: Final model θ′′t

Dataset Train Dev Test 1% Train Relation

Semeval 6507 1493 2717 73 19
TACRED 68124 22631 15509 703 42
TACRED-Revisited 68124 22631 15509 703 42
Re-TACRED 58465 19584 13418 570 40
ChemProt 4169 2427 3469 49 13
Wiki80 39200 5600 11200 400 80

Table 1: Numbers of instances in train, dev, test splits
and low resource settings.

5 Experiments

5.1 Experimental Settings

We evaluate S2ynRE on popular datasets includ-
ing SemEval 2010 Task 8 (Hendrickx et al.,
2009), TACRED (Zhang et al., 2017), TACRED-
Revisited (Alt et al., 2020), Re-TACRED (Stoica
et al., 2021), ChemProt (Kringelum et al., 2016)
and Wiki80 (Han et al., 2019). Their statistics are
given in Table 1 and we refer to detailed introduc-
tion in Appendix A.

For each dataset, we set three different prerequi-
sites of resource availability. Respectively, FULL
for 100% training data, LIMITED for 10% train-
ing data and FEW for 1% training data. To pro-
vide robust and convincing conclusions, we run
all experiments (including ablation studies) with
5 different random seeds and report their average.
With each random seed, we employ grid search to
select the best model as well as the teacher model
in each iteration. We use only development set for
such selection, and report the corresponding test
set score as the final results.

For data synthesis, we use GPT2-Large and GPT-
3.5 as the aforementioned LLMs. Specifically, for
ChemProt, we use an adapted version of GPT-2 (Pa-

8190



Backbone Init FT Baseline S2ynRE w/ gpt-3.5-turbo ICL S2ynRE w/ GPT2 Finetuning

BERT 40.81±1.62 56.81±1.51 (+16.00) 57.53±0.96 (+16.72)
CP 52.77±1.83 65.39±0.73 (+12.62) 67.32±0.54 (+14.55)

Table 2: S2ynRE with Different LLMs. Synthetic data brings significant improvements, and GPT-3.5 with In-
Context Learning is just as effective as GPT-2 with Finetuning.

panikolaou and Pierleoni, 2020), which is further
trained on 500k PubMed abstracts. When generat-
ing, we restrict sequence length to 128, and perform
necessary filtering by removing instances that do
not conform with the relational structure, i.e., there
must exist 4 exact special markers and each start
position marker shall appear before its end position
marker. The synthesis efficiency is 24.05 instances
per second before any filtering. In total, we collect
10,000 samples for FEW setting, and 100,000 syn-
thetic samples for LIMITED and FULL settings.
We leave other hyper-parameters to Appendix B.

5.2 Capability of LLM

We first validate the capability of LLMs as data syn-
thesizer and their respective treatment. Considering
both affordability and model capability, we use the
recently released gpt-3.5-turbo-0301 API2 as
even larger LLMs in comparison with GPT2-Large.
For in-context learning, we repeatedly sample 5-
shot random examples from the golden training set
as demonstrations, followed by an instruction that
asks LLMs to generate more, with domain, format
and diversity constraints. We sent 1,321 queries in
total to collect 10,000 synthetic data (the same as
our previous experimental settings using GPT-2).
Each query produces different synthetic results due
to LLM sampling strategy and varied selection and
permutation of in-context demonstrations.

The results are shown in Table 2. We empirically
found finetuned GPT2-Large produces synthetic
data of equivalent quality to prompted GPT-3.5,
while both are effective training data synthesizers
that significantly outperforms baselines. In the fol-
lowing experiments, we use GPT2-Large to further
verify the proposed S2ynRE framework.

5.3 Main Results

We choose competitive baselines and reproduce
them under comparable settings to provide more
reliable conclusions. These baseline methods are:
BERT We finetune BERT model (Devlin et al.,

2https://openai.com/blog/introducing-chatgpt-
and-whisper-apis

2019) in a straightforward way for relation extrac-
tion as explained in Section 3 and implemented
in many existing works. This serves as our re-
implemented Finetune Baseline and will be re-
ferred to in the following figures.

MTB (Baldini Soares et al., 2019) pre-trains a re-
lational encoder using matching the blanks task,
which is built on the hypothesis that two relational
statements containing the same entity pair should
express similar relational representations. Note that
this is a weaker reliance than distant supervision as
it only aligns entities, and does not need relations.

CP (Peng et al., 2020) proposes a contrastive learn-
ing pretext task that encourages sentence represen-
tations with the same relation to be similar and
different ones to be disparate.

ERICA (Qin et al., 2021) further extends distant
supervision to document-level corpus, and design
similar pretext task that discriminates relational
representations across sentences.

We provide an overview of these works regard-
ing various resource usage and requirements in
Table 4. The main results are shown in Table 3.
On Wiki80, we directly use distant data as they are
available in the general wiki domain, we analysis
the effects later in Table 5. Under all three set-
tings across five datasets, S2ynRE outperforms the
BERT finetune baseline. Specifically for the FEW
setting, improvements are much more significant,
respectively +17.18, +15.47, +16.86, +8.07, +5.59,
and +3.34, resulting an average improvements of
+11.09 across all 6 datasets. We further employ CP
as a stronger base model to initialize the students,
and the performances are even better. This im-
plies that the improvements of S2ynRE are mostly
orthogonal with those of the distantly pre-trained
methods. In general, S2ynRECP achieves new state-
of-the-art for low resource relation extraction tasks.

2We obtain MTB and CP checkpoints from https://gith
ub.com/thunlp/RE-Context-or-Names and ERICA check-
point from https://github.com/thunlp/ERICA
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Method SemEval TACRED TACRED-Revisited Re-TACRED ChemProt Wiki80

FULL (100% training data)
BERT 88.86±0.30 69.27±0.27 79.24±0.37 87.75±0.22 81.66±0.79 91.54±0.08
MTB 88.95±0.31 69.93±0.40 79.69±0.32 87.67±0.37 81.75±0.86 90.07±0.97
CP 89.16±0.17 70.16±0.20 80.08±0.32 87.95±0.09 81.77±0.97 90.44±0.38
ERICA 88.62±0.24 68.91±0.75 78.95±0.86 87.73±0.31 81.52±0.43 91.47±0.13

S2ynREBERT 89.20±0.27 70.25±0.47 79.80±0.29 88.01±0.24 81.65±0.60 91.54±0.14

S2ynRECP 89.04±0.32 70.03±0.27 79.75±0.49 87.98±0.07 82.15±0.12 91.33±0.20

LIMITED (10% training data)
BERT 82.38±0.51 59.32±0.35 66.56±0.48 80.51±0.77 68.96±0.97 85.89±0.22
MTB 82.56±0.27 59.45±0.55 66.48±0.71 81.15±0.59 71.44±1.12 82.42±2.27
CP 83.80±0.50 62.81±0.39 70.81±0.58 83.42±0.41 71.89±1.09 85.86±0.95
ERICA 82.41±0.55 58.54±0.65 66.65±0.68 80.45±0.77 69.03±1.22 86.67±0.49

S2ynREBERT 84.01±0.23 61.26±0.53 68.62±0.15 83.28±0.40 73.62±0.14 85.79±0.49

S2ynRECP 84.64±0.30 62.94±0.45 70.36±0.75 84.36±0.32 75.32±0.92 85.94±0.95

FEW (1% training data)
BERT 40.81±1.62 30.40±7.74 33.75±8.68 54.75±4.52 39.50±1.47 63.34±0.76
MTB 45.12±1.23 36.52±2.00 40.69±2.25 58.35±0.93 41.53±2.11 62.29±1.84
CP 53.29±1.80 49.81±0.59 55.53±0.90 68.03±0.76 43.96±2.62 80.93±0.89
ERICA 43.62±2.33 34.91±1.40 39.17±1.69 57.14±0.83 40.01±0.86 68.65±0.95

S2ynREBERT 57.99±1.08 45.87±1.07 50.61±0.99 62.82±0.52 45.09±0.38 66.68±0.68

S2ynRECP 68.03±0.46 51.91±0.68 58.48±0.29 70.21±0.81 46.23±0.73 80.93±0.89

Table 3: Main results. Best performances are bold, and the second bests are underlined. We report Accuracy for
Chemprot and Wiki80, and Micro-F1 for other datasets. Results for all baseline methods are reproduced with
identical hyper-parameter searches for fair comparison1.

Dataset Resource Usage Domain External Requirements

KB Entities KB Relations

MTB 6,000,000 sent pairs Wiki X No Requirements
CP 867, 278 sents Wiki X X
ERICA 1,000,000 docs Wiki X X
S2ynRE 100,000 sents Customized No Requirements

Table 4: Comparison of external resource usage and
requirements for different methods.

5.4 Ablation Study
We investigate the advantages of S2ynRE via com-
prehensive ablations. In accordance with the main
claim, all experiments are conducted under the low-
resource (FEW) setting unless otherwise stated.

Synthetic Data Instead of Distant Data Distant
supervision has long been the prevailing solution to
automatically construct relational data. We make
its comparison against the proposed synthetic data
in Table 5. We keep the two-stage self-training al-
gorithm intact, only replace the synthetic data with
distant data3. On 5 investigated datasets, distant
data can provide appreciable improvements rang-
ing from +2.06 to +13.25, however, synthetic data
brings much more significant improvements rang-
ing from +5.59 to +17.18, which clearly demon-

3The distant data is produced and released by Peng et al.
(2020), we randomly sample 100,000 instances out of it

Dataset NA Distant Synthetic

SemEval 40.81 49.36 (+ 8.55) 57.99 (+17.18)
ChemProt 39.50 41.56 (+ 2.06) 45.09 (+ 5.59)
TACRED 30.40 42.43 (+12.03) 45.87 (+15.47)
Re-TACRED 54.75 62.34 (+ 7.59) 62.98 (+ 8.23)
TACRED-Revisited 33.75 47.00 (+13.25) 50.61 (+16.86)
Wiki80 63.08 66.68 (+ 3.60) 65.52 (+ 2.44)

Table 5: Comparison between synthetic data and distant
data. Inside the parentheses are absolute improvements,
red means the higher one.

strates the superiority of being domain-customized
for target tasks. However, on Wiki80, which very
closely follows identical distribution of distant data
as both are constructed using distant supervision on
wikipedia and wikidata, result shows that synthetic
data provides competitive improvements but no
longer outperforms distant ones. This verifies the
importance and advantage of domain-customized
data from an opposite perspective. Nevertheless,
real-world scenarios mostly involve distribution be-
yond the scope of wikipedia, and only the proposed
synthetic approach can offer such advantage. We
also provide qualitative comparisons for synthetic
and distant data in Appendix G to better illustrate
the discussed domain disparity.
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Figure 3: Performance illustration for two-stage self-
training compared to classical mixed self-training. Ana-
lyzed on SemEval.

Two Stage Self-training Typical self-training al-
gorithms merge the pseudo-labeled data into exist-
ing labeled data in each iteration, and minimize the
model’s empirical loss on a mixture of both. We
refer to such classical implementation as Mixed
Self-training as opposed to the proposed Two-
stage Self-training. Fig. 3 compares these two ap-
proaches. In each iteration ( transparent blue bar),
there will be one evaluation for mixed self-training
(blue curve), but two evaluation for Two-stage Self-
training (teal for stage one, Red for stage two). We
observe that in stage-one training, the performance
might drop a few compare to its previous iteration,
however, it effectively provides a better initializa-
tion where the model can further learn from the
golden data. Overall, the model can continually
bootstrap its performance by learning from syn-
thetic and golden data iteratively and alternately.
While in mixed self-training, the golden data are
treated equally as synthetic ones, and the model is
overwhelmed by large amounts of the latter. There-
fore, the improvement quickly saturates to a lim-
ited plateau. We also provide illustrations of the
bootstrapping performance over iterations on other
datasets in Appendix C.

Comparison Under Semi-supervised Setting
Standard semi-supervised setting also investigates
low-resource relation extraction by joint learning
from both labeled data and unlabled data. However,
they make a strong assumption of identical distribu-
tion between unlabeled data and labeled ones, and
most existing works actually directly sample from
the golden training data and remove the labels to

Method SemEval TACRED

MetaSRE 80.09±0.78 56.95±0.34
GradLRE 81.69±0.57 58.20±0.33

S2ynRE w/ Golden 84.11±0.27 59.07±0.54

S2ynRE w/ Synthetic 84.01±0.23 61.26±0.53

Table 6: Comparison to state-of-the-art methods for
semi-supervised setting, including (Hu et al., 2021a)
and GradLRE (Hu et al., 2021b). w/ Golden means un-
labeled set are sampled from 50% of the golden training
data and their original labels are removed accordingly.

Dataset NA Conditional Syn Unconditional Syn

SemEval 40.81 45.26 (+4.45) 57.99
TACRED 30.40 33.34 (+2.94) 45.87
Re-TACRED 54.75 53.03 ( -1.72) 62.98
TACRED-Revisited 33.75 37.60 (+3.85) 50.61

Table 7: Comparison between conditional and uncon-
ditional synthesis. Inside the parentheses denote the
effectiveness comparing to Finetune Baseline.

construct the unlabled set. We provide comparison
with state-of-the-art methods of semi-supervised
learning in Table 6 (under the LIMITED setting).
Results show that 1) the proposed two-stage self-
training outperforms other semi-supervised learn-
ing algorithms, and 2) synthetic data demonstrates
better or comparable performance compared to un-
labled set constructed from golden training data.
We attribute the latter to its domain-customized
quality and unlimited large-scale quantity.

Unconditional Generation Although a lot of
previous works intuitively resort to conditional syn-
thesis, we show that this is not the optimal choice
for relation extraction task. We finetune the synthe-
sizer by prepending label-specific prompts: "write
a sentence describing relation V (r): ", where V (r)
is the verbalizer for each relation r and we directly
use corresponding label strings, e.g., Component-
Whole(e2,e1). We synthesize each relation class
proportional to its original distribution in golden
dataset. As conditional generation provides already
labeled data, we can directly finetune the student
model instead of self-training. We still train syn-
thetic and golden data sequentially as we empir-
ically found it a better choice. The results show
that conditional generation only brings minimum
or no benefits. We attribute this to the difficulty
of preserving required label semantics for highly
abstractive tasks like relation extraction. As a con-
sequence, while these extra amounts of data can
still provide certain usability, they also most likely
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Figure 4: Performances w.r.t. different scales of syn-
thetic data usage.

Scale Golden Synthetic

100 98.9 97.8 (- 1.1)
1,000 96.8 88.8 (- 8.0)
10,000 88.6 74.3 (-14.3)

Table 8: Sample diversity (type-token ratio in percent-
age for 3-grams) of synthetic and golden data w.r.t. dif-
ferent data scales on SemEval.

cause considerable distractions.

Scale of Synthetic Samples Figure 4 investigates
the scale of synthetic samples. The improvements
are approximately increasing in log scale w.r.t. the
number of synthetic samples. The best perfor-
mance is reached at 10,000, after which if we keep
adding more samples, the performance saturates.
As the synthesis of data is a repeatedly sampling
process, we think exploiting too much data will
deteriorate the diversity at the same time. We ver-
ify this by evaluating its diversity using type-token
ratio (Roemmele et al., 2017; Kumar et al., 2020),
which is defined as the ratio of unique n-grams out
of all n-grams (see Table 8). We can see that the
diversity gap between synthetic and golden data is
enlarged when increasing the data scale.

We also report supervised results using addi-
tional golden training data to measure the utility of
synthetic data. We can achieve two conclusions: 1)
the advantage of golden training data are more sig-
nificant when it is scaled up (104). However, this
also takes substantially expensive costs. 2) S2ynRE
approximately achieves the utility of 1,000 addi-
tional annotated golden data (103), and it only costs
several hours of GPU computation to produce ac-
cording synthetic data (104) as needed.

6 Discussion

Distant supervision is the most prevalent solution
for low-resource relation extraction, and also the
main investigated and compared baseline in this
paper. Both distant data and the proposed syn-
thetic data can essentially be recognized as ways
of data augmentation to produce sufficient number
of additional data. The critical difference which de-
termines the effectiveness lies in their consistency
with golden training data, i.e., domain affinity. And
in this paper, the superiority of synthetic data is
both experimentally proved (Table 5) and quali-
tatively explained (Appendix G). In conclusion,
leveraging LLM to adapt to target domain and gen-
erate synthetic data of high utility is in general an
performant solution and we hope this novel per-
spective can further inspire future insights in many
related areas that have been greatly impacted by
the idea of distant supervision.

7 Conclusion

In this paper, we present S2ynRE, a framework
of two-stage self-training with synthetic data for
relation extraction. We show that synthetic data
generated using LLMs can resolve data scarcity in
low-resource scenarios and mitigate domain dis-
parity compared to distant supervision. To enable
effective learning from such synthetic data, we then
propose a novel two-stage self-training algorithm
that continually bootstraps model performance by
iteratively and alternately training the synthetic and
golden data together. The proposed framework
brings substantial improvements and achieves new
state-of-the-art for low-resource relation extraction.
In the future, we expect new possibilities brought
by LLMs and will further explore accompanied
techniques to exploit their potential.

Ethical Considerations

Synthetic data generated by language models may
involve potential ethical risks regarding fairness
and bias (Bommasani et al., 2021; Blodgett et al.,
2020), which results in further consideration when
they are employed in downstream NLP tasks. Al-
though the scope of this paper remains how to pro-
duce and leverage such synthetic data to improve
relation extraction system, it is worth further in-
vestigation to investigate in conjunction with well-
established methods that can measure (Nadeem
et al., 2021) and mitigate (Nadeem et al., 2021;
Gupta et al., 2022) such ethical risks.
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A Datasets

SemEval 2010 Task 8 (Hendrickx et al., 2009)
is a widely used testbed for relation extraction,
the schema targets at semantic relations between
pairs of nominals, which requires certain level of
abstractive capabilities. TACRED (Zhang et al.,
2017) is a large-scale dataset annotated using Ama-
zon Mechanical Turk crowdsourcing. It was ini-
tially created for the TAC knowledge base popula-
tion and mainly covers common relations between
people, organizations, and locations based on the
TAC KBP scheme. TACRED-Revisited (Alt et al.,
2020) is a label-corrected version of the TACRED
dataset, which motivates from the unresolved chal-
lenging cases in original TACRED dataset. Re-
TACRED (Stoica et al., 2021) further conducted
a more comprehensive analysis and re-annotated
the entire dataset. Besides, it made alternations
to the schema to make it more clear and intu-
itive, which greatly improved the dataset qual-
ity. ChemProt (Kringelum et al., 2016) is a bio-
domain dataset that extracts 13 kinds of chemical-
protein interactions. It is widely used for evaluat-
ing domain-specific model capabilities (Lee et al.,
2019; Beltagy et al., 2019).

B Experimental Settings

S2ynRE involves three different training processes,
respectively the finetuning of LLM, stage-one train-
ing, and stage-two training. Except for training
steps or epochs, we do not exhaust further search
for other hyper-parameters and set them empiri-
cally.

For the finetuning of LLM as synthesizer, we set
batch size to 64, learning rate to 3e-5. We found
that the quality of generated samples is sensitive to
the finetuning steps. Considering that the scale of
training samples varies from 73 (SemEval 1%) to
68,124 (TACRED 100%) w.r.t. different datasets
and different settings, we search steps within differ-
ent ranges accordingly. The final choices are listed
in Table 9.

For stage-one training, we set batch size to 64,
learning rate to 3e-5, and fix the training steps as
1500. We save the checkpoint from 500, 1000, and
1500 steps respectively and select the best one. For
stage-two training, we set batch size to 16, learning
rate to 3e-5, and the epochs are set as Table 10.
These epoch settings are empirically chosen in our
pilot study to obtain a competitive baseline per-
formance. We set the number of teacher models

K in each iteration to 5 without further searching.
We use bert-base-uncased to initialize the student
model. All experiments are conducted on 40GB
A100 machines.

C Performance Over Self-training
Iterations

We provide the performance curve w.r.t. iterations
in Figure 5. It shows that the iterative training pro-
cedure following the classical self-training method
is indeed effective. We simply set iteration to 10
as most of the self-training methods did and find it
already a robust choice across different datasets.

D Scale of Synthesizer Model

We test S2ynRE with a different scale LLM, i.e.,
GPT-Small with 117M parameters. The results in
Table 11 show that even with such a small size LM,
S2ynRE can still bring significant improvements.
But in general, larger model unsurprisingly per-
forms better. With the emergence and applicability
of increasingly stronger LLMs, we can look for-
ward to further advancement of relation extraction
task.

E Ablation on Multi-teacher Distillation

We provide ablation on multi-teacher distillation
in Table 12, and demonstrate that the primary im-
provements come from the utilization of synthetic
data and the proposed two-stage self-training. The
choices of ablations are:

+Multi-teacher (Niave Ensemble) We train k
models on the golden training set and ensemble
their predicted logits. This only provides marginal
benefits (+3.62, +3.13).

+Synthetic Data We incorporate synthetic data
by performing knowledge distillation from multi-
teacher to students. This provides rather significant
benefits (+6.01, +7,83).

+Two-stage Self-training We further introduce
the proposed two-stage self-training method, which
brings about the most remarkable improvements
(+16.72, +14.55).

F Effects of Domain-Augmented LLM

In the main results (Table 3) we have specifically
used a domain-augmented version of GPT2 (GPT2-
PubMed) for biomedical task ChemProt. This is
our initial choice of design and intuitively should
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Setting SemEval ChemProt TACRED TACRED-Revisited Re-TACRED

FULL 256 256 512 1024 2048
LIMITED 64 256 256 256 512
FEW 32 32 128 128 128

Table 9: Finetuning steps for LLM under different settings.

Setting SemEval ChemProt Wiki80 TACRED TACRED-Revisited Re-TACRED

FULL {5, 10} {5, 10} {5, 10} 2 2 2
LIMITED {10, 20} {10, 20} {10, 20} 5 5 5
FEW {40, 80} {40, 80} {40, 80} 10 10 10

Table 10: Training epochs for stage-two training under different settings.

Figure 5: Performance over self-training iterations. Drawn with standard error of mean.

bring better performance. Here we further analysis
the effects of such LLM choices in detail. Table 13
provides comparison between GPT2-PubMed and
vanilla GPT2, both LLMs can effectively produce
synthetic data and bring expected improvements.
Nonetheless, we empirically find that vanilla GPT2
would need a bit more finetuning steps to adapt to
the target domain (256 steps compared to 32 steps
using GPT2-PubMed). In general, the proposed
method is rather robust to choices of LLM.

G Case Study

We provide randomly sampled case studies of syn-
thetic data for SemEval, TACRED, and ChemProt
in Table 14, 15, and 16 respectively as well as dis-
tant data in Table 17. These cases show that LLMs
are capable of synthesizing coherent, realistic sen-
tences with relational structure. Most importantly,
such synthetic data are customized to target do-
mains with various topics and styles.
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Dataset NA GPT-2 Small GPT-2 Large
117M 774M

SemEval 40.81 49.87 57.99
TACRED 30.40 43.95 45.87
TACRED-Revisited 33.75 48.35 50.61
Re-TACRED 54.75 63.51 62.98

Table 11: Performances w.r.t. synthesizer model size.

Method Perf. Imp.

BERT Baseline 40.81±1.62 -

+ Multi-teacher (Naive Ensemble) 44.43 + 3.62
+ Synthetic Data (Distillation) 46.82±1.81 + 6.01

+ Two-stage Self-training (S2ynRE) 57.53±0.96 +16.72

CP Baseline 52.77±1.83 -

+ Multi-teacher (Naive Ensemble) 55.90 + 3.13
+ Synthetic Data (Distillation) 60.60±1.28 + 7.83

+ Two-stage Self-training (S2ynRE) 67.32±0.54 +14.55

Table 12: Ablation on multi-teacher distillation.

Nevertheless, we also notice several limitations,
especially in low-resource scenarios where it’s still
challenging to get a good estimation of the target
dataset distribution:

• Lack of diversity. For example, instances 2.1,
2.2, 2.3 all start with "the marmalade".

• Fragmentary structure. For example, in-
stances 2.4 and 2.8 contain atypically lengthy
object.

For pseudo labels, most of the time teacher
model confidently assigns one specific label with
very high probabilities (> 0.95), but for some other
cases, it goes for more than one possible label, such
as 1.8, 2.8, 4.1, etc. We attribute this to two possi-
ble reasons: 1) the limited capability of the teacher
model to accurately recognize all relations, and
2) the imperfections of certain synthetic data, i.e.,
some synthetic instances do not well align with
pre-defined schema and are difficult to be assigned
exact relation labels. In these cases, forcing the
student to learn from hard labels assigned using
argmax might introduce severe noise, while the
proposed knowledge distillation process using soft
labels in S2ynRE can properly put these imperfect
data still into usage.

For distant data, as these instances are produced
from wikipedia texts, we can clearly identify that
they are quite different from other downstream task
data ether in content, or in relation schema. This
further verifies the superiority of the proposed syn-
thetic in-domain data qualitatively.

BERT Baseline 39.50
S2ynRE w/ GPT2 45.32
S2ynRE w/ GPT2-PubMed 45.09

Table 13: Impacts of domain augmented LLM.

H Potential Limitations

We empirically conclude two limitations for
S2ynRE in the hope of inspiring more future re-
search. On one hand, its advantages are less sig-
nificant when a large amount of annotated data
is available. For example, TACRED training set
has 68,142 annotated instances. Under this setting,
even if we add another 100,000 synthetic samples,
the improvement is only +0.98 compared to +22.02
under 1% training set. This means that the quality
of synthetic data, although superior to distant ones,
is still not as good as golden ones. Thus they can
hardly provide identical utility the same as 100,000
golden data. Nevertheless, with the development
of LLMs and their powerful generation ability, we
look forward to accessing higher-quality synthetic
data.

On the other hand, when training data are lim-
ited to a few samples (for example, 1% setting for
SemEval only includes 73 training instances), even
strong LLMs like GPT-2 can not perfectly fit the
structure of relational statements within a few steps
of finetuning (See Appendix G for illustration of
cases). Therefore, many generated sentences may
not contain correct subject or object entity markers
as requested and have to be discarded. In general,
although the formation of marked natural language
sequence proposed in this work made such struc-
tured synthesis feasible, we look forward to further
improving the synthesis efficacy in future works.

4https://www.wikidata.org/wiki/Property_talk:
P609
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Instances Soft Labels (Top3) Probs

SemEval FULL

1.1
the [Sub] mansion [\Sub] has been the subject of several [Obj] reports [\Obj]
on television.

Message-Topic(e2,e1) 0.99956
Component-Whole(e2,e1) 0.00006
Entity-Origin(e2,e1) 0.00005

1.2 the [Sub] man [\Sub] was in the [Obj] building [\Obj] at the time.
Other 0.99971
Content-Container(e1,e2) 0.00005
Entity-Origin(e1,e2) 0.00005

1.3
i had a [Sub] gift [\Sub] from the [Obj] hospital [\Obj] which was going to
cost a lot more than my first.

Entity-Origin(e1,e2) 0.99769
Product-Producer(e1,e2) 0.00110
Product-Producer(e2,e1) 0.00080

1.4
the video shows the [Sub] person [\Sub] getting up from the [Obj] bed [\Obj]
to put on the robe.

Entity-Origin(e1,e2) 0.99959
Other 0.00030
Cause-Effect(e2,e1) 0.00002

1.5 the [Sub] cadaver [\Sub] was left and kept at the [Obj] museum [\Obj] .
Other 0.94540
Entity-Origin(e1,e2) 0.03551
Entity-Destination(e1,e2) 0.01063

1.6
the [Sub] tumor [\Sub] was contained with two instilled [Obj] antibiotics
[\Obj] ..

Other 0.58024
Cause-Effect(e2,e1) 0.40806
Instrument-Agency(e2,e1) 0.00442

1.7 it was a [Sub] truck [\Sub] that moved the [Obj] furniture [\Obj] .
Other 0.58490
Instrument-Agency(e1,e2) 0.37308
Component-Whole(e1,e2) 0.01200

1.8
he began to set up and operate many of the [Sub] computers [\Sub] in the
[Obj] store [\Obj] .

Component-Whole(e1,e2) 0.47224
Other 0.27054
Content-Container(e1,e2) 0.24453

SemEval FEW

2.1
the [Sub] marmalade [\Sub] starts witha [Obj] marzipan [\Obj] in the centre
of a vanilla bean.

Entity-Origin(e2,e1) 0.97080
Entity-Origin(e1,e2) 0.00486
Component-Whole(e2,e1) 0.00484

2.2
the [Sub] marmalade [\Sub] is a blend of [Obj] cherries [\Obj] , dulce de
leche and cognac that is richly decorated with an intricate series of images of
olive branches.

Entity-Origin(e2,e1) 0.98489
Entity-Origin(e1,e2) 0.00257
Component-Whole(e2,e1) 0.00140

2.3
the [Sub] marmalade [\Sub] is a [Obj] blend [\Obj] of anise, caster, and grape
juice.

Entity-Origin(e2,e1) 0.98827
Entity-Origin(e1,e2) 0.00116
Content-Container(e2,e1) 0.00086

2.4
the [Sub] cricketers [\Sub] have [Obj] struggled to find sponsorship for their
$1.2 million annual home-cooked dinner [\Obj] entirely on donated food.

Instrument-Agency(e2,e1) 0.80719
Product-Producer(e2,e1) 0.07164
Other 0.04683

2.5 there a [Sub] caused by a [\Sub] poisoning [Obj] [\Obj] .
Cause-Effect(e2,e1) 0.99813
Cause-Effect(e1,e2) 0.00023
Product-Producer(e1,e2) 0.00020

2.6
the [Sub] troubadour [\Sub] starts with a [Obj] snowstorm [\Obj] that
blankets the streets and then slowly disperses as the temperature drops.

Component-Whole(e2,e1) 0.99156
Entity-Origin(e1,e2) 0.00201
Instrument-Agency(e2,e1) 0.00085

2.7
the [Sub] water [\Sub] is also rich in organic matter [Obj] , mainly cold-water
crayfish [\Obj] and planktonic foraminifera.

Entity-Origin(e1,e2) 0.89010
Cause-Effect(e1,e2) 0.03238
Instrument-Agency(e1,e2) 0.01435

2.8
the [Sub] series [\Sub] takes its inspiration from a real-life story [Obj] of a
young woman who attempted suicide using a water gunslinger [\Obj] .

Product-Producer(e2,e1) 0.53262
Product-Producer(e1,e2) 0.11620
Instrument-Agency(e2,e1) 0.08945

Table 14: Randomly selected cases of synthetic data and the assigned soft labels for SemEval. Without any cherry
picking.
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Instances Soft Labels (Top3) Probs

TACRED FULL

3.1
The National Union of Students welcomed the move by the
[Sub] NUS [\Sub] in its opening resolution in a meeting [Obj]
today [\Obj] .

no_relation 0.99872
org:dissolved 0.00047
org:founded 0.00038

3.2

It mayn’t look it in person, but it’s the same thing as playing a
show on the radio – it’s actually the same thing with radio in
general, where if you just hit – [Obj] one [\Obj] play through,
you ’ll get familiar with the basic patterns that make ’em work,
and all the subtle nuances – so instead of going out and trying to
get “ that ” “ That one ”, ” [Sub] Steve Allen [\Sub] told Enter-
tainment Weekly in 1991, “ try doing this, or do that. ”

no_relation
per:age
org:number_of_employees/members

0.99969
0.00007
0.00004

3.3

It was the third consecutive year the International Skating Union
rated [Sub] Skiing Australia [\Sub] a gold medal threat, after a
bronze medal performance at the 2004 Winter Olympic Games
in Nagano and a silver medal performance in the Salt Lake City
Games in [Obj] 2006 [\Obj] .

no_relation
org:founded
org:dissolved

0.99901
0.00026
0.00018

3.4
He is survived by [Sub] his [\Sub] wife of 63 years, the [Obj]
Doris G. Gude [\Obj] of Rockville ; a son, Charles Gude Jr. ;
five grandchildren ; and three great-grandchildren.

per:spouse 0.91159
no_relation 0.06497
per:other_family 0.01286

3.5

“ I think these guys have done some amazing work on the set, ”
added [Obj] Bryan Fuller [\Obj] , whose television show,
“ Heroes, ” created another big ensemble cast by including
Emmy-nominated actors [Sub] Spencer Pratt [\Sub] and Evan
Rachel Wood.

no_relation
per:other_family
per:siblings

0.98786
0.00426
0.00164

3.6
The [Sub] American Family Association [\Sub] announced that
it is boycotting [Obj] Cathay Pacific [\Obj] and is taking a
similar stand over the next nine days.

no_relation 0.95461
org:subsidiaries 0.01223
org:member_of 0.00858

TACRED FEW

4.1

In addition to his wife, he is survived by four children, William
J. Gillette Jr. of Rockville, [Obj] Illinois [\Obj] , James P.
Gillette of Gilbertsville, Pennsylvania, [Sub] Diana R. [\Sub] of
Gilbertsville and Michael D. Gillette of Rockville ; 12 grand-
children ; and 12 great-grandchildren.

per:stateorprovinces_of_residence
per:siblings
org:stateorprovince

0.22273
0.15570
0.12936

4.2
[Sub] Ventura [\Sub] ’s win brings to eight the number of wins
by [Obj] California [\Obj] athletes in the 200 meters since 1985.

per:stateorprovinces_of_residence 0.71593
org:stateorprovince_of_headquarters 0.05609
no_relation 0.03997

4.3
The first episode of [Obj] M*A*S*H [\Obj] was broadcast on
Saturday, November 2, 1996, on the [Sub] NBC [\Sub] network.

no_relation 0.99886
org:alternate_names 0.00007
org:parents 0.00006

4.4

The [Sub] ICBA [\Sub] president, [Obj] Huang Zuocheng
[\Obj], said in a statement : “ This is a big step forward and will
certainly help the whole community of farmers in providing a
decent quality food for all. ”

org:top_members/employees
org:founded_by
org:subsidiaries

0.99060
0.00193
0.00093

4.5

[Sub] Johannesburg [\Sub] police chief Inspector-General of
Police Lieutenant-general Nathi Nhleko has ordered the arrest
of four individuals charged over the grenade attack on a wedd-
ing party in [Obj] Johannesburg [\Obj] one week ago that left
two people - a 27-year-old man and a 41-year-old woman - dead.

per:cities_of_residence
org:city_of_headquarters
per:city_of_death

0.52491
0.07287
0.05097

4.6

Under the deal, the [Sub] Kuala Lumpur Chamber of Deputies
[\Sub] has agreed to let foreign [Obj] investors [\Obj] buy up to
50 percent of the company, and the government has agreed to
give it an additional 10 percent stake once the government
approves the deals.

no_relation
org:parents
org:country

0.99852
0.00034
0.00014

Table 15: Randomly selected cases of synthetic data and the assigned soft labels for TACRED. Without any cherry
picking.
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Instances Soft Labels (Top3) Probs

ChemProt FULL

5.1
[Sub] Lumiracoxib [\Sub] is metabolized to a more potent and
selective [Obj] cyclooxygenase-2 [\Obj] (COX-2) inhibitor by
sequential metabolism.

INHIBITOR 0.94689
SUBSTRATE 0.05080
PRODUCT-OF 0.00059

5.2
The effect of phenobarbital, a known [Sub] CYP2D6 [\Sub]
inhibitor, on the pharmacokinetics of [Obj] DEX [\Obj] , a
substrate of human CYP2D6, in healthy subjects.

INHIBITOR 0.99792
SUBSTRATE 0.00149
ACTIVATOR 0.00013

5.3
The inhibitory effect of [Sub] pravastatin [\Sub] on [Obj] human
UGS1 [\Obj] mediated by the high affinity UGS2 isoforms
EGFR and ErbB2 was also investigated.

INHIBITOR 0.99890
INDIRECT-DOWNREGULATOR 0.00058
DOWNREGULATOR 0.00017

5.4

Moreover, the [Sub] quinone [\Sub] derivative was found to
exhibit pronounced [Obj] beta(2)-adrenoceptor [\Obj] (beta(2)
-AR)/erythrocyte coupling inhibitory effects, in the following
order: quinone>diethylglycerol>cis-9,trans-11,12-didehydro-9,
trans-11,12- triazol-9-amine (DFTDI)>cis-9,trans-11,12-
didehydro-9, cis-9, trans-12, 13-tetrahydro

INHIBITOR
ANTAGONIST
AGONIST-INHIBITOR

0.99968
0.00010
0.00005

5.5

These data demonstrate that [Sub] troglitazone [\Sub] , an
inhibitor of [Obj] PTGS2 [\Obj] , acts on cells by inhibition of
the phosphatidylinositol 3-kinase/Akt/mTOR pathway, which
could account for the reduced incidence of osteopetrosis and
osteoarthritis that occur in patients receiving this drug.

INHIBITOR
INDIRECT-DOWNREGULATOR
INDIRECT-UPREGULATOR

0.99984
0.00006
0.00002

5.6

Inhibition of [Sub] PDE11A [\Sub] by [Obj] dihydropyridine
[\Obj] and butyrylcholinesterase inhibitors (BuChE, butyl
methylester, and butoxychlor) strongly suggested involvement
of cholinergic inhibition at membrane level.

INHIBITOR
ACTIVATOR
INDIRECT-UPREGULATOR

0.99982
0.00003
0.00003

ChemProt FEW

6.1

Results show that [Sub] Gossypol [\Sub] and buthionine
sulfoxane have the most potent inhibitory activities against
[Obj] PEPCK [\Obj] with IC50 values of 1.46, 1.24 and 0.98
microM, respectively.

INHIBITOR
INDIRECT-DOWNREGULATOR
AGONIST-INHIBITOR

0.99822
0.00031
0.00023

6.2

Based on the results of this study, it can be concluded that [Sub]
sorafenib [\Sub] exerted its inhibitory effect on the CSE-induced
[Obj] angiogenesis-related phospho-AKT* [\Obj] activation
through the down-regulation of CSE-induced AKT*
phosphorylation.

INHIBITOR
ACTIVATOR
INDIRECT-DOWNREGULATOR

0.84259
0.11871
0.00990

6.3

Results for [Sub] epinastine [\Sub] in the treatment of experi-
mental myasthenia gravis showed IC50 values of 10-11.5
microM against the myasthenia-related enzyme, [Obj] myosin
heavy chain [\Obj] .

INHIBITOR
INDIRECT-DOWNREGULATOR
AGONIST

0.98410
0.00765
0.00154

6.4
In a previous study, we have demonstrated that [Sub] sorafenib
[\Sub] attenuated the growth of C6 glioma cells through [Obj]
SRC [\Obj] activation.

INHIBITOR 0.90038
INDIRECT-DOWNREGULATOR 0.04238
AGONIST 0.01377

6.5
Results showed that [Sub] Epinastine [\Sub] significantly
attenuated the [Obj] l-arginine aminotransferase [\Obj] and
NADPH oxidase activities in the aorta of MPTP models.

SUBSTRATE 0.86088
INDIRECT-DOWNREGULATOR 0.04992
ACTIVATOR 0.01992

6.6
Inhibition effect of [Sub] epinastine [\Sub] on [Obj] EGFR
[\Obj] tyrosine kinase activation and its downstream pAKT,
ERK, and c-Fos were further investigated.

INHIBITOR 0.99790
INDIRECT-DOWNREGULATOR 0.00058
AGONIST 0.00029

Table 16: Randomly selected cases of synthetic data and the assigned soft labels for ChemProt. Without any cherry
picking.
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Instances Distant Labels

Distant Supervision

7.1
The tunnel is also part of the UK ’s [Sub] National Cycle Route
1 [\Sub] linking Inverness and [Obj] Dover [\Obj] . P609

7.2

Alfred Faure Alfred - Faure or [Sub] Port Alfred [\Sub] is a
permanent French scientific station on [Obj] Île de la Possession
[\Obj] ( Possession Island ) of the subantarctic Crozet
Archipelago in the South Indian Ocean .

P709

7.3
He was a respected poet in the [Obj] Latin language [\Obj] ,
writing under the name of [Sub] Santolius Victorinus [\Sub] . P1412

7.4
In 1704 , [Sub] Eberhard Ludwig [\Sub] started to build [Obj]
Ludwigsburg Palace [\Obj] to the north of Stuttgart , in imitation
of Versailles .

P119

7.5
Reports linking full - back [Sub] Fred Speller [\Sub] with
Warwick County left the " [Obj] Birmingham [\Obj] Daily Post
" " wondering at footballers íngratitude .

P20

7.6
Giovanni di Buiamonte Giovanni di Buiamonte was a [Obj]
Florentine [\Obj] nobleman who lived in the late 13th century
around the time of Giotto and [Sub] Dante [\Sub] .

P551

7.7
Instead , he left [Sub] Sydney [\Sub] [Obj] Sydney [\Obj] at 1
am on 7 January 1931 , and headed for Blenheim , New Zealand
.

P931

7.8
" Nintendo Power " journalist Steve Thomason singled out
Sanshiro as the character he would most like to control in the
[Obj] Nintendo DSi [\Obj] game " [Sub] Photo Dojo [\Sub] " .

P400

7.9
He provided the vocals for the singing voice of the cub [Obj]
Simba [\Obj] in Walt Disney Feature Animation ś 1994 film "
[Sub] The Lion King [\Sub] " .

P674

7.10
[Sub] 3rd County of London Yeomanry ( Sharpshooters ) [\Sub]
The 3rd County of London Yeomanry ( Sharpshooters ) was a
Yeomanry regiment of the [Obj] British Army [\Obj] .

P241

Table 17: Randomly selected cases of distant supervision data. The explanation for distant labels can be looked up
at the official wikidata website4.

8205



ACL 2023 Responsible NLP Checklist

A For every submission:
� A1. Did you describe the limitations of your work?

Left blank.

� A2. Did you discuss any potential risks of your work?
Left blank.

� A3. Do the abstract and introduction summarize the paper’s main claims?
Left blank.

� A4. Have you used AI writing assistants when working on this paper?
Left blank.

B � Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
Left blank.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Left blank.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Left blank.

C � Did you run computational experiments?
Left blank.

� C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Left blank.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

8206

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


� C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Left blank.

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Left blank.

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Left blank.

D � Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Left blank.

8207


