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Abstract

Entity Linking performance has a strong re-
liance on having a large quantity of high-quality
annotated training data available. Yet, man-
ual annotation of named entities, especially
their boundaries, is ambiguous, error-prone,
and raises many inconsistencies between an-
notators. While imprecise boundary annotation
can degrade a model’s performance, there are
applications where accurate extraction of enti-
ties’ surface form is not necessary. For those
cases, a lenient annotation guideline could re-
lieve the annotators’ workload and speed up
the process. This paper presents a case study
designed to verify the feasibility of such an-
notation process and evaluate the impact of
boundary-relaxed annotation in an Entity Link-
ing pipeline. We first generate a set of noisy ver-
sions of the widely used AIDA CoNLL-YAGO
dataset by expanding the boundaries subsets of
annotated entity mentions and then train three
Entity Linking models on this data and evaluate
the relative impact of imprecise annotation on
entity recognition and disambiguation perfor-
mances. We demonstrate that the magnitude
of effects caused by noise in the Named Entity
Recognition phase is dependent on both model
complexity and noise ratio, while Entity Disam-
biguation components are susceptible to entity
boundary imprecision due to strong vocabulary
dependency.

1 Introduction

Out of many tasks under the Natural Language
Processing (NLP) umbrella, Entity Linking (EL)
is one of the critical steps for Information Extrac-
tion, allowing the retrieval and understanding of
information from unstructured textual sources. By
definition, EL is the task of associating a Named
Entity (NE) mention (a concept, person, location,
etc.) to a unique identifier that describes what that
mention refers to in a knowledge base (KB) (Zhang
et al., 2021). This is especially significant in the
biomedical domain, where it can be used to asso-

ciate mentions with different surface forms to a
single concept in an ontology, such as the Unified
Medical Language System (UMLS)1, allowing for
better indexing and relation extraction (Leaman
et al., 2015).

In this paper’s definition, EL comprises two
phases, as presented in Figure 1. Named Entity
Recognition (NER) searches the sentence for NE
mentions, and then Entity Disambiguation (ED)
assigns a unique identifier for each one. (Kolitsas
et al., 2018; Özge Sevgili et al., 2022). NER is also
commonly related to classifying a detected mention
into a set of categories. However, for this study, we
consider it as only the location of a NE in the text.

Although some methodologies have presented
state-of-the-art (SoTA) results for this task (De Cao
et al., 2021; Yamada et al., 2020), large amounts of
high-quality labeled data are still crucial to achieve
good performance models.

Yet, text annotation is no trivial task. Manual an-
notation of vast data is costly due to the excessive
workforce and long hours required. Besides, it is
arduous to guarantee good quality and standardized
annotation. Notably, when annotating NEs, anno-
tators can face trouble deciding on the boundaries
of a mention, which can be ambiguous and raises
many inconsistencies (Marrero et al., 2013).

For example, in the sentence presented in Figure
1, Arthritis can be referred to as "joint inflamma-
tion". However, a longer span "joint inflammation
pain" is also applicable when referring to the same
manifestation, even though it packs some periph-
eral information. Deciding where the boundary
line of entity or non-entity should be drawn is not
straightforward, and rigorous annotation guidelines
can add even more bureaucracy to an already slow
process. (Chapman et al., 2011).

Although imprecise boundary annotation can be
considered a type of noise that degrades a model’s

1https://www.nlm.nih.gov/research/umls/index.
html
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Figure 1: Example of an EL pipeline applied to a sentence. NE mentions are detected and classified by the NER
stage. The ED module generates a list of candidates and ranks them to select the proper concept unique identifier.

performance, some applications, especially those
in the biomedical field, are not dependent on the
exact span of an entity (Tsai et al., 2006; Dai et al.,
2014). Due to the existence of normalized vocabu-
laries, most extracted data can be refined to helpful
information by linking to such KBs. In this sce-
nario, the burden on annotators could be relieved
by loosening the strictness of entity boundary an-
notation and, instead, focusing on the complete
annotation of the conceptual information.

We hypothesize that as long as the detected men-
tion is longer than the target mention, in other
words, it contains "more information than neces-
sary", the concept matching to a KB should not be
greatly degraded. This approach can potentially
minimize the effort during corpora annotation pro-
cess and improve its speed.

To validate the hypothesis, we present a case
study to evaluate the impact of boundary-relaxed
annotation on NER and ED performance. We gen-
erated multiple variants of a popular EL dataset
(AIDA CoNLL-YAGO) by expanding subsets of
annotated entities’ boundaries. We then train two
SoTA models and our baseline model on the modi-
fied dataset and compare it with the original dataset
performance on each step of the EL pipeline.

2 Related Work

Entity boundary is a common theme in NER-
related research. Some evaluation criteria that relax
the strictness of boundary matching have been pro-
posed and refined through the years. Tsai et al.
(2006) compares a few of those strategies, such as
matching only the left or right border, any tag over-
lap, per-token measurements, and semantically-
driven matching. The authors also present potential
use cases for each evaluation technique and com-
pare their characteristics.

While several studies evaluate the impact of an-

notation quality in EL (Dojchinovski et al., 2016;
Chen et al., 2018; Weichselbraun et al., 2019), oth-
ers tackle the issue of noisy-labeled data (Liu et al.,
2021; Zhu et al., 2022), which may include but it
is not limited to imprecise entity boundary.

Most of the works that address the NE boundary
problems attempt to improve the detection preci-
sion (Li et al., 2021; Yongming et al., 2022; Tang
et al., 2022), proving that better entity boundary
detection dramatically improves both entity classi-
fication and linking.

However, there are a handful of studies that
specifically address the impact of relaxed en-
tity boundary annotation on linking performance.
Shmanina et al. (2013) compared the impact of two
different annotation guidelines for disease names
on model performance, noting that the set of rules
that provide low lexical variability, short entity
length, and high regularity usually impact perfor-
mance positively.

As a sideline experiment to the main study, Choi
and Cardie (2008) analyzed the impact of expanded
entity boundaries and the use of the additional infor-
mation as context around the annotated expression.

Ghiasvand and Kate (2018) developed an unsu-
pervised method for training clinical NER systems
that automatically generate NE annotations. Due
to the high surface form variability of clinical con-
cepts, a NE boundary determination component
was developed. With the ablation of this compo-
nent, the authors perceived around a 5% decrease
in NER precision and recall performance.

Zhu and Li (2022) propose a boundary regular-
ization technique that reallocates part of the proba-
bility to be an entity from an annotated span to its
neighbor words. This effectively creates a smooth
transition between an entity annotation and its non-
entity surroundings to mitigate annotation bound-
ary inconsistencies.
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Figure 2: Workflow of our experiment.

3 Method

We performed a case study to assess the effect of re-
laxed annotation on the performance of each phase
of the EL pipeline. Figure 2 depicts a representa-
tion of our workflow.

The designed method aims to simulate model
training using a dataset compiled by employing a
hypothetical lenient and inclusive entity annotation
guideline, where an annotator would roughly select
the correct span of the entity mentions, possibly
introducing a few unnecessary extra tokens into the
annotation when in uncertainty.

In particular, we focused on observing the im-
pact of expanded entity annotations on evaluation
metrics commonly used in such tasks.

3.1 Boundary Expansion

For that, we create a boundary-expanded version,
denoted Dn, of our original dataset D, by adding
tokens to some gold standard annotations. We call
this processed variant as "noisy dataset".

Modeling annotator mistakes in order to gener-
ate "human-like" annotation noise is not a simple
task, as the type of errors committed are dependent
on multiple factors such as annotator experience or
on how the annotation process is conducted. For
instance, the annotation interface used (by click-
ing/dragging or keyboard-based) can produce con-
siderably distinct anomalies. Therefore, we de-
veloped an approach for noise generation based
on randomly selecting annotations to be expanded.
Although this approach may not produce natural
mistakes in some situations due to word meaning
not being considered upon selection, it is a simple
way to avoid bias regarding the entity type, surface
form, or textual position when selecting terms to
be altered.

We randomly select a subset of the entity an-
notations from Dtrain and Dval and expand their
boundaries by one token (word or punctuation)
to the right and/or left of the original entity span,
as shown in Figure 3, thus creating Dntrain and
Dnval. In order to profile the model behavior trend,
we produced multiple variants of Dn with various
amounts of boundary-expanded mentions. This
was done by setting a percentage of mentions to be
selected during the dataset processing, defined as
l, where l ∈ {10, 20, 30, ..., 100}. We refer to l as
"noise level".

Figure 3: Example of boundary expansion in an NE
mention, underscored in blue. A token from either side
(or both) can be selected to be merged in the annotation.

When an entity mention is selected for the subset,
the expansion direction is also randomly decided.
In this case, all three direction options (left, right,
and both sides) were given the same probability
of being chosen (1/3). Table 1 shows an example
document before and after expansion.

We do not stop expanding the boundary even if
there is an overlap with the next mention. In this
case, both mentions are merged in a single annota-
tion. The amount of entities that were unified for
each noise level is presented in Appendix A.1.

Given that the affected mentions are randomly
selected, we generate ten different instances Dn(l,i)

for each noise level aiming to remove any bias that
could be caused by the boundary expansion. We
identify each instance by a i in the notation. In total,
100 different instances of Dn were produced.

Lastly, for the sake of simplicity, we limit the
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Original annotation Noisy annotation
CRICKET - LEICESTERSHIRE TAKE OVER AT TOP
AFTER INNINGS VICTORY. LONDON 1996-08-30
West Indian all-rounder Phil Simmons took four for 38 on
Friday as Leicestershire beat Somerset by an innings and
39 runs in two days to take over at the head of the county
championship.

CRICKET - LEICESTERSHIRE TAKE OVER AT TOP
AFTER INNINGS VICTORY. LONDON 1996-08-30
West Indian all-rounder Phil Simmons took four for 38 on
Friday as Leicestershire beat Somerset by an innings and
39 runs in two days to take over at the head of the county
championship.

Table 1: Comparison between the original annotation and boundary expanded annotation. The entity span is marked
with bold and underscore.

noise generation length to a maximum of one-token
length for each side of the NE mention. With the
noise length limited, we can exclude one variable
that may affect the models’ performance. Instead,
we focus on how the quantity of lenient-annotated
entities influences the pipeline’s output.

We then train NER and ED models on each
Dn(l,i) and use the unmodified test set to assess
the boundary relaxation leverage in performance.

3.2 Evaluation metrics

We evaluate both NER and ED models using the
measurements of precision (fraction of extracted
NEs that are correct), recall (fraction of NEs ex-
tracted out of all the gold-standard NEs), and F-
score (harmonic mean of precision and recall) (Jap-
kowicz and Shah, 2011). We use micro-averaged
metrics, meaning the scores are computed across
all documents.

Being aware that the NER system’s capability to
precisely detect entity boundaries could be affected
by the noisy data training, for NER components
only, two evaluation scoring schemes were used –
strict and relaxed.

Strict scoring scheme follows the convention
defined by CoNLL (Tjong Kim Sang and De Meul-
der, 2003). It only considers correct matches where
boundaries exactly match the ground truth. Hence,
a system gets zero credit if the extracted entity has
any extra or is missing tokens compared to the
gold-standard mention.

On the other hand, the relaxed scheme ac-
cepts mention detections with imprecise boundaries
(Uzuner et al., 2011; Ghiasvand and Kate, 2018).
It also considers as correct both partial matching
and extra tokens in a mention, as long as the match
has at least one token that overlaps with the span
of the gold-standard mention.

We report NER metrics by evaluating the out-
put of this component before being fed to the ED
module of the pipeline.

The results for the ED component are calculated

based on the results obtained at the end of the
pipeline, in other words, the final link produced
by the disambiguation model after receiving the
mentions detected by the NER phase. In this case,
we only use strict metrics, denoting that the output
prediction must be the same as the gold-standard
concept to be considered correct. Although a re-
laxed metric could also be employed by evaluating
the KB’s relationship tree between the concepts,
such evaluation falls out of the scope of this study
as it may mask the performance impact caused by
the NER phase performance.

All reported metrics are averaged for all runs
on each instance i of Dn(l) (noisy dataset on the
referring noise level l). Therefore, an average of
ten runs per noise level.

3.3 NER mention matching types

While the analysis based exclusively on the perfor-
mance metrics scores allows us to grasp the trend of
boundary relaxation effect in model output quality,
these metrics mask distinct kinds of NER mistakes
behind a single value.

We classify mention detection in six matching
types and report their output percentage on each
evaluated model. An example sentence for each
matching type is shown in Appendix A.2).

Exact match Both detected mention boundaries
match the NE mention boundaries.

Exceeding match The detected mention contains
all the NE mention text and also unnecessary neigh-
bor words.

Partial match NE mention is not completely de-
tected, but at least a fragment was found.

Invalid match The NER component extracts a
span of text where there is no real NE.

Missing match The NER component detects no
part of an existing NE mention.
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4 Experimental Setup

Dataset As our dataset, we use AIDA CoNLL-
YAGO (Hoffart et al., 2011). This dataset is an
extension of the well-known CoNLL-2003 dataset
(Tjong Kim Sang and De Meulder, 2003), and it
is vastly used for EL benchmarks. It comprises
newswire articles from Reuters, containing 1,393
articles with 27,820 NE mentions linkable to its
corresponding YAGO2 ID and Wikipedia article
webpage. Training and validation sets contain 946
and 216 articles, respectively. Test set has 231
articles.

Models We executed our experimental procedure
in three EL pipelines. We selected two SoTA ap-
proaches and also developed our own method:

(1) Highly Parallel Autoregressive Entity Link-
ing with Discriminative Correction (HPAELDC)
(De Cao et al., 2021)2:

An end-to-end model for autoregressive entity
linking available under MIT license. It comprises a
Longformer encoder, a mention detection module
including feed-forward Neural Networks, and an
ED component based on a Long Short-Term Mem-
ory network for candidate generation and ranking.
The whole model has a total of 202M parameters.
As reported by the authors, this model achieves an
F-score of 0.85 for Entity Linking on the AIDA
CoNLL-YAGO dataset. Even though the authors
present it as an end-to-end model, the NER and ED
modules are separated components. Therefore, we
could compute metrics for each step individually.

(2) Language Understanding with Knowledge-
based Embeddings (LUKE) (Yamada et al., 2020)3:

LUKE is a contextualized representation of
words and entities based on a transformer. This
model can perform multiple tasks, such as NER,
relation classification, or question-answering. It is
available under the Apache License 2.0.

While available in multiple variants, in this study
we use LUKE (base), which has a total of 253M
parameters. In the NER task it achieves F-score
of 0.94, and 0.95 for ED on the AIDA CoNLL-
YAGO dataset. Since this framework is composed
by modules that accomplish different tasks, we
can independently create an EL pipeline using the
available NER and ED components.

2https://github.com/nicola-decao/
efficient-autoregressive-EL

3https://github.com/studio-ousia/luke

As reported in the original paper (Yamada et al.,
2022), one of LUKE’s ED model limitations is not
being able to handle out-of-vocabulary entities, we
replace expanded entities in the model’s vocabu-
lary file before training. In case of an entity being
expanded differently in two or more instances, we
use the shorter of all variants.

(3) VanillaNER 4:
Our developed NER model is intended to be used

as a baseline for comparison. This model aims to
simulate a simple and low-effort approach. We start
from a pre-trained bert-base-cased model (Devlin
et al., 2019), which has around 110M parameters,
and fine-tune it using our dataset instances. The
base model is publicly available in the Hugging-
Face5 platform, under Apache License 2.0. As we
only developed the NER component, we feed the
output of our model to LUKE’s ED model, trained
on the same Dn(l,i) instance, to compute disam-
biguation scores.

Training Parameters We used a server comprised
of two NVIDIA Quadro RTX 8000 GPUs for
model training. We report all used parameters and
computational time needed in Appendix A.3.

For both SoTA models (1 and 2), we use the imple-
mentation released by the authors and also apply
the default training parameters disclosed in the re-
ferring papers.

5 Results and Discussion

In this section, we present the experimental results
of our case study. Appendix A.4 presents a sum-
mary of the computed evaluation metrics after the
processing of the test set by the trained models in
NER and ED phases, respectively. We purposefully
omit some noise levels for easier visualization, pre-
senting some checkpoints to allow comparison.

5.1 NER performance analysis
In an overall analysis of the strict metrics, we ob-
serve that all models present a similar behavior,
with a massive performance drop as boundary-
expanded mentions are introduced into the training
set. However, by examining the curves shaped by
the evaluation points, shown in items a, b and c of
Figure 4, we can highlight some aspects.

We noted that the models show some robust-
ness against the boundary relaxation noise. While

4Implementation available at: https://github.com/
gabrielandrade2/VanillaNER

5https://huggingface.co
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Figure 4: Performance scores for HPAELDC (items a, d and g), LUKE (items b, e and h) and VanillaNER (items c,
f and i) across various dataset noise levels. Dashed lines represent the F-score on the Original dataset training.

HPAELDC (Fig. 4.a) appears to be more suscep-
tible to noise, LUKE (Fig. 4.b) and VanillaNER
(Fig. 4.c) keep nearly unaltered performance up to
the point where 40% of the total mentions in the
training set were expanded (less than 8% and 3%
of performant e degradation, respectively).

From this point, an accentuated performance de-
cline is perceived in all cases. Yet, the point where
the model’s score plummets varies between the ap-
proaches. For instance, LUKE loses over 42% of
its performance in the 50-70% range. Meanwhile,
HPAELDC, despite the initial decay, has massive
degradation in the 70-100% noise range, with over
70% relative performance drop.

Considering the relaxed metrics presented in Fig-

ure 4, items d to f, we can remark on the distinct be-
havior of all systems. We observed that both SoTA
approaches show a greater performance drop than
our baseline model when considering inaccurate
boundary extraction. In this scenario, VanillaNER
conveys only a small relative degradation, even in
noisier training environments (up to 15% lost in F-
score when all training mentions were expanded).
The relatively elevated precision rates portrayed
by the SoTA models denote the need for a higher
confidence level before indicating a NE detection.

5.2 NER matching type analysis

To better interpret the performance trend, we fur-
ther inspected the models’ output predictions and
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Figure 5: NER matching types for various dataset noise levels. Values are an average from the results of 10 evaluated
models and presented in percentages in relation to the total number of gold mentions.

investigated the matching types produced by each
model. From the results shown in Figure 5 (com-
plete table is presented in the Appendix A.5), we
noticed that both SoTA models tend to miss NE
mentions as noisier training dataset instances are
applied, in comparison to our approach. This find-
ing also explains the heavier drop in the relaxed
scores demonstrated by them. On the other hand,
as the noise level is raised, VanillaNER (Fig 5.c)
increasingly outputs a higher number of exceeding
matches, indicating that it successfully adapts to the
new domain presented by the boundary-expanded
entities and outputs mentions that are closer to what
is observed in the training and validation sets.

Also, it is interesting to remark that although the
missed-mention rate of this approach increases, it
is nowhere near the level presented by the other
two models. This distinct behavior is showcased in
Table 2, where we present the output processing of
an example document.

We attribute the high rate of missing mentions to
the greater complexity of SoTA NER approaches.
We believe that the complexity of these models,
while improving resilience and unlocking higher
performance levels in an optimal scenario, hinders
their ability to fit into unseen domains. As far as
our results show, the SoTA models never actually
learn the peculiar boundary information encoded
in the boundary-expanded annotations, attempting
to minimize the noise effect in its language model.

5.3 ED performance analysis

ED performance evaluation, presented in Figure 4,
items g to i, have scores bounded to how well the
earlier NER phase performed, as it feeds the disam-
biguation component. We are aware bad NER out-
put quality may obfuscate the isolated evaluation

of ED methods, yet the results give an overview of
the pipeline as a whole.

The observed metrics indicate that the disam-
biguation step is sensitive to imprecise boundaries.
In contrast to NER models, ED is not resilient
against noise. The increasing ratio of boundary-
expanded mentions directly correlates to lower re-
call scores in all tested approaches. This charac-
teristic denotes that boundary relaxation severely
affects the overall capability of recognizing the
entity. It can be attributed in part due to missing
mention detections but also to the ED model’s inca-
pability of generating candidate entities for linking.
This can be seen in the example shown in Table 2,
where many detected mentions are associated with
the NIL tag, denoting that not even a potential link
to the KB was found.

In further analysis of the output from a few sen-
tences, we verified a similar scenario for both ED
approaches. Even though the overall noise level of
the training dataset is elevated, whenever the men-
tions fed by the NER component have the exact
boundaries as the mention span both HPAELDC
and LUKE were still able to confidently predict the
correct KB entity, as shown by the high precision
scores.

5.4 ED vocabulary dependency

To better understand the ED component behavior
under different inputs, we computed the accuracy
score separately for each valid NER matching type
(Exact, Exceeding, and Partial). For the sake of
simplicity, we averaged the scores across all pre-
dictions from all different noise levels.

We remark on the responses both evaluated ED
approaches have when dealing with non-exact men-
tion matches, depicted by the results in Table 3.
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Original Annotation

[Japan] (Japan National Football Team) began the defence of their [Asian Cup] (1996
Asian Cup) title with a lucky 2-1 win against [Syria] (Syria National Football Team)
in a Group C championship match on Friday. [China] (People’s Republic of China)
controlled most of the match [...] until the 78th minute when [Uzbek](Uzbekistan
National Football Team) striker [Igor Shkvyrin] (Igor Shkvyrin) took advantage [...].

HPAELDC
(De Cao et al., 2021)

[Japan began] (Japan National Rugby Union Team) the defence of their [Asian Cup
title] (Coppa Italia) with a lucky 2-1 win against Syria in a [Group C] (Middle East)
championship match on Friday. [China] (People’s Republic of China) controlled most
of the match [...] until the 78th minute when [Uzbek] (Uzbekistan National Football
Team) striker Igor Shkvyrin took advantage [...].

LUKE
(Yamada et al., 2020)

Japan began the defence of their Asian Cup title with a lucky 2-1 win against [Syria]
(Syria National Football Team) in a Group C championship match on Friday. [China]
(People’s Republic of China) controlled most of the match [...] until the 78th minute
when Uzbek striker Igor Shkvyrin took advantage [...].

VanillaNER + LUKE

[Japan began] (NIL) the defence of their [Asian Cup title] (NIL) with a lucky 2-1 win
[against Syria in] (Syria National Football Team) a [Group C] (NIL) championship
match on Friday. [China controlled] (Syria National Football Team) most of the
match [...] until the 78th minute when [Uzbek] (Uzbekistan National Football Team)
[striker Igor Shkvyrin took] (Igor Shkvyrin) advantage [...].

Table 2: Comparison of an example document processed by all models trained with a dataset at 70% of noise level.
Detected spans are presented in brackets with extra words matched by the NER component marked in blue, whilst
undetected and incorrect mentions are highlighted in red. The KB unique identifier is shown in parenthesis and
underlined. Incorrectly recognized identifiers are highlighted in orange.

Both models exhibit low effectiveness when at-
tempting to link NER detections with imprecise
boundaries, as given by the low Exceeding and
Partial match accuracy values when compared to
Exact matches.

Upon a closer error analysis of the mistakes for
non-exact matches, we noted that the evaluated ED
models are strongly reliant on the provided entity
vocabulary, especially for the candidate generation
step. For most of the Exceeding matches predicted,
HPAELDC produced a set of candidates that didn’t
slightly resemble the mention surface form, while
LUKE failed to even list potential matches from
the KB. On the other hand, Partial matches can
still be matched correctly, as the lack of one or
more words from the mention surface form can
still produce associations within the known vocab-
ulary. We believe these effects could be mitigated
by an approximate string retrieval method, though
prediction time may be affected on such large KBs.

The high values for Exact match evaluation indi-
cate that both approaches correctly identify entities
even in noisy environments, given that the provided
mention spans have precise boundaries. Important
to note that when ranking the entity candidates not
only the surface form is used, but also the NE con-

text is crucial for accurate prediction. Yet, training
in a noisy environment seems to have an insignifi-
cant effect on the model’s contextual understanding
as long as the mention boundaries and, therefore,
the NE surface form matches the model’s vocabu-
lary.

Model
Matching type

Exact Exceeding Partial

HPAELDC 0.827 0.342 0.528
LUKE 0.925 0.015 0.409
VanillaNER

+ LUKE
0.874 0.048 0.152

Table 3: ED accuracy by NER matching type. Values
are an average of the overall produced results (Original
dataset + all noise levels.

6 Conclusion

In this study, we investigated the impact of relaxed
entity boundary annotation on model performance
by conducting a case study with three different
EL approaches. We introduced noise into a popu-
lar dataset by expanding the boundaries of some
annotated entity mentions, trained models on the
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produced noisy data, and evaluated their output.
For NER components, we verified that model

complexity plays a significant role in how its in-
fluenced by noise. While complex models may
achieve higher performance, they had reduced flex-
ibility to adapt to the noisy environment, thus being
outperformed by our simpler approach in this sce-
nario. We also noted that those models are resilient
against the boundary-expanded environment un-
til more than half of the training annotations are
"noisy".

We also observed that ED components are sen-
sitive to imprecise entity mentions and strongly
reliant on their training vocabulary. We show that
both ED approaches evaluated can still correctly
predict identifiers even when trained in noisy envi-
ronments, given that the detected mention bound-
aries are precise. On the other hand, when bound-
ary imprecision produces out-of-vocabulary men-
tions, it hinders performance heavily.

6.1 Future Work

Our goal with this case study was to assess the
impact suffered by an EL system without the ex-
pense of a real annotation process. Considering
that we now understand the impact, we intend to
continue investigating the possible gains in speed
and workload reduction by applying a boundary-
relaxed guideline to a corpus annotation process.

We also intend to evaluate the boundary relax-
ation effect in specific language domains, such as
medical texts. Since EL in medical vocabulary is
commonly supported by standardized terminolo-
gies, typically restricted to a smaller set of words,
evaluating the resilience of other linking method-
ologies (approximate string matching, for instance)
to such noise would also be interesting.

Limitations

We acknowledge that the randomness of our noise
generation procedure may generate a new entity
span that can be considered unnatural (for exam-
ple, adding prepositions to a city name). Such
aspect of our method may have some impact on the
performance levels measured, as distinct types of
annotation mistakes can affect model performance
differently. In this case, added noisy words that are
improbable to be part of the entity may be more
easily “ignored” by the model, while ambiguous
additions can lead to a mistake. Still, this approach
can be used as a baseline and a more sophisticated

performance assessment using more complex mod-
eling or even real annotation inaccuracy could be
done in future work.

In addition, the constraint of expanding the men-
tion boundary by a single token should be also
taken into consideration. The reason for this de-
sign choice was not only based on narrowing the
analysis spectrum by reducing the amount of data
we had to investigate but also on time constraints,
as the training procedure of multiple models on
an even larger number of noisy dataset instances
would escalate quickly. However, now conscious
of the behavior relaxed annotation has on model be-
havior, it would be interesting to evaluate how this
tendency is transformed by introducing even more
unnecessary adjacent context into the annotations.

A last limitation that can be pointed out is that we
only evaluated the noise effect in a single dataset.
There are other widely adopted benchmarks for EL,
such as MSNBC (Cucerzan, 2007) and ClueWeb
(Cao et al., 2007), which could be used in this work.
However, we feel it would be more interesting to
juxtapose with other textual domains, especially
those with specific jargon and NEs, such as the
medical domain.
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A Appendix

A.1 Amount of entities unified by boundary expansion

Noise Level Merged entities
10% 0.40%
20% 0.99%
30% 1.81%
40% 2.89%
50% 4.19%
60% 5.74%
70% 7.43%
80% 9.36%
90% 11.67%
100% 14.04%

Table 4: Percentage of entities that were unified by the boundary expansion process for each noise level.

A.2 Example of matching types

Match type Example
Exact match [ Yokohama F.C. ] striker [ Kazuyoshi Miura ] scored twice.
Exceeding match [ Yokohama F.C. ] striker [ Kazuyoshi Miura scored ] twice.
Partial match [ Yokohama F.C. ] striker [ Kazuyoshi ] Miura scored twice.
Invalid match [ Yokohama F.C. ] striker Kazuyoshi Miura [ scored ] twice.
Missing match [ Yokohama F.C. ] striker Kazuyoshi Miura scored twice.

Table 5: Example of matching types. Correct entity spans are marked in bold, blue and red bracket represent
different mention detections

A.3 Training Parameters

HPAELDC
(De Cao et al., 2021)

LUKE
(Yamada et al., 2020)

VanillaNER

Max epochs 100 5 (NER) / 2 (ED) 10
Training batch size 32 8 (NER) / 16 (ED) 16

Learning rate
1e-4 (Longformer)/
1e-3 (other components)

1e-5 (NER) /
2e-5 (ED)

1e-5

Optimizer Adam AdamW AdamW

Model selection
Highest validation
micro F-score

Highest validation
accuracy

Lowest validation
loss

Training time (h) 1.5 3 0.5

Table 6: Hyper-parameters used in the training procedure of the experiment.
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A.4 Detailed scoring results

Model Noise level
Strict Relaxed

Precision Recall F-score Precision Recall F-score

HPAELDC
(De Cao et al., 2021)

Original 0.922 0.948 0.935 0.930 0.957 0.943
10% 0.885 0.951 0.917 0.905 0.972 0.937
40% 0.826 0.857 0.841 0.873 0.881 0.877
70% 0.749 0.615 0.675 0.836 0.568 0.676
100% 0.102 0.010 0.018 0.788 0.076 0.139

LUKE
(Yamada et al., 2020)

Original 0.964 0.972 0.968 0.982 0.989 0.985
10% 0.961 0.966 0.963 0.981 0.986 0.983
40% 0.942 0.846 0.891 0.982 0.885 0.931
70% 0.721 0.161 0.263 0.772 0.333 0.466
100% 0.030 0.014 0.019 0.603 0.279 0.382

VanillaNER

Original 0.916 0.937 0.927 0.945 0.962 0.954
10% 0.915 0.934 0.924 0.946 0.961 0.954
40% 0.887 0.909 0.898 0.939 0.956 0.947
70% 0.396 0.494 0.440 0.785 0.901 0.839
100% 0.075 0.079 0.077 0.805 0.828 0.816

Table 7: Summary of NER evaluation scores for various dataset noise levels. Values are an average of the scores
from the evaluation of 10 models. The highest values for each model are marked in bold.

Model Noise Level Precision Recall F-score

HPAELDC
(De Cao et al., 2021)

Original 0.843 0.867 0.855
10% 0.798 0.858 0.827
40% 0.745 0.746 0.746
70% 0.650 0.413 0.505
100% 0.376 0.007 0.014

LUKE
(Yamada et al., 2020)

Original 0.921 0.889 0.905
10% 0.924 0.913 0.918
40% 0.910 0.580 0.709
70% 0.801 0.145 0.246
100% 0.608 0.078 0.138

VanillaNER
+ LUKE

Original 0.913 0.882 0.897
10% 0.910 0.834 0.870
40% 0.899 0.707 0.792
70% 0.823 0.389 0.528
100% 0.772 0.190 0.305

Table 8: Summary of ED evaluation scores for various dataset noise levels. Values are an average of the scores from
the evaluation of 10 models. The highest values for each model are marked in bold.
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A.5 Breakdown of NER matching types

Model Noise level
Matching Type (%) # of

mentionsExact Exceeding Partial Invalid Missing

HPAELDC
(De Cao et al., 2021)

Original 88.34 0.37 0.31 6.81 4.16 4813
10% 86.18 1.58 0.26 9.38 2.61 4949
40% 71.72 3.83 0.52 13.60 10.33 5191
70% 45.88 4.14 5.46 10.80 33.72 5028
100% 2.08 5.05 2.13 1.60 89.14 4558

LUKE
(Yamada et al., 2020)

Original 96.28 0.97 0.67 1.51 0.58 4993
10% 95.56 1.13 0.86 1.63 0.81 4941
40% 92.95 0.99 0.77 1.58 3.70 4934
70% 8.68 8.86 1.27 2.13 79.07 5360
100% 0.31 22.66 0.79 14.90 61.34 6316

VanillaNER

Original 92.18 2.05 1.05 1.05 3.68 4937
10% 91.94 2.32 1.06 1.09 3.60 4939
40% 88.88 4.93 0.79 1.07 4.33 4938
70% 40.39 37.09 0.36 0.93 21.23 4932
100% 8.94 83.75 0.36 1.01 5.94 4935

Table 9: Breakdown of the NER prediction output by matching types.
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