
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 8404–8419

July 9-14, 2023 ©2023 Association for Computational Linguistics

RECAP: Retrieval-Enhanced Context-Aware Prefix Encoder for
Personalized Dialogue Response Generation

Shuai Liu Hyundong J. Cho Marjorie Freedman
Xuezhe Ma Jonathan May

Information Sciences Institute
University of Southern California

{liushuai, jcho, mrf, xuezhema, jonmay}@isi.edu

Abstract

Endowing chatbots with a consistent persona
is essential to an engaging conversation, yet it
remains an unresolved challenge. In this work,
we propose a new retrieval-enhanced approach
for personalized response generation. Specifi-
cally, we design a hierarchical transformer re-
triever trained on dialogue domain data to per-
form personalized retrieval and a context-aware
prefix encoder that fuses the retrieved informa-
tion to the decoder more effectively. Extensive
experiments on a real-world dataset demon-
strate the effectiveness of our model at gen-
erating more fluent and personalized responses.
We quantitatively evaluate our model’s perfor-
mance under a suite of human and automatic
metrics and find it to be superior compared
to state-of-the-art baselines on English Reddit
conversations.1

1 Introduction

As tremendous successes have been achieved on
open-domain dialogue generation (Zhang et al.,
2020b; Cho and May, 2020; Roller et al., 2021;
Shuster et al., 2022), personalized dialogue mod-
els have started to draw attention because of their
ability to generate consistent and engaging con-
versations and their potential time-saving utility in
on-message predictive generation (Wu et al., 2021;
Ma et al., 2021b; Zhong et al., 2022). To generate
persona-consistent responses, these models condi-
tion on not only dialogue context but user personas,
which can be either explicitly given or implicitly
learned from the user conversations. Early works
mostly focus on modeling explicit personas (Zhang
et al., 2018; Zheng et al., 2019; Song et al., 2019,
2021). These methods rely on dialogue data paired
with user traits, profiles or persona description sen-
tences, which are difficult to collect in practice.
Moreover, explicit personas usually only contain

1Our code and data are publicly available at https://
github.com/isi-nlp/RECAP.

a few user traits (e.g. age, gender, and location)
or a few profile sentences, so the amount of in-
formation carried with them is limited, which re-
stricts the models’ capability to capture and then
express more nuanced personalization. Later works
develop methods for automatically extracting per-
sonas (Mazaré et al., 2018; Wu et al., 2020), in
order to help improve content diversity, as com-
pared to that seen in explicit personas. However,
these extraction methods still cannot fully use all
information from user history conversations.

Recent works address these issues by incorpo-
rating user dialogue history as their implicit pro-
files (Wu et al., 2021; Ma et al., 2021b; Zhong
et al., 2022). These methods generate personal-
ized responses in two phases, retrieving relevant
conversations from the user history and fusing the
retrieved information to the generator. In the first
phase, these methods retrieve a subset of conversa-
tions from a user’s conversation history (Ma et al.,
2021b; Zhong et al., 2022). In the second phase, the
retrieved conversations are fused into a decoder by
manipulating output logits (Ma et al., 2021b; Wu
et al., 2021) or by adding prompt tokens to the in-
put (Zhong et al., 2022). Even though the implicit
profile approach is shown to be the most robust
and scalable among all approaches on real-world
datasets, it still has some potential weaknesses. Ap-
proaches to the retrieval phase include using recent
conversations (Ma et al., 2021b) or using conversa-
tions based on current context similarity, according
to an out-of-domain model (Wu et al., 2021; Zhong
et al., 2022). These approaches have the potential
to lose important personal information, which may
lead to unexpected behavior and poorly motivated
retrieval. In the fusion phase, neither output logit
manipulation nor input token prompting may fully
leverage the capability of the pre-trained decoder.
In this work, we focus on the implicit user profile
approach, but specifically address the weaknesses
in both retrieval and fusion phases.
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We present RECAP, a Retrieval-Enhanced
Context-Aware Prefix encoder for personalized di-
alogue response generation. Similar to other im-
plicit user profile methods, our model is based on
a retrieval-fusion approach, which first retrieves
persona-relevant information, and then fuses it with
conversation context at decode-time. Unlike pre-
vious work, which does not take the purpose of
the retrieval task into consideration, our hierarchi-
cal transtormer retriever is trained specifically to
retrieve information that will best communicate
a user’s persona. Unlike previous work, which
approaches fusion by concatenating retrieved in-
formation at the input level (Zhong et al., 2022) or
manipulating logits at the output level (Ma et al.,
2021b; Wu et al., 2021), we adopt a continuous
pre-layer prefix approach (Li and Liang, 2021; Liu
et al., 2022), along with a two-step cross-attention
projection (Humeau et al., 2020; Ma et al., 2021a),
both of which have been shown to be beneficial.
These novelties result in a better personalized dia-
logue model.

Our main contributions in this work are:

• We design a hierarchical transformer retriever
that can perform personalized history retrieval
based on different target users using their his-
tory conversations.

• We design a context-aware prefix encoder that
can encode context-relevant information from
user histories and fuse the information to the
generator effectively through the prefix.

• The two modules combined achieve state-of-
the-art performance on personalized dialogue
response generation for English Reddit con-
versations by generating fluent and personal-
ized responses for unseen users, as shown in
automatic and human evaluations.

2 Methodology

In this section, we formalize the personalized dia-
logue response generation task and introduce our
proposed RECAP method.

2.1 Task Definition

Our goal is to build a personalized dialogue model
that generates persona-consistent responses with
a target user’s history of conversations. Formally,
we have a set of users U but will henceforth as-
sume user u ∈ U is the target user, that is, the

user we wish to personalize, User u’s history
is represented as a set of context-response pairs
Hu = {(cu1 , ru1), · · · , (cuT , ruT )}, where a context
cut is a sequence of one or more turns that starts at
the beginning of a conversation and ends with the
turn immediately before the single turn response rut ,
which is by definition authored by u.2 Given some
current (context, response) pair (cu, ru) /∈ Hu, we
seek to maximize

p(ru|cu,Hu) =

|ru|∏

i=1

p(rui |cu, ru<i,Hu) (1)

where ru<i represents tokens preceding token rui in
ru.3

2.2 Model Overview

RECAP consists of two main modules: a retrieval
module (RE), which selects user history responses,
and a context-aware prefix encoder (CAP), which
converts the selected responses into a suitable dense
prefix. The prefix, when prepended to our trans-
former decoder’s intermediate states as in Liu et al.
(2022), yields personalized generation. In the fol-
lowing we describe each of RE and CAP in more
detail.

2.3 Retrieval Module (RE)

We follow a standard bi-encoder retrieval approach
as in Wu et al. (2018): a dense representation is
formed for each of u’s candidate dialogue turns,
which we regard as documents, as well as for a
query representing the context of the conversation
for which a turn will be generated. The set of
documents that is closest (as measured by cosine)
to the query is returned.

Using such retrieval methods for dialogue per-
sonalization is not novel (Isbell et al., 2006; Zhang
et al., 2018; Wu et al., 2021; Ma et al., 2021b;
Zhong et al., 2022), but previous work simply ei-
ther retrieves the user’s most recent turns (Ma et al.,
2021b) or simply queries for turns based on the
similarity to the current conversation or a predicted
topic (Zhong et al., 2022). Our retrieval model, by
contrast, forms a query based on an a priori pre-
dicted next turn given the current context and user
history.

2Some, but not all, of the turns in cut may have been au-
thored by u.

3Unless otherwise noted, we drop the superscript hence-
forth.
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Figure 1: The architecture overview of the retrieval
module (RE) based on hierarchical transformer.

The representation of the predicted next turn is
learned based on not only the context of the imme-
diate conversation, but also based on every other
conversation known to involve u, forming an er-
satz persona. This can present a problem. Prolific
users can potentially have had a long history of
conversations from which to choose to represent
an implicit persona, and it is unrealistic to use this
entire history when generating a single response.
Furthermore, existing works have shown that using
a small subset of the history is more beneficial to
implicit persona-based generation, as doing so re-
duces noise and computation time (Wu et al., 2021;
Zhong et al., 2022). Inspired by the hierarchical
dialogue model (Serban et al., 2015, 2016) and the
hierarchical transformer (Pappagari et al., 2019;
Zhang et al., 2019), we build a response prediction
model that takes as input a user’s available his-
tory and the current dialogue context in an efficient
manner. The hierarchical architecture is shown in
Figure 1.

Specifically, we first concatenate all turns in the
oldest history context, c1, encode them with a pre-
trained RoBERTa model (Liu et al., 2019), and
form a fixed-length representation from the mean of
the last hidden states corresponding to each token.
To this we add positional embedding p1 indicating
it is the first history context known, and utterance
type embedding yc indicating a context represen-
tation. We then do the same for the analogous r1,
and in turn for all other context and response pairs

in the history. In general, the inputs to the next
level of the hierarchical transformer are formed as
follows:

ect = mean(RoBERTa(ct)) + pt + yc (2)

ert = mean(RoBERTa(rt)) + pt + yr (3)

We term these utterance-level embeddings and pass
[ec1 , er1 , · · · , ecT , erT ] to an utterance-level trans-
former, yielding the sequence of hidden represen-
tations [hc1 ,hr1 , · · · ,hcT ,hrT ]. We train the trans-
former to predict the ground truth response repre-
sentation and minimize cosine similarity between
the predicted and ground truth representation, i.e.

L =
T∑

t=1

1− hrt · grt
|hrt ||grt |

(4)

where grt is the ground-truth representation of the
response at time t encoded by an off-the-shelf sen-
tence transformer. A causal mask is applied during
training to prevent attention to future utterances.

This general architecture can be specialized
by changing the underlying pretrained RoBERTa
model used for token-level embedding. In par-
ticular, we consider two types of representation:
(1) a style representation, which we obtain by
encoding histories with an off-the-shelf content-
independent style representation model (Wegmann
et al., 2022),4 and (2) a representation encoded
by a sentence transformer (Reimers and Gurevych,
2019)5 which we term a semantic representation,
to contrast the style representation.

For retrieval, we first predict the style and seman-
tic representations of the response to be generated
and retrieve the appropriately embedded history
responses whose style/semantic representations are
the most similar to the predicted style/semantic rep-
resentations. The retrieved history responses are
then passed to the context-aware prefix encoder
(Section 2.4) for further encoding.

2.4 Context-Aware Prefix Encoder (CAP)

The purpose of the CAP module is to project the
history responses retrieved by RE (Section 2.3)
onto a fixed-length prefix vector. This vector is
then prepended to the transformer decoder hidden
states as a prefix. The architecture is illustrated

4https://huggingface.co/AnnaWegmann/
Style-Embedding

5https://huggingface.co/sentence-transformers/
all-distilroberta-v1
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Figure 2: The architecture overview of the context-aware prefix encoder (CAP) and the decoder generator.

in Figure 2. CAP first encodes the current dia-
logue context and each of the retrieved responses
to continuous representations with a pre-trained
RoBERTa encoder (Liu et al., 2019).6 We use the
same method as Liu et al. (2021) to add positional
embeddings to user history response representa-
tions:

C = RoBERTa(c) (5)

Hi = RoBERTa(hi) + qi (6)

where c is the current context, hi is the i-th re-
trieved history response, C and Hi are the last hid-
den states from the application of RoBERTa to the
every token position of c and the i-th retrieved his-
tory response, respectively, and qi is a history posi-
tional embedding for retrieved history i. All Hi’s
are then concatenated to a long vector sequence
H = [H1; · · · ;Ht−1].

Inspired by the cross-attention context projection
operation (Humeau et al., 2020; Ma et al., 2021a),
CAP projects the long vector sequence H onto a
short fixed-length prefix with two cross-attention
operations, which we denote as Attn(Q,K,V) to
indicate which information source is used as query,
key, and value, respectively.7 Separate query, key,
and value matrices are learned for each of the two
operations.

The first cross-attention operation queries C with
learnable query embeddings E ∈ RNd and projects
to fixed-length representation Pc ∈ RNd; N is a

6https://huggingface.co/docs/transformers/
model_doc/roberta

7The information source for key and value is always the
same, as is typical.

chosen hyperparameter and d is RoBERTa’s token
embedding dimension:

Pc = Attn(E,C,C) (7)

Then, the second operation queries the user history
representations H with Pc to obtain the fixed-length
context-aware user history representations Ph ∈
RNd:

Ph = Attn(Pc,H,H) (8)

Finally, similar to a memory vector projection (Li
et al., 2020), Ph is projected onto RLNd with a lin-
ear layer and then separated into L d-dimensional
vector sequences with length N , corresponding
to the L layers in the transformer decoder. Each
of these sequences is then prepended to the trans-
former decoder hidden state in the analogous layer.

2.5 Generator
We use the pre-trained DialoGPT (Zhang et al.,
2020b)8 as the generator. Personalized information
is fused to the generation process through the prefix
vectors encoded by CAP, as described in Section
2.4. We further train the parameters in DialoGPT
together with the CAP module to maximize the
(log of the) objective in Equation 1.

3 Experiments

3.1 Dataset
We extract a personalized conversation dataset from
Reddit on pushshift.io (Baumgartner et al., 2020).9

8https://huggingface.co/docs/transformers/
model_doc/dialogpt

9https://files.pushshift.io/reddit/
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We choose only from the conversations from Au-
gust 2019 to June 2021 to avoid test data leakage
when using pre-trained models. Each sample in
the dataset consists of three entries: user name,
context (i.e preceding turns in the conversation),
and response. Since the total number of samples is
very large, we randomly select 115,000 users. For
each selected user, we keep only the 10 most recent
samples to train the generator and the 100 most
recent samples as history conversations to retrieve
from. Unlike existing works (Wu et al., 2021; Ma
et al., 2021b; Zhong et al., 2022) that use the same
users for training, validation, and test, we parti-
tion the dataset by user. In this way, we can test
the model’s ability to generalize to unknown users.
Specifically, we select 100,000, 5,000, and 10,000
distinct users for each of training, validation, and
test, respectively.

3.2 Baseline Models
We compare our model with four baseline models
including the state-of-the-art personalized dialogue
model.

• DialoGPT: A large-scale pre-trained dialogue
response generation model trained on Reddit
conversations (Zhang et al., 2020b).

• DialoGPT w/ history responses: We directly
prepend retrieved history responses to the Di-
aloGPT input (i.e. dialogue context).

• DHAP:10 A model that generates personal-
ized responses by building a dynamic context-
aware user profile representation from user
history conversations and then employing a
personalized decoder with a copy mechanism
(Ma et al., 2021b). We enhance DHAP with
pre-trained transformers for fair comparison
to our model.

• MSP:11 The state-of-the-art personalized di-
alogue model. MSP generates personalized
responses by prepending selected tokens di-
rectly to the DialoGPT input. The tokens are
selected by a three-step hierarchical refiner
(Zhong et al., 2022).

3.3 Implementation Details
Our implementation is based on HuggingFace’s
Transformers (Wolf et al., 2020)12 and Sentence

10https://github.com/zhengyima/DHAP
11https://github.com/bangbangbang12315/MSP
12https://huggingface.co/docs/transformers

Transformer (Reimers and Gurevych, 2019)13 code-
bases. We experiment with different settings
and hyperparameters; the ones that work the best
are discussed below. We initialize all encoders
from the pre-trained RoBERTa-base model (Liu
et al., 2019)14 and initialize all decoders from the
pre-trained DialoGPT-small model (Zhang et al.,
2020b). RoBERTa’s embedding dimension, d, is
768, and N , the prefix length, is set to 30 to align
with the prompt length used in MSP. The two pro-
jection attentions in CAP are both single-head at-
tentions. The number of history responses are 10,
and for the models without a retrieval module (Di-
aloGPT + history, DHAP, and CAP), the 10 most
recent history responses are used. The utterance-
level transformer has 768 hidden dimension, six
layers, and a 12-head self-attention in each layer.
We train all models using the AdamW optimizer
(Loshchilov and Hutter, 2019) with learning rate
5e-5 and linear learning rate schedule for 10 epochs.
The best models are chosen based on the validation
perplexity. For generation, we use nucleus (top-p)
sampling (Holtzman et al., 2020) with p = 0.8.

# Params Training Time (hr)

DialoGPT 124M 8
DialoGPT + history 124M 37
DHAP 431M 25
MSP 437M 15

RE 198M 13
CAP 269M 22

Table 1: Total number of parameters and training time
(on 2 × A40 GPUs) for all neural models.

All models including the baseline models are
trained on 2 × A40 GPUs with half precision train-
ing. The total number of parameters and training
time are shown in Table 1. For MSP, the numbers
are sums over all sub-modules (i.e. three refiners
and DialoGPT generator). CAP includes both the
context-aware prefix encoder and the DialoGPT
generator.

3.4 Evaluation Metrics
3.4.1 Automatic Evaluation
In this section, we discuss the automatic evaluation
metrics we use to evaluate all models. We group

13https://www.sbert.net
14We specifically use RoBERTa rather than some other

core representation for compatibility purposes; RoBERTa and
DialoGPT share vocabulary, which is required by two of the
baseline models, DHAP and MSP.
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them into four categories. The first two categories
measure the general performance of the models,
while the last two measure the personalization abil-
ity.

Perplexity and Token-overlap Metrics We first
evaluate the performance of our model with several
of the most commonly used automatic evaluation
metrics for dialogue response generation, including
perplexity, BLEU-1 and -2 (Papineni et al., 2002),
ROUGE-L (Lin and Och, 2004), and METEOR
(Banerjee and Lavie, 2005). Perplexity evaluates
how well a language model predicts the sample.
Lower perplexity means the model can generate a
more fluent response and generalizes better (Blei
et al., 2003). The other metrics are word or n-
gram overlap metrics with a reference utterance. A
higher score means a higher similarity between the
generated text and the ground-truth text since they
have more words or phrases in common.

Learning-based Metrics Many learning-based
metrics backed with pre-trained models have been
developed. They are shown to be more robust and
correlate better with human judgement than token
overlap metrics, though issues have been raised
regarding their inherent biases (Gowda et al., 2021).
In this work, we select two of the most popular
learning-based metrics: BERTScore (Zhang et al.,
2020a) and BLEURT (Sellam et al., 2020). These
two methods also measure how similar a candidate
response is to the reference response; higher scores
mean higher similarity.

Style Metrics To measure the models’ ability
to capture personal writing styles, we employ a
pre-trained style representation model (Wegmann
et al., 2022) for evaluation. We form two metrics
based on the style model: (1) embedding similarity
and (2) contrastive authorship verification (CAV)
accuracy. Embedding similarity is simply the co-
sine similarity between the style embedding of the
generated response and that of the ground-truth re-
sponse. For CAV accuracy, we construct a domain-
controlled (Wegmann et al., 2022) dataset with re-
sponse triplets built from a generated response an-
chor and a pair of positive/negative ground-truth
responses. The positive example and negative ex-
ample are from the same author as the anchor and
a randomly sampled author, respectively. With
domain control, we only choose the negative ex-
ample from the same subreddit as the anchor and
the positive example from a different subreddit. To
evaluate, we calculate the percentage of the triplets

for which the style model judges the generated an-
chor response to be more similar to the positive
ground-truth response than to the (randomly sam-
pled) negative example. For both style metrics, a
higher score indicates better personalization.

Train Validation Test

Age 1378 344 585
Gender 1823 455 784
MBTI 5542 1385 2131

Table 2: Number of train, validation, and test users in
the Pandora dataset.

Personal Traits Metrics A good personalized
response model should also be able to reflect the
personal traits of the target user. Therefore, a per-
sonal traits classifier is also used as a evaluation
method in previous works. Zheng et al. (2019)
evaluate their model on traits of age, gender, and
location, while Xing and Fernández (2018) pro-
posed a evaluation method based on a personality
classifier. In this work, we select three personal
traits for evaluation: age, gender,15 and Myers-
Briggs Type Indicator (MBTI) (Briggs-Myers and
Myers, 1995).16 We train a model for each trait on
the PANDORA dataset (Gjurković et al., 2021),17

then attempt to determine traits based on generated
responses. A good personalized model should gen-
erate output that allows a trait classifier to guess
traits about as well as it can when given actual
responses.

For age, we train a linear regression model and
report the Pearson correlation coefficient (Benesty
et al., 2009) between the predicted age and the
ground-truth age. For gender and the four MBTI
categories, we train a logistic regression model for
each and report the classification F1 score. For
all three metrics, higher scores are better. We se-

15Due to data limitation issues, we simplify gender identity
as a binary.

16We acknowledge there is extensive criticism of MBTI
in the psychology community (Capraro and Capraro, 2002;
Pittenger, 2005) and do not address the validity of fixed per-
sonality types, of MBTI as an approach to determining types,
or even of the general predictability of MBTI labels given
dialogue text in this work. However, following other work
(Kishima et al., 2021; Sang et al., 2022), we include this metric,
which indicates the degree to which the generated responses
for a user are as predictive of self-declared MBTI labels as the
user’s actual responses. The MBTI metric is not the only met-
ric we use, and its inclusion is meant to accompany the others
to indicate a consistent trend toward user-like generation.

17https://psy.takelab.fer.hr/datasets/all/
pandora
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lect users for personal traits evaluation from the
PANDORA dataset, which is independent from our
Reddit test set. Table 2 shows the statistics for the
PANDORA dataset.

The input features, for all models, are the most
frequent 40,000 TF-IDF weighted 1-3 word ngrams.
The logistic regression models use the L-BFGS
solver. The best C value (i.e. inverse of regular-
ization strength) for gender and the four MBTI
categories (i.e. I/E, S/N, T/F, J/P) are 10, 1, 10, 50,
and 0.1, respectively. All models can be trained
within 20 seconds on a single CPU with scikit-learn
(Pedregosa et al., 2011).18

3.4.2 Manual Evaluation
We also conduct a manual evaluation. We ran-
domly sample 100 examples from the test set for
all models and hire two well-educated volunteer
annotators (one of the authors and a friend of one
of the authors). The annotators evaluate responses
on three criteria: fluency, coherency, and persona
consistency. All criteria are scaled from 1 to 3
(from disagree to strongly agree). First, for flu-
ency, we only show the response and ask “is the
response overall readable and fluent?” Then, for
coherency, we also show the preceding turns in
the conversation and ask “does the response serve
as a valid continuation of the preceding conversa-
tion?” Finally, for persona consistency, we show
five ground-truth responses written by the target au-
thor and ask “does the response seem like it would
have been written by the author of the given texts?”

4 Results

In this section, we discuss the experimental re-
sults and further analysis. Due to limited time and
computational resources, we only report the results
from a single run, and run statistical significance
tests.19

4.1 Automatic Evaluation Results

Table 3 shows the automatic evaluation results for
all models on selected metrics. For conciseness,
we only show a representative or aggregated metric
for similar metrics, but the full results are shown in
Appendix C and are generally consistent with the
representative results shown in Table 3. In nearly
all cases, the top two results in all automatic met-
rics are from our models. Without the retriever,

18https://scikit-learn.org/stable
19Please refer to Appendix B for details.

the CAP model already outperforms the baseline
models on most automatic metrics. With the re-
trieval enhancement, the RECAP models achieve
better scores on most automatic metrics. Specifi-
cally, with style retrieval enhancement, the RECAP
model obtains better style embedding similarity,
CAV accuracy, and average MBTI F1 score, which
indicates better performance at reflecting the tar-
get author’s writing style. With semantic retrieval
enhancement, the RECAP model achieves the best
scores on token-overlap metrics and learning-based
metrics, which indicates it can generate responses
that are more similar to the ground-truth. Moreover,
combining two enhancement methods by mixing
half retrieved history responses from each retriever
also combines the strength of the two RECAP mod-
els. Even though the combination also weakens the
improvements, we can still see that the RECAP-
mixed model is at least the second best on all met-
rics on the Reddit dataset.

4.2 Human Evaluation Results
Table 4 shows the human evaluation results. Co-
hen’s κ and Krippendorff’s α between the two an-
notators are κ = 0.617 and α = 0.687, respec-
tively. The κ shows a substantial agreement be-
tween the two annotators, and the α indicates that
a tentative conclusion could be drawn from the
human evaluation results (Antoine et al., 2014).
Even though there are some minor inconsistencies,
both human annotation results and automatic eval-
uation results on the Reddit dataset agree on the
top two models, which are RECAP-semantic and
RECAP-mixed for general response quality, and
RECAP-style and RECAP-mixed for style/persona
metrics. Furthermore, RECAP-mixed is the overall
second best model under human evaluation.

4.3 Style Consistency Analysis
Even though the automatic and human metrics give
us a general idea of the model performance, these
scores are not very interpretable. To further under-
stand style consistency beyond the metric scores,
we conduct a case analysis similar to Wegmann
et al. (2022) by inspecting whether the models can
capture some aspects of writing style. Specifically,
we select three aspects mentioned by Wegmann
et al.: last punctuation (i.e. whether the response
ends with a punctuation mark), contraction spelling
(i.e. whether the response uses “n’t” or “nt” in con-
tractions like “didn’t”), and casing (i.e. whether the
response is all lowercased). For each aspect, we cal-
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Model

Reddit PANDORA

Token-overlap Learning-based Style Metric Demographic MBTI

PPL↓ ROUGE-L↑ BLEURT↑ Embed Sim↑ CAV Acc↑ Age↑ Gender↑ Average↑

DialoGPT 31.25‡ 8.49‡ 0.2421‡ 22.15‡ 51.14‡ 0.0425‡ 0.6103‡ 0.4992‡

DialoGPT + history 29.66‡ 9.84‡ 0.2482‡ 40.66‡ 64.02 0.1008‡ 0.6763‡ 0.5130‡

DHAP 29.99‡ 9.73‡ 0.2511‡ 37.14‡ 61.53‡ 0.0829‡ 0.6653‡ 0.5119‡

MSP 30.47‡ 9.36‡ 0.2453‡ 34.72‡ 59.61‡ 0.1226‡ 0.6816‡ 0.5019‡

CAP 29.44 10.09‡ 0.2534‡ 40.38‡ 63.71‡ 0.2051 0.7077† 0.5167†

RECAP-style 29.54‡ 10.05‡ 0.2525‡ 41.40 64.14 0.1822 0.7001† 0.5265
RECAP-semantic 29.50‡ 10.33 0.2749 39.65‡ 64.00 0.1699† 0.7303 0.5276
RECAP-mixed 29.47† 10.27† 0.2557† 40.74† 64.17 0.1392‡ 0.6962† 0.5242

Ground-truth - - - - 66.20 0.2617 0.7477 0.5257

Table 3: The automatic evaluation results on Reddit and PANDORA datasets with selected metrics.The best and
second best results in each column are shown in bold and underline, respectively. Scores for ground-truth are not
available for metrics calculated based on ground-truth, and they are shown by "-". "†" and "‡" indicates statistically
significant difference for p < 0.05, between the best or the top two models, respectively, determined by t-test.

Model Fluency↑ Coherency↑ Persona↑

DialoGPT 2.75‡ 2.27‡ 1.58‡

DialoGPT + history 2.77 2.28‡ 1.84‡

DHAP 2.72‡ 2.28† 1.76‡

MSP 2.73‡ 2.29‡ 1.85‡

CAP 2.72‡ 2.31 1.90‡

RECAP-style 2.77 2.28‡ 2.03
RECAP-semantic 2.80 2.35 1.92‡

RECAP-mixed 2.79 2.33 2.00

Ground-truth 2.84 2.40 2.47

Table 4: The human evaluation results on the Reddit
dataset. The best and second best results in each column
are shown in bold and underline. "†" and "‡" indicates
statistically significant difference for p < 0.05, between
the best or the top two models, respectively, determined
by t-test.

culate the percentage of generated responses that
match the ground-truth style. Table 5 shows the
results, which indicate that most of our models can
capture all three selected aspects more effectively
than the baseline models. The lone exception is the
RECAP-style model which is slightly worse than
the DialoGPT + history model on last punctuation
and casing aspects.

5 Related Work

Personalized Dialogue Model Recent works
on personalized response generation mainly fall
into three categories: (1) those that personalize the
response with a user-specific embedding learned
during training (Li et al., 2016; Chan et al., 2019),
(2) those that personalize the response with ex-
plicit user profiles or persona description sentences

Model Punc.↑ Cont.↑ Casing↑

DialoGPT 0.3538 0.3822 0.3300
DialoGPT + history 0.4117 0.4333 0.4180
DHAP 0.3829 0.4121 0.3831
MSP 0.3795 0.4064 0.3788

CAP 0.4144 0.4415 0.4183
RECAP-style 0.4112 0.4403 0.4172
RECAP-semantic 0.4232 0.4520 0.4248
RECAP-mixed 0.4178 0.4451 0.4195

Table 5: Style consistency analysis results for all models.
The best and second best results in each column are
shown in bold and underline.

(Zhang et al., 2018; Zheng et al., 2019; Song et al.,
2019, 2021), and (3) those that personalize the re-
sponse with an implicit user persona extracted from
user history conversations (Bak and Oh, 2019; Wu
et al., 2021; Ma et al., 2021b; Zhong et al., 2022).
User-specific embeddings are shown to be ineffec-
tive and hard to generalize to unseen users since
the embeddings need to be learned during train-
ing (Zhong et al., 2022). Explicit user profiles and
personas require manual data collection, which is
very hard to scale up in practice and is often not
available in deployed scenarios. Recent works (Ma
et al., 2021b; Zhong et al., 2022) show strong scal-
ability and robustness of the implicit user persona
based method, and for that reason our work also
focuses on this method.

The state-of-the-art implicit user persona method
MSP (Zhong et al., 2022) incorporates a three-
step hierarchical refiner to select informative to-
kens from relevant history responses from similar
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users, and the selected tokens are then prepended
to the transformer deocder input as a prompt to
personalize the generation process. However, their
response selection module is trained on a news
dataset that, because of domain divergence, may
lead to sub-optimal retrieval performance on the
intended dialogue task. Further, the hard discrete
token selection module employed in MSP may be
further improved by instead using a continuous
prompt/prefix. Therefore, inspired by the hierar-
chical dialogue model and hierarchical transformer,
we develop a personalized retrieval model that can
use all user history conversations. As suggested
by Dudy et al. (2021), we develop a personalized
generator with a prefix mechanism similar to that
used in Li and Liang (2021) and Liu et al. (2022),
but instead of learning the prefix during training,
we train a prefix encoder to dynamically encode a
personalized prefix with user history responses so
that the model can be easily generalized to unseen
users without further training.

Our model has two main differences from MSP:
(1) we use a personalized response retriever trained
on dialogue domain instead of a non-personalized
retriever trained on distant news domain. (2) we use
a dynamically encoded continuous prefix to fuse
personalized retrieved responses to the generator
rather than a discrete token prompt.
Hierarchical Transformer Hierarchical trans-
formers model long documents with a sentence-
level transformer on top of a regular token-level
transformer. The token-level transformer repre-
sents each sentence as a single vector embedding,
and the embedding vectors of all sentences in the
document are concatenated together and fed to the
sentence-level transformer as input. These models
are shown to be effective for long text classification
(Pappagari et al., 2019) and summarization (Zhang
et al., 2019). Our retrieval module uses a simi-
lar hierarchical transformer for response utterance-
level embedding prediction, but differs in tasks and
training strategy. Our retrieval module is trained
on a generative next response prediction task with
utterance-level causal masks.

6 Conclusion

In this work, we introduce RECAP, a personal-
ized dialogue model, which generates responses in
a retrieval augmentation manner. Unlike retriev-
ers used in previous works, the hierarchical trans-
former retriever can perform personalized retrieval

using user history responses. The context-aware
encoder can encode and preserve the most useful
information from the retrieved responses and fuse
the information to a regular transformer decoder
through continuous prefix vectors. Extensive ex-
periments confirm that our model is capable of
generating fluent, coherent, and personalized re-
sponses.

Ethical Issues

Like most data-driven dialogue models, our model
is trained on a large-scale naturally-occuring
dataset, the Pushshift Reddit dataset (Baumgart-
ner et al., 2020), which may contain biased and
offensive content. To preserve persona and per-
sonal writing style as much as possible, we did not
filter out conversations with this content. To avoid
potentially unethical responses in real-world usage,
we suggest filtering out the data with unethical con-
tent before training or applying a post-generation
filter for the offensive responses.

Even though our model is intended to generate
personalized responses for only personal usage (e.g.
personal virtual assistant), we realize it might be
used for some malicious purpose by intentionally
mimicking some individuals. Since our model is
designed to be able to generalize to unseen users,
we suggest keeping all personal data (i.e. personal
dialogue history) local, as suggested by Dudy et al.
(2021), to minimize the risk of malicious imitation.
Retrieving from combined history conversations
from multiple authors can potentially reduce the
risk of exposing personal information of any spe-
cific user, but such use is not examined in this work.
Finally, we only allow the use of our model on pub-
lic datasets or under the consent of the individuals
being mimicked.

Limitations

In this section, we discuss several limitations of our
work that are worth future study.

First, the performance of the hierarchical trans-
former retriever is limited since the utterance-level
transformer is trained from scratch only on our
small-scale dataset due to limited time and com-
putational resources. With more resources, future
work can focus on pre-training the utterance-level
transformer on large-scale data such as the com-
plete Pushshift Reddit data (Baumgartner et al.,
2020). Pre-training can potentially improve the
performance of the retriever and further improve
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the generation quality.
Second, the two types of retrieved responses in

the RECAP-mixed model are encoded with the
same encoder. However, intuitively, the two types
of responses should contribute to generation in dif-
ferent ways, so treating them the same way might
harm generation performance. This is also reflected
in our results. Even though the RECAP-mixed
model shows improvement from both types of re-
trieved responses, the improvement is weaker than
that on each separate model. In future work, de-
signing a split encoder for different types of re-
trieved responses may help maximally preserve the
performance boost from both types of retrieved
responses.

Acknowledgements

This research is supported in part by the Office
of the Director of National Intelligence (ODNI),
Intelligence Advanced Research Projects Activ-
ity (IARPA), via the HIATUS Program contract
#2022-22072200006 and in part by DARPA (con-
tracts #HR001121C0169 and #HR00112290025).
The views and conclusions contained herein are
those of the authors and should not be interpreted
as necessarily representing the official policies, ei-
ther expressed or implied, of ODNI, IARPA, or the
U.S. Government. The U.S. Government is autho-
rized to reproduce and distribute reprints for gov-
ernmental purposes notwithstanding any copyright
annotation therein. Approved for public release;
distribution is unlimited.

References
Jean-Yves Antoine, Jeanne Villaneau, and Anaïs Lefeu-

vre. 2014. Weighted Krippendorff’s alpha is a more
reliable metrics for multi-coders ordinal annotations:
experimental studies on emotion, opinion and coref-
erence annotation. In Proceedings of the 14th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, pages 550–559, Gothen-
burg, Sweden. Association for Computational Lin-
guistics.

JinYeong Bak and Alice Oh. 2019. Variational hierarchi-
cal user-based conversation model. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1941–1950, Hong Kong,
China. Association for Computational Linguistics.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-

proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Jason Baumgartner, Savvas Zannettou, Brian Keegan,
Megan Squire, and Jeremy Blackburn. 2020. The
pushshift reddit dataset. In Proceedings of the Four-
teenth International AAAI Conference on Web and
Social Media, ICWSM 2020, Held Virtually, Origi-
nal Venue: Atlanta, Georgia, USA, June 8-11, 2020,
pages 830–839. AAAI Press.

Jacob Benesty, Jingdong Chen, Yiteng Huang, and Is-
rael Cohen. 2009. Pearson correlation coefficient.
In Noise reduction in speech processing, pages 1–4.
Springer.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of machine
Learning research, 3(Jan):993–1022.

Isabel Briggs-Myers and Peter B. Myers. 1995. Gifts
differing: Understanding personality type. Davies-
Black Publishing.

Robert M Capraro and Mary Margaret Capraro. 2002.
Myers-briggs type indicator score reliability across:
Studies a meta-analytic reliability generalization
study. Educational and Psychological Measurement,
62(4):590–602.

Zhangming Chan, Juntao Li, Xiaopeng Yang, Xiuying
Chen, Wenpeng Hu, Dongyan Zhao, and Rui Yan.
2019. Modeling personalization in continuous space
for response generation via augmented Wasserstein
autoencoders. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 1931–1940, Hong Kong, China. Association
for Computational Linguistics.

Hyundong Cho and Jonathan May. 2020. Grounding
conversations with improvised dialogues. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 2398–2413, On-
line. Association for Computational Linguistics.

Shiran Dudy, Steven Bedrick, and Bonnie Webber. 2021.
Refocusing on relevance: Personalization in NLG.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5190–5202, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.
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A Scientific Artifacts

A.1 Use of Existing Arifacts

Type Name License

Dataset
Pushshift Reddit Not specified

PANDORA Not specified

Pre-trained Model

RoBERTa MIT
DialoGPT MIT

DHAP Not specified
MSP Not specified

Sentence-RoBERTa Apache-2.0
Style-Embedding MIT

Library
HuggingFace Transformers Apache-2.0

Sentence Transformers Apache-2.0
Scikit-learn BSD-3-Clause

Table 6: Licenses of artifacts used in this work.

# Subsets Subset Size

Reddit 100 2000

PANDORA
– Age/Gender 50 100
– MBTI 50 500

Human 20 100

Table 7: T-test hyperparameters.

The licenses of all scientific artifacts used in
this paper is shown in Table 6. All artifacts with
specified licenses are allowed to use in this work.
The PANDORA dataset does not have a license, but
we strictly follow their terms of use.20 All artifacts
are intended to be used for research in machine
learning and natural language processing, and our
use is consistent with this intention.

A.2 Created Arifacts
We release a new model, RECAP in this work under
the MIT license. Our model is only intended to be
used personally or for research purposes. You can
use it for yourself or on publicly available datasets.
Using it to mimic other people without authoriza-
tion is unethical and not allowed.

B T-test Details

For statistical significant tests, we randomly sam-
ple subsets from the test set and perform a paired
t-test with the subsets’ scores. The detailed hyper-
parameters are shown in Table 7.

C More Experimental Results

The full automatic evaluation results are shown
here in Table 8 and Table 9. Metrics within each
category in Table 8 are overall consistent with each
other. All token-overlap metrics and learning-based
metrics are consistent with the human annotated
fluency and coherency scores on the top two mod-
els. The style metrics are consistent with the human
annotated style score on the top two models (with
different order for CAV accuracy). Table 9 shows
the full personal traits evaluation results. The met-
rics within each category are less consistent with
each other, but the top two models on all metrics
are always one of our four models, except for the
MBTI J/P score.

20https://psy.takelab.fer.hr/datasets/all/
pandora/#terms-of-use
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Model
Token-overlap Metric Learning-based Metric Style Metric

PPL↓ BLEU-1↑ BLEU-2↑ ROUGE-L↑ METEOR↑ BERTScore↑ BLEURT↑ Embed Sim↑ CAV Acc↑

DialoGPT 31.25‡ 11.54‡ 3.26‡ 8.49‡ 6.86‡ 0.4240‡ 0.2421‡ 22.15‡ 51.14‡

DialoGPT + history 29.66‡ 12.09‡ 3.89‡ 9.84‡ 7.82‡ 0.4361‡ 0.2482‡ 40.66‡ 64.02
DHAP 29.99‡ 14.09‡ 4.37‡ 9.73‡ 7.86‡ 0.4323‡ 0.2511‡ 37.14‡ 61.53‡

MSP 30.47‡ 12.95‡ 3.96‡ 9.36‡ 7.51‡ 0.4307‡ 0.2453‡ 34.72‡ 59.61‡

CAP 29.44 14.78‡ 4.61‡ 10.09‡ 8.14‡ 0.4356‡ 0.2534‡ 40.38‡ 63.71‡

RECAP-style 29.54‡ 14.79‡ 4.61‡ 10.05‡ 8.08‡ 0.4350‡ 0.2525‡ 41.40 64.14
RECAP-semantic 29.50‡ 15.12 4.77 10.33 8.31 0.4617 0.2749 39.65‡ 64.00
RECAP-mixed 29.47† 15.06† 4.71† 10.27† 8.27† 0.4372† 0.2557† 40.74† 64.17

Table 8: The automatic evaluation results on the Reddit dataset with perplexity, token-overlap metrics, learning-
based metrics, and style metrics. The best and second best results in each column are shown in bold and underline.
"†" and "‡" indicates statistically significant difference for p < 0.05, between the best or the top two models,
respectively, determined by t-test.

Model
Demographic MBTI

Age↑ Gender↑ I/E↑ S/N↑ T/F↑ J/P↑ Average↑

DialoGPT 0.0425‡ 0.6103‡ 0.5013‡ 0.4982‡ 0.5317‡ 0.4655‡ 0.4992‡

DialoGPT + history 0.1008‡ 0.6763‡ 0.4986‡ 0.5146 0.5561‡ 0.4826‡ 0.5130‡

DHAP 0.0829‡ 0.6653‡ 0.4997‡ 0.4872‡ 0.5473‡ 0.5135† 0.5119‡

MSP 0.1226‡ 0.6816‡ 0.4832‡ 0.4924‡ 0.5449‡ 0.4870‡ 0.5019‡

CAP 0.2051 0.7077† 0.4998‡ 0.4965‡ 0.5635† 0.5070† 0.5167†

RECAP-style 0.1822 0.7001† 0.5167† 0.5146 0.5562‡ 0.5185 0.5265
RECAP-semantic 0.1699† 0.7303 0.5279 0.5124 0.5676 0.5025‡ 0.5276
RECAP-mixed 0.1392‡ 0.6962† 0.5154† 0.5045‡ 0.5719 0.5049‡ 0.5242

Ground-truth 0.2617 0.7477 0.5149 0.5064 0.5705 0.5108 0.5257

Table 9: The automatic personal traits evaluation results on the PANDORA dataset. The best and second best
results in each column are shown in bold and underline. "†" and "‡" indicates statistically significant difference for
p < 0.05, between the best or the top two models, respectively, determined by t-test.
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