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Abstract

Weakly supervised vision-and-language pre-
training (WVLP), which learns cross-modal
representations with limited cross-modal super-
vision, has been shown to effectively reduce
the data cost of pre-training while maintain-
ing decent performance on downstream tasks.
However, current WVLP methods use only lo-
cal descriptions of images, i.e., object tags,
as cross-modal anchors to construct weakly-
aligned image-text pairs for pre-training. This
affects the data quality and thus the effective-
ness of pre-training. In this paper, we pro-
pose to directly take a small number of aligned
image-text pairs as anchors, and represent each
unaligned image and text by its similarities to
these anchors, i.e., relative representations. We
build a WVLP framework based on the rela-
tive representations, namely RELIT1, which
collects high-quality weakly-aligned image-
text pairs from large-scale image-only and
text-only data for pre-training through relative
representation-based retrieval and generation.
Experiments on four downstream tasks show
that RELIT achieves new state-of-the-art re-
sults under the weakly supervised setting2.

1 Introduction

Vision-and-language pre-training (VLP) (Chen
et al., 2020; Zhang et al., 2021; Kim et al., 2021;
Radford et al., 2021; Wang et al., 2022a) has
received increasing attention in recent years for
its great success on various vision-and-language
tasks, such as visual question answering (Antol
et al., 2015), cross-modal retrieval (Plummer et al.,
2015), and image captioning (Lin et al., 2014).
Different from other foundation models (Bom-
masani et al., 2021) such as BERT (Devlin et al.,
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1Relative rEpresentation-based Language-Image pre-
Training

2Code is available at https://github.com/THUNLP-MT/
RELIT.

2018) and MAE (He et al., 2022) that only require
single-modality data, VLP models rely on large-
scale aligned image-text datasets (Lin et al., 2014;
Sharma et al., 2018; Ordonez et al., 2011; Krishna
et al., 2017) to bridge the gap between the two
modalities, which requires either extensive manual
annotations or heavy data cleaning processes (Lin
et al., 2014; Sharma et al., 2018). The natural dif-
ficulty of obtaining paired data hinders the scale
of cross-modal datasets, while the success of uni-
modal pre-trained models implies the potential to
exploit the unlabeled data for pre-training. There-
fore, besides collecting more paired data, it is a
worthwhile direction to explore how to utilize low-
cost unimodal data with limited cross-modal super-
vision, i.e., weakly supervised vision-and-language
pre-training (WVLP).

The core challenge of WVLP is to establish the
connection between the two modalities without us-
ing a large number of aligned image-text pairs. Ex-
isting works on WVLP (Li et al., 2021b; Zhou et al.,
2022; Wang et al., 2022b; Chen et al., 2022) usually
address this by taking object tags as anchors as they
are in the form of text and cover the information
of the image at the same time. They use tags to
collect weakly-aligned image-text pairs from un-
aligned unimodal data for pre-training and achieve
competitive results compared to standard VLP mod-
els, demonstrating that tags can effectively bridge
the gap between the two modalities.

Despite its success, using object tags as an-
chors suffers from two limitations. First, tags are
merely local descriptions instead of a complete
representation of the whole image and text. Sec-
ond, the vocabulary of tags only includes com-
mon concepts, making it difficult to represent im-
ages with complex semantics (Zhou et al., 2022).
These limitations could deteriorate the quality of
the weakly-aligned data (and possibly pre-trained
models) based on the object tags. Therefore, to fur-
ther improve the performance of WVLP, we need
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to reconsider the choice of the cross-modal anchors
and find a better approach to measure the alignment
between an image and a text.

Recently relative representation has been
proven to be effective in representation learn-
ing (Moschella et al., 2022) and zero-shot image
classification (Norelli et al., 2022). The main idea
is to represent a data point as its similarities to
a set of selected data points (anchors). We ar-
gue that relative representations can be a good
choice for WVLP because (1) they are built on
the semantic similarities of well-trained neural
network representations rather than on superficial
human-designed features like tags and (2) they
are modality-invariant by design because they re-
flect the intrinsic relationships between data points,
which naturally enables communication between
different modalities.

In this paper, we propose RELIT, a novel relative
representation-based WVLP framework. Instead
of object tags, we directly use a minuscule amount
(compared to pre-training data) of available image-
text pairs as anchors, and create a common relative
representation space with respect to the anchors for
unaligned images and text. This allows us to esti-
mate the semantic similarity of any image-text pair
by calculating their distance in the relative repre-
sentation space. In addition, we design two relative
representation-based data collection methods that
can retrieve or generate weakly-aligned image-text
pairs from unaligned unimodal corpora. Experi-
mental results prove the effectiveness of relative
representations in bridging the gap between image
and text modalities. Moreover, our work reveals
a promising research direction to establish cross-
modal alignments by finding and aligning invariant
data structures in different modalities, which may
inspire future works on multimodal pre-training.

Our main contributions are as follows:

• We introduce the idea of relative representa-
tions in WVLP and demonstrate its superiority
over object tags in effectively bridging the gap
between different modalities.

• We propose a relative representation-based
WVLP framework that can both retrieve and
generate weakly-aligned image-text pairs for
learning cross-modal representations.

• Extensive experiments on four diverse vision-
and-language tasks show that our proposed

framework outperforms strong WVLP base-
lines and further closes the performance gap
between WVLP and standard VLP.

2 Related Work

Relative Representations. The concept of rel-
ative representations is initially proposed by
Moschella et al. (2022). They show that the rel-
ative representations obtained from the representa-
tion spaces of different models are similar, which
enables comparison and alignment between latent
embeddings of different learning models. Norelli
et al. (2022) explore relative representations in a
multimodal scenario to align images and text for
zero-shot image classification tasks. Specifically,
they use 1.6M image-text pairs to build the rela-
tive representation space, which is comparable to
the size of the data used in pre-training. To the
best of our knowledge, our work is the first that
exploits relative representations for weakly super-
vised cross-modal pre-training.

Weakly Supervised Vision-and-Language Pre-
training. Li et al. (2021b) first explore WVLP
with unaligned image and text corpora and use ob-
ject tags directly as pseudo captions for images to
bridge the vision and language modalities. Zhou
et al. (2022) use tags to retrieve weakly-aligned cap-
tions for each image and then apply multi-granular
alignment tasks on this retrieved dataset. Wang
et al. (2022b) propose the cross-modal CutMix to
replace some grounded words with regions that
have the same tags, and construct a multimodal
view of the text-only sentences for pre-training.
Chen et al. (2022) introduce an end-to-end frame-
work with a referring expression matching task.
Different from all of these WVLP works that utilize
tags as anchors to provide object-level cross-modal
alignment signals, our work uses relative represen-
tations to capture the overall semantic similarity
between each image and text and demonstrates its
effectiveness in WVLP.

Data Augmentation. Data augmentation has
been extensively employed in various computer
vision (Zhang et al., 2018; Cubuk et al., 2018) and
natural language processing tasks (Sennrich et al.,
2015; Guo et al., 2020). In the area of VLP, Li et al.
(2022) augment the noisy web-crawled aligned data
by filtering low quality image-text pairs and gen-
erating synthetic captions with an image captioner
fine-tuned on clean image-text pairs. In this work,
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we adopt a similar filter-and-generate process in the
construction of weakly-aligned data for WVLP, but
our relative representation-based pseudo caption
generator is fine-tuned on the text-only dataset.

3 Method

3.1 Relative Representations
Figure 1a provides an illustration of relative rep-
resentations. The basic idea is to represent a data
point as its similarities to other data points (an-
chors). In this work, we consider the relative rep-
resentations with cross-modal anchors, which has
been shown its potential in zero-shot image classi-
fication (Norelli et al., 2022).

Formally, given a set of M cross-modal anchors
A = {a1, a2, . . . , aM} where ai = (x̃i, ỹi) is an
image-text pair, x̃i is the image and ỹi is the text.
For an image x , a pre-trained image encoder EI is
used to calculate the similarity between x and each
anchor ai as:

sim(x, ai) = cos(EI(x), EI(x̃i)) (1)

where cos(·, ·) is the cosine similarity, and the rela-
tive representation of x is defined as:

rA(x) = (sim(x, a1), . . . , sim(x, aM )) (2)

Similarly, the relative representation of a text y is
defined as rA(y) with a pre-trained text encoder
ET to compute sim(y, ai) = cos(ET (y), ET (ỹi)).

Since the relationship between data points is ob-
jective, the relative representations obtained by dif-
ferent models should be similar, despite their in-
dependent representation spaces (Moschella et al.,
2022). In other word, an image and its correspond-
ing text should share similar relative representa-
tions. This allows us to leverage it to construct
weakly-aligned image-text pairs from large-scale
unpaired image and text datasets.

3.2 Weakly-Aligned Image-Text Pairs
Retrieval

While there are no large-scale aligned image-text
pairs available, having a joint input of image and
text, even if they are not aligned, is still necessary
for WVLP (Zhou et al., 2022; Wang et al., 2022b).
To achieve this, inspired by previous work (Zhou
et al., 2022), we construct a weakly-aligned image-
text corpus from the unpaired unimodal corpora by
retrieving semantically related sentences for each
image based on the relative representations.

Figure 1b illustrates the process of our weakly-
aligned image-text pairs retrieval method. First
we collect a very small amount of image-text pairs
as cross-model anchors (denoted by pairs of con-
nected squares in the figure). Note that the number
of anchors is negligible compared to the image-
text pairs used in standard VLP, which keeps our
method in a weakly supervised setting. Then, for
all images and text we compute their relative repre-
sentations with respect to the anchors, which only
involves similarity computation within each modal-
ity using unimodal pre-trained encoders. We take
the cosine distance between the relative represen-
tations of each image and text as their semantic
relevance score and retrieve the best matching text
with the highest score for each image to construct
a weakly-aligned image-text pair.

Specifically, we randomly sample M image-text
pairs as anchors A from an aligned image-text
dataset (e.g., Conceptual Captions (Sharma et al.,
2018)) Dalign (M ≪ |Dalign|). Given unaligned im-
age dataset DI and text dataset DT , we construct
a retrieved weakly-aligned image-text pair dataset
Dwa = {(x1, ŷ1), . . . , (xN , ŷN )} where N = |DI |
and ŷi is the retrieved caption from DT for image
xi defined as:

ŷi = argmax
y∈DT

cos(rA(xi), rA(y)) (3)

We use the off-the-shelf ViT (Dosovitskiy et al.,
2020) and Sentence-BERT (Reimers et al., 2019)
to encode images and text, respectively.

Our retrieval method with relative representa-
tions can effectively improve the quality of re-
trieved weakly-aligned dataset compared to tag-
based retrieval. This is because relative represen-
tations tend to capture the overall semantics while
tags describe only local information of the image.
As a result, our method can better measure the
semantic similarities between images and text, es-
pecially in cases where tag-based retrieval fails to
distinguish between images and text that have dif-
ferent semantics but share the same objects.

3.3 Pseudo Caption Generation
Although relative representation-based retrieval
can construct reasonable weakly-aligned image-
text pairs for WVLP, there are still cases where
non-relevant text are retrieved. This could hap-
pen especially when the unaligned unimodal cor-
pora are collected individually and for some images
there are no proper captions in the corpora.
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Figure 1: (a) Illustration of relative representations (Section 3.1), where three anchors (denoted by squares) are
selected and the relative representation of the data point (denoted by circles) is a 3D vector with each dimension
representing its similarity to the corresponding anchor. (b) Image-text retrieval based on the relative representations
with cross-modal anchors (Section 3.2). Data of the same modality are represented by the same color.

To alleviate this problem, we propose to directly
generate pseudo captions for these images. As
shown in Figure 2, we first adapt a well-trained text
generator to perform conditional text generation
given relative representations. Then, since images
and text share a common relative representation
space, we can directly use this generator to pre-
dict the pseudo caption for an image based on its
relative representation.

Specifically, given the text-only dataset DT , for
each text y ∈ DT , we derive a prefix P ∈ RM×d

from its relative representations rA(y) as:

P = [rA(y)]TWr + [ET (ỹ1), . . . , ET (ỹM )]We

(4)
where ET (ỹi) ∈ RdT is the encoder output of
the text in the i-th anchor, Wr ∈ R1×d and
We ∈ RdT×d are two learnable projection matri-
ces. We fine-tune a pre-trained GPT-2 model (Rad-
ford et al., 2019) to learn to predict y given P, and
name the fine-tuned model as Rel2Cap. To further
save computational cost, we only consider the en-
tries in P that correspond to the top K anchors
with the highest similarities as the model input.

After training, the model can be used to pre-
dict the pseudo caption for an image x with low
quality retrieved captions by constructing an input
prefix P

′
based on the relative representations of

the image, i.e., rA(x). The definition of P
′

is sim-
ilar to Equation 4, except that rA(y) is replaced
by rA(x). We define a quality score s(x, ŷ) =
cos(rA(x), rA(ŷ)) for each weakly-aligned image-
text pair (x, ŷ) collected both by retrieval and gen-
eration, and replace the retrieved pair with the gen-
erated one if the latter has a higher quality score.

So far, we have discussed how we collect a

Rel2Cap

a bicycle parked on …

…+ + +

bicycle parked on ….     

Rel2Cap

Anchor Text
Embeddings

Image Relrep
Embeddings

a bicycle parked on …

Training

Inference

Text Relrep
Embeddings

Anchor Text
Embeddings

…+ + +

Figure 2: An illustration of the training and inference
of the pseudo caption generator. In the training process,
the model learns to generate text from its relative rep-
resentation on the text-only dataset. During inference,
the model is directly employed to predict the pseudo
caption for an image from its relative representation.

weakly-aligned image-text dataset Dwa from the un-
paired unimodal corpora by relative representation-
based retrieval and generation. Next, we describe
how we use these data for WVLP.

3.4 Pre-training

Model Overview. We use the same model ar-
chitecture as Chen et al. (2022) that consists of
a vision and a multimodal encoder. For each
weakly-aligned image-text pair, the image is en-
coded with the vision encoder and the outputs are
fed to the multimodal encoder along with the text
embeddings to obtain a multimodal representation.
Such an end-to-end framework has been proven
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to be more effective compared to others that use
region features from external object detectors both
in standard VLP and WVLP. We apply three pre-
training objectives to learn multimodal represen-
tations from the collected weakly-aligned image-
text pairs: masked tag prediction (MTP), masked
language modeling (MLM) and image text match-
ing (ITM).

Masked Tag Prediction. This objective aims to
learn object-level cross-modal alignment from the
image-only data and their detected object tags. Fol-
lowing previous works (Li et al., 2021b; Chen et al.,
2022), we randomly mask out the tags with a prob-
ability of 15%, and then predict the masked tags
conditioned on the image and other unmasked tags.
Formally, given the image x ∈ DI and its detected
object tags t, the MTP objective is defined as:

LMTP = −Ex∈DI
logP (tm|t\m, x) (5)

where tm and t\m represents masked and un-
masked object tags, respectively.

Masked Language Modeling. To better fuse be-
tween the two modalities, the masked language
modeling objective is adopted to learn from the
joint image-text inputs from the weakly-aligned
corpora. Since the weakly-aligned pairs may con-
tain noise in the retrieved or generated text, we only
mask out and predict the noun phrases in the text
inspired by (Zhou et al., 2022). The MLM loss is
formulated as:

LMLM = −E(x,ŷ)∈Dwa logP (ŷm|ŷ\m, x) (6)

where ŷm and ŷ\m are masked and unmasked text.

Image Text Matching. ITM is a commonly
used objective for learning instance-level cross-
modal alignment in VLP, which aims to distinguish
whether an image-text pair is matched semantically.
We random replace the text in half of the image-text
pairs with another text to form training input, and
define the label of each pair as l ∈ {0, 1} where 1
indicates the pair is a match. The ITM objective is
to minimize the binary cross-entropy loss:

LITM = −E(x,ŷ)∈D′
wa
logP (l|x, ŷ) (7)

where D′
wa is the dataset after random replacement.

Relative Representation-Guided Training. To
further reduce the impact of the noisy image-text
pairs in the weakly-aligned dataset, we apply the

quality score s(x, ŷ) of each pair described in Sec-
tion 3.3 to LMLM and LITM to guide the training to
learn more from high-quality data:

LMLM = −E(x,ŷ)∈Dwas(x, ŷ) logP (ŷm|ŷ\m, x)

(8)

LITM = −E(x,ŷ)∈D′
wa
s(x, ŷ) logP (l|x, ŷ) (9)

4 Experiments

4.1 Datasets
We follow previous WVLP works (Li et al., 2021b;
Zhou et al., 2022; Wang et al., 2022b; Chen et al.,
2022) and conduct experiments in two different set-
tings, each containing an image-only dataset and
a text-only dataset. The first setting treats images
and text from Conceptual Captions (CC) (Sharma
et al., 2018) as individually collected unimodal
dataset without the alignment information. The
second setting uses images from CC and text from
BookCorpus (Zhu et al., 2015), which is a more re-
alistic scenario where images and text are gathered
separately from different sources.

4.2 Implementation Details
Relative Representations. We randomly select
8, 192 aligned image-text pairs from CC as an-
chors, yielding relative representations as vectors
of 8, 192 dimensions. To save computational cost,
inspired by Norelli et al. (2022), we only keep the
highest 50 dimensions and set the others to 0.

Weakly-Aligned Data Construction. We imple-
ment the retrieval system with the faiss (Johnson
et al., 2019) library. For each image we only re-
trieve the text with the best match score. For Rel-
Cap, we fine-tune GPT-2 with a learning rate of 5e-
5 and a batch size of 1, 024 for 5 epochs on the text-
only dataset. We generate 5 pseudo-captions for
each image using nucleus sampling with p = 0.9
which proved effective in synthetic caption gener-
ation (Li et al., 2022), and rank the results with
the quality scores. We also include the weakly-
aligned dataset based on tag-based retrieval in the
pre-training, as described in Zhou et al. (2022).

Pre-training. We use the same architecture as
Chen et al. (2022) which includes a 12-layer Swin-
Transformer (Swin B-384/32) (Liu et al., 2021)
as the vision encoder and a 12-layer Transformer
initialized from BERT-base (Devlin et al., 2018)
as the multimodal encoder. For object tags, we
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Model VQAv2 NLVR2 VE Flickr30k
Test-Dev Test-P Test R@1 R@5 R@10

Supervised (w/ Large-Scale Paired Image-Text Data)

VisualBERT (Li et al., 2019) 70.9 73.9 - 61.2 86.3 91.9
UNITER (Chen et al., 2020) 72.7 77.9 78.3 72.5 92.4 96.1
VinVL (Zhang et al., 2021) 76.0 83.1 - - - -
ViLT (Kim et al., 2021) 71.3 76.1 - 66.4 88.7 93.8
ALBEF (Li et al., 2021a) 74.5 80.5 80.3 82.8 96.7 98.4
METER-CLIP-ViTBASE (Dou et al., 2022) 77.7 83.0 81.2 82.2 96.3 98.3

Weakly Supervised (w/o Large-Scale Paired Image-Text Data)

U-VisualBERT (Li et al., 2021b) 70.7 71.0 - 55.4 82.9 89.8
U-VisualBERTVinVL (Zhou et al., 2022) 71.8 53.2 76.8 - - -
µ-VLA (Zhou et al., 2022) 72.1 73.4 77.3 - - -
VLMixer (Wang et al., 2022b) 72.7 73.9 - - - -
E2E-UVLP (Chen et al., 2022) 73.3 74.6 78.2 66.4 89.7 94.1

RELIT (Ours) 73.5 76.4 78.6 70.2 91.5 95.6

Table 1: Evaluation results on four V+L downstream tasks. All weakly-supervised models are pre-trained on
non-parallel images and text from CC.

Method VQAv2 NLVR2 VE Flickr30k
Test-Dev Test-P Test R@1 R@5 R@10

U-VisualBERT 70.5 71.2 - 54.4 82.2 89.2
µ-VLA 71.2 67.1 77.1 - - -
E2E-UVLP 73.5 73.7 77.9 65.6 90.3 94.7

RELIT (Ours) 73.6 74.8 78.2 67.7 90.4 95.0

Table 2: Experimental results on downstream tasks of pre-training with images from CC and text from BookCorpus.

utilize the off-the-shelf object detector provided by
VinVL (Zhang et al., 2021). We pre-train the model
with a total training step of 150k and a batch size
of 512. We use an AdamW optimizer (Kingma and
Ba, 2014) with an initial learning rate of 3e-5, and
the warm-up ratio is set to 10%. The pre-training
takes 3 days on 4 NVIDIA A100 GPUs.

Downstream Tasks. We follow previous works
and test our pre-trained model on four downstream
V+L tasks, including Visual Question Answer-
ing (VQAv2) (Goyal et al., 2017), Natural Lan-
guage for Visual Reasoning (NLVR2) (Suhr et al.,
2018), Visual Entailment (VE) (Xie et al., 2019)
and image retrieval (Flickr30k) (Plummer et al.,
2015). Details of the task settings and the fine-
tuning strategies are in Appendix A.

4.3 Main Results

We first compare our proposed RELIT with previ-
ous methods pre-trained with unaligned images and
text from CC. Note that these baselines only utilize
object tags. Table 1 shows the experimental results
on the downstream tasks. Our method outperforms
previous WVLP methods on all downstream tasks.

Specifically, RELIT outperforms previous best re-
sults by 1.8% on NLVR2 and by 3.8% on the im-
age retrieval task (Flickr30k), both of which benefit
from the instance-level cross-modal alignment ca-
pability of the pre-trained model (Chen et al., 2020;
Zhou et al., 2022). This suggests that our relative
representation-based method improves the align-
ment quality of weakly-aligned image-text pairs
compared to previous tag-based approaches, result-
ing in improved cross-modal alignment capability
of the pre-trained model.

When pre-trained with images from CC and text
from BookCorpus, as shown in Table 2, our pro-
posed RELIT also achieves the best results on all
downstream tasks. This demonstrates that the pro-
posed relative representation-based methods can
effectively mine useful cross-modal alignment in-
formation for multimodal pre-training from image-
only and text-only data, even if they are collected
separately from different sources.

4.4 Ablation Study

We conduct an ablation study to verify the effective-
ness of the proposed relative representation-based
retrieval and generation. Table 3 shows the results.
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Pre-training Data VQAv2 NLVR2 VE Flickr30k
Test-Dev Test-P Test R@1 R@5 R@10

Retrv (Tag) 73.2 74.5 77.8 66.3 89.3 94.2
Retrv (Relrep) 73.4 74.9 78.3 67.5 90.5 94.9
Retrv (Tag) + Retrv (Relrep) 73.5 75.3 78.4 67.3 90.4 94.6
Retrv (Tag) + Retrv (Relrep) + Rel2Cap 73.5 76.4 78.6 70.2 91.5 95.6

Table 3: Comparison of pre-training with different kinds of pseudo-aligned data.

Method VQAv2 NLVR2 VE Flickr30k
Test-Dev Test-P Test R@1

RELIT 73.5 76.4 78.6 70.2
- Guided 73.2 76.1 78.5 70.0

Table 4: Ablation study on relative representation-
guided training.

All models are pre-trained on weakly-aligned data
derived from unaligned CC images and text. As we
can see from the table, compared to tag-based re-
trieved data (Retrv (Tag)), pre-training with relative
representation-based retrieved data (Retrv (Relrep))
performs better on downstream tasks. Besides, the
model achieves the best results when the generated
pseudo captions (Rel2Cap) are included during pre-
training. We believe this is because the original CC
dataset contains noisy captions, such as alt-texts
that do not describe the image contents, which is
suboptimal for VLP (Li et al., 2022). In summary,
the experimental results demonstrate that both our
retrieval and generation methods contribute to the
performance of the pre-training.

We also compare the performance of the pre-
trained models on downstream tasks with and with-
out relative representation-guided training. As
shown in Table 4, pre-training with guided training
can consistently improve results across all down-
stream tasks, illustrating that relative representa-
tions can be used to detect noise in the weakly-
aligned data and guide the model to learn from data
with a higher level of alignment.

4.5 Data Quality

We evaluate the quality of different kinds of weakly-
aligned data from unaligned CC images and text,
and the results are listed in Table 5. We use CLIP-
Score (Hessel et al., 2021) to measure the overall
alignment of all weakly-aligned image-text pairs.
As we can see from the table, the data quality of
Retrv (Relrep) is significantly higher than that of
Retrv (Tag), which again illustrates the superiority
of relative representations as cross-modal anchors.

Data CLIPScore

Retrv (Tag) 57.94

Retrv (Relrep) 63.31
+ Rel2Cap 65.23

Table 5: Data quality of different kinds of weakly-
aligned data from unaligned CC images and text.

In addition, Rel2Cap further improves data qual-
ity by filtering and replacing low-quality pairs in
Retrv (Relrep). The analysis of the data quality
here is consistent with the analysis of pre-training
results in Table 3, and again proves that our rel-
ative representation-based methods can produce
high quality weakly-aligned data from unaligned
unimodal data.

4.6 Effects of Anchor Selection
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Figure 3: Data quality of the retrieved data using differ-
ent number of anchors. Both the anchors and the images
and text used for retrieval are from the COCO dataset.

The number of anchors has a significant in-
fluence on the effect of relative representa-
tions (Norelli et al., 2022). To verify its influence
on the collected weakly-aligned image-text pairs,
we test the quality of the data retrieved with differ-
ent numbers of anchors on the COCO (Lin et al.,
2014) dataset. From Figure 3, we can see that as the
number of anchors increases, the quality of the re-
trieved data also improves. In addition, we evaluate
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Figure 4: Fine-tuned NLVR2 results of models pre-
trained on data with different number of anchors.

Method Number of Anchors

1024 2048 4096 8192

random 66.50 67.68 68.31 69.19
diverse 67.66 68.34 68.60 69.37
non-diverse 40.94 39.52 39.53 39.50

Table 6: The quality of data obtained from different
anchor selection methods.

the downstream task accuracy using models pre-
trained on data with varying numbers of anchors.
Specifically, we generate 3 random sets of anchors
for each size, and retrieve the weakly-aligned data
with different sets of anchors. We pre-train mod-
els on each set of the retrieved data with the same
hyperparamters, and fine-tune them on the NLVR2

task. The results are shown in Figure 4. In general,
the higher the number of anchors, the better the
model performance. We use 8, 192 anchors in our
final experiments as a trade-off between represen-
tation capability and computational cost. However,
using more anchors will almost certainly give bet-
ter results due to better quality of the data, which
indicates the scalability of our approach. We leave
more exploration on this for future work.

We also conduct experiments to verify the im-
pact of anchor diversity on data quality. Specifi-
cally, we considered three sampling methods on
the COCO dataset: random, diverse, and non-
diverse. The diverse sampling first performs K-
means clustering on all the data, and selects one
anchor from each cluster. The non-diverse sam-
pling uses a greedy algorithm to select k anchors,
at each step choosing the data closest to the aver-
age of the anchors already selected. Table 6 lists
the data quality results obtained with different sam-

pling methods. In general, diverse anchors lead
to better quality, while random anchors perform
satisfactorily when the number of anchors is large
enough. Non-diverse anchors can result in catas-
trophic data quality.

4.7 Case Study

To explore the reasons for the improvement in data
quality, we show two examples of the compar-
isons between different weakly-aligned image-text
pairs in Figure 6. In each example, we provide
the ground truth caption of the image and the de-
tected object tags, as well as three weakly-aligned
captions. From these two examples, we can see
that the captions retrieved by tags do have many
of the same tags as the images (underlined in the
figure), but are not good descriptions of the im-
ages. In contrast, our relative representation-based
retrieval and generation methods are able to obtain
captions that are more relevant to the overall seman-
tics of the images. Specifically, in the example in
Figure 6a, our proposed methods successfully iden-
tifies key information in the image such as “golfer”,
which is difficult for tag-based retrieval since there
are no such tag as “golfer”. The same thing hap-
pens to Retrv (Tag) in Figure 6b, which retrieves a
caption related to “cat” instead of “lynx”. In this
example, our retrieval method recognizes the ani-
mal in the image as “cheetah”, which is close but
not exactly correct, while our generation method
correctly generates a caption related to the correct
concept “lynx”. This indicates that our generation
method has the ability to generate pseudo captions
of better quality when the retrieved ones are not
good enough.

In Figure 5 we further visualize the relative rep-
resentations of the image and two retrieved cap-
tions in Figure 6a, which helps understand the
effectiveness of relative representations in align-
ing semantically related image-text pairs. From
the figure we can see that the image and our re-
trieved caption Retrv (Relrep) activate the same
group of anchors (i.e., have high similarities with
these anchors), which makes them close in the
relative representation space. On the other hand,
Retrv (Tag) activates a completely different set of
anchors, which leads to a large distance between it
and the image in the relative representation space.
These observations suggest that (1) relative rep-
resentations are (almost) modality-invariant and
(2) relative representations can be utilized to effec-
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Retrv (Tag):    
close up head shot of a small 
white fluffy long haired dog with 
a black nose , dark round eyes , 
black lips and a green ribbon.

Retrv (Relrep):   
golfer walks off the tee on the 
18th hole with his caddie, 
during the first round .

golfer plays in the 3rd 
round .

politician was joined by 
basketball point guard , 
people as he played golf on 
the first day of his holiday

a couple walking on a golf 
coursegolfer reacts on the 

18th green during day .

golfer plays in the 3rd 
round .

golfer reacts on the 
18th green during day .

tees off on the 13th hole 
during round

golfer of chips during the 
final round

a head shot of a blue roan 
coloured cocker spaniel with 
a green grassy background 
looking at the camera

shot of a cute puppy with 
green eyes being held by an 
unrecognizable person 
outside on a beautiful day

detailed view of the head of 
a lion

cute pet cat in a hat , top 
hat on kitty .

Data Anchors with the Highest Similarities

Figure 5: Comparison of the relative representations of the image and retrieved captions in Figure 6a. For simplicity,
for each image and text on the left, we only display the anchors with the highest similarities on the right.

Retrv (Tag):    
close up head shot of a small white fluffy long haired dog with 
a black nose , dark round eyes , black lips and a green ribbon.

Retrv (Relrep):   golfer walks off the tee on the 18th hole with his caddie, during the first round .

Detected Tags:
collar, man, hair, nose, shirt, eye, ear, head …

Ground Truth:
the couple share a love of the game .

Rel2Cap:   the former star has been urging officials to closely track down the golfer.

(a)

Retrv (Tag):    
a black and white cat with large green eyes and a spot next to nose

Retrv (Relrep):    
cheetahs are the only big cat that can not roar .

Detected Tags:
cat, ear, nose, eye, head, fur, leg, fence, spot, ground …

Ground Truth:
lynx with a satisfied smile .

Rel2Cap:    
the lynx is a type of long - legged animal with muscular, bushy coat

(b)

Figure 6: Examples of different kinds of weakly-aligned
data. We highlight in red the caption with the best qual-
ity and the words in it that match the key information of
the image. Compared to Retrv (Tag) which focuses on
tag matching (underlined), our proposed two methods
Retrv (Tag) and Rel2Cap produce captions that are more
semantically similar to the image.

tively estimate the cross-modal alignment of data
in different modalities. These properties of the rel-
ative representations make it naturally suitable for
WVLP, which is verified in this paper.

5 Conclusion

This paper introduces the idea of relative represen-
tations to weakly-supervised vision-and-language
pre-training and demonstrates its effectiveness in
bridging the gap between the two modalities. We
propose a relative representation-based framework
that can both retrieve and generate weakly-aligned
image-text pairs for pre-training. Experimental re-
sults show that our method outperforms all pre-
vious tag-based approaches under the weakly-
supervised setting. We hope our work will motivate
future work in multimodal pre-training.

Limitations

As this work is mainly focused on weakly super-
vised vision-and-language pre-training, we do not
fully explore the factors that may influence the per-
formance of relative representations, such as the
use of different unimodal encoders and the source
of the anchors. Besides, we only validate the ef-
fectiveness of relative representations in a weakly
supervised setting, while it remains to be explored
whether it is also useful for standard VLP and mul-
timodal learning in other modalities (e.g., audio
and video). We will further exploit the potential
of relative representations and validate it in more
cross-modal learning scenarios in the future.
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A Details of Downstream Tasks

Visual Question Answering (VQA) The task of
VQA is to answer questions correctly according to
the given images. We follow previous works (Yu
et al., 2019; Chen et al., 2020) and formulate VQA
as a classification task with 3, 192 classes represent-
ing the most frequent answers in the dataset. We
fine-tune the pre-trained model for 10 epochs with
a batch size of 256. We use an AdamW optimizer
with a peak learning rate of 5× 10−5.

Natural Language for Visual Reasoning
(NLVR2) The objective of NLVR2 is to decide if
a natural language description is true for a given
pair of images. We follow previous work (Chen
et al., 2020) to form two image-text pairs as inputs,
and concatenate the two [CLS] outputs of the
model as the final representation for classification.
We fine-tune the model for 10 epochs with a batch
size of 128 and a peak learning rate of 2.5× 10−5.

Visual Entailment (VE) Given an image and
a text hypothesis, the task of VE is to determine
whether the image implies the hypothesis. This
is formulated as a three-way classification task to
predict whether the logical relationship between
the image and the text is entailment, neutral or
contradiction. For the VE task, we fine-tune the
pre-trained model with a batch size of 64 and a
peak learning rate of 1× 10−5 for 5 epochs.

Image Retrieval (Flickr30k) We follow pre-
vious works (Li et al., 2021b; Chen et al.,
2022) to conduct the image retrieval task on the
Flickr30k (Plummer et al., 2015) dataset. We sam-
ple 15 negative image-text pairs for each positive
pair by replacing its text with randomly sampled
ones. The batch size is set to 512. We fine-tune the
model with a peak learning rate of 2.5× 10−5 for
10 epochs.

B Additional Examples

In Figure 7, we provide more examples of dif-
ferent kinds of weakly-aligned image-text pairs.
From these examples, we can see that our relative
representation-based approaches yield higher qual-
ity weakly-aligned image-text pairs compared to
tag-based retrieval.
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Figure 7: Examples of different kinds of weakly-aligned data. We highlight in red the caption with the best quality
and the words in it that match the key information of the image.
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