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Abstract

We present a simple and unified approach
for both continuous and discontinuous con-
stituency parsing via autoregressive span selec-
tion. Constituency parsing aims to produce a
set of non-crossing spans so that they can form
a constituency parse tree. We sort gold spans in
a predefined order and train a pointer network
to autoregressively select spans by that order.
To deal with a discontinuous span, we consec-
utively select its subspans from left to right,
label all but the last subspans with a special
discontinuous label, and label the last subspan
with the whole discontinuous span’s label. We
use a simple heuristic to output valid trees from
selected spans so that our approach is able to
predict all possible continuous and discontinu-
ous constituency trees without sacrificing data
coverage and without the need to use expensive
chart-based parsing algorithms. Extensive ex-
periments show that our model achieves state-
of-the-art or competitive performance on all
benchmarks of continuous and discontinuous
constituency parsing .1

1 Introduction

Constituency parsing is a fundamental task in nat-
ural language processing, having many applica-
tions in downstream tasks such as language model-
ing (Sartran et al., 2022) and machine translation
(Akoury et al., 2019). Continuous constituency
parsing is not capable of capturing discontinuous
language phenomena, such as wh-movements and
extraposition, which are deemed unavoidable in
syntactic analysis (McCawley, 1982; Bunt et al.,
1987; Müller, 2004). Discontinuous constituency
parsing enables modeling these phenomena by al-
lowing each constituent node governing nonadja-
cent strings in the yields, resulting in discontinuous
parse trees as exemplified in Fig. 1(b). In this work

∗Corresponding author
1Code is available at https://github.com/

sustcsonglin/disco-pointer.

NP VP

NP

NP

VP

NP

NP

NP

VP

Span representation:  (0, 2, NP), (0, 8, S), (2, 8, VP), (3, 5, NP), 
                 (3, 8, NP), (5, 8, PP), (7, 8, NP)

(a)

0
The spoon

NP

PPNP

S

awithchildren ate the cake
1 2 3 4 5 6 7 8

VP

todayissuetheonscheduledishearingA

NP

NP

PPNP

NP

VP

Span representation:  (0, 2, NP),  (5, 7, NP),  (4, 7, PP),  

(b)
(7, 8, NP), (0, 8, VP),  ((0, 2), (4, 7), NP), ((0,2), (3, 8), VP)

0 1 2 3 4 5 6 7 8

NP

VPNP

Figure 1: Examples of (a) continuous and (b) discontin-
uous constituency parse trees with their span representa-
tions. Continuous and discontinuous nodes are colored
in blue and orange, respectively. In (b) all discontinuous
nodes are of fan-out two.

we study both continuous and discontinuous con-
stituency parsing under a unified framework.

Both continuous and discontinuous parsing can
be framed as span prediction problems. In continu-
ous parsing, each span corresponds to a single inter-
val (of the observed sentence), while in discontinu-
ous parsing a discontinuous span could correspond
to multiple nonadjacent intervals, the number of
which we refer to as fan-out. Fig. 1 shows the span
representations of both types of parse trees. Based
on span representations, span-based methods de-
compose the score of a parse tree into scores of
spans, scoring all possible spans and finding the
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best parse with dynamic programming algorithms.
They have achieved high accuracy in both contin-
uous parsing (Stern et al., 2017; Kitaev and Klein,
2018; Zhang et al., 2020b) and discontinuous pars-
ing (Corro, 2020; Stanojević and Steedman, 2020).
However, they have several issues:
• Their strong conditional independence as-

sumption is problematic. Span-based methods
score each span independently for global train-
ing and decoding, hoping that powerful neural
encoders could capture sufficient contextual in-
formation for parsing. However, Cui et al. (2022)
show that independent local span scoring is sub-
optimal and they propose auxiliary training ob-
jectives to inject non-local features into neural
span-based continuous parsing. In discontin-
uous parsing, span-based parsers impose even
stronger conditional independence assumptions
when scoring discontinuous spans to alleviate
high space and time complexities,2 which ex-
acerbates the issue of insufficient modeling of
non-local contextual information.

• Data coverage of discontinuous parsing is low.
Current span-based discontinuous parsers can
only deal with discontinuous spans of fan-out of
at most two due to high parsing time complexity,
thereby having limited data coverage. For in-
stance, the most expressive variant of LCFRS-2
(Stanojević and Steedman, 2020) can only cover
up to 87% discontinuous spans in the NEGRA
treebank, greatly upper-bounding the prediction
performance on discontinuous constituents.

• Global decoding for discontinuous parsing is
time consuming. Continuous parsing needs the
cubic-time CKY algorithm for global decoding,
which is not problematic when efficient paral-
lel implementations (Zhang et al., 2020b; Rush,
2020) are available. However, discontinuous
parsing to LCFRS-2 needs O(n6) time, which is
computationally prohibitive. While Corro (2020)
and Stanojević and Steedman (2020) propose to
restrict the search space to speed up parsing,3

2Scoring all fan-out-2 spans needs O(n4) time and space,
which is computationally expensive (mainly in space complex-
ity to store scoring tensors). To solve this issue, Corro (2020)
and Stanojević and Steedman (2020) decompose the scoring
of discontinuous spans to the scoring of multiple continuous
spans (e.g., left and right subspans and the gap in between),
making stronger conditional independence assumptions than
the continuous parsing case.

3For example, Corro (2020) proposes a cubic-time discon-
tinuous parser that can only predict the simplest discontinuous
structures, i.e., a discontinuous parent span can only have two
continuous subspans. Though their parser has a high overall

that further damages data coverage.

In this work, we present a simple yet effective
approach to address all aforementioned problems
via autogressive span selection. 4 To solve the first
issue, we sort gold spans by a predefined order and
train a pointer network (Vinyals et al., 2015) to
autoregressively choose spans by that order. As
such, the independence assumption of span-based
parsing is weakened due to the existence of the
autoregressive neural decoder, which captures span
correlations in a similar way to Nguyen et al. (2021)
and Yang and Tu (2022) (but see section 4 for how
our method differs from theirs). To solve the sec-
ond issue, we devise a simple strategy of decoding
discontinuous spans that consecutively selects all
continuous subspans of a discontinuous span from
left to right and labels all but the last subspans
with a special discontinuous label and the last sub-
span with the label of the entire discontinuous span.
As such, we can connect an arbitrary number of
subspans to obtain a discontinuous span, so we
can decode discontinuous spans of arbitrary fan-
out and thus arbitrary discontinuous constituency
parse trees, enjoying perfect data coverage. For the
third issue, we find a frustratingly simple and fairly
fast strategy that works quite well. Concretely, we
use greedy decoding to output spans in an uncon-
strained manner and use a heuristic to resolve pos-
sible inconsistency (i.e., two spans crossing each
other) afterwards by simply discarding conflicting
spans. Since O(n) spans are needed to decode, our
method needs linear steps for parsing, thus is effi-
cient. In continuous parsing, this simple strategy
combined with our autoregressive neural decoder
works even better than global CKY decoding in our
experiments. In discontinuous parsing, it removes
the need to use expensive chart-based algorithms
for decoding, greatly reducing the computational
complexity.

We conduct extensive experiments on bench-
marks, achieving state-of-the-art performance on
PTB and competitive performance on CTB for con-
tinuous parsing; and state-of-the-art performance
on three benchmarks: Tiger, NeGra, and DPTB for
discontinuous parsing.

parsing accuracy, the discontinuous F1 is much lower than
other comparable methods due to the restriction in search
space.

4Span-based methods can be viewed as non-autoregressive
span selection with independence assumptions, in analogy to
autoregressive vs. non-autoregressive machine translation.
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2 Approach

2.1 Constituency parsing as span selection

We formally frame (dis)continuous constituency
parsing as a span selection problem. A
(dis)continuous constituency parse tree t comprises
a set of nodes and for each node s we have
yield(s) = {s1, ..., sl}which is the set of sorted to-
ken indices in the yield of s in t with s1 < · · · < sl.
The bidirectional conversion between spans and
trees are shown as follows.

Tree to spans. It is somewhat trivial to derive
the span representation of a tree node s based on
yield(s) by merging consecutive token indices into
continuous intervals represented by left and right
boundary indices. We do not allow two resulting
intervals sharing any boundaries for eliminating po-
tential ambiguities. If a single interval is obtained,
then it is a continuous span; if multiple intervals
are obtained, then it is a discontinuous span. Fig. 1
shows examples of span representations converted
from trees.

Spans to tree. We say a set of spans S is
consistent (to form a valid tree) iff ∀s, t ∈ S,
yield(s) ∩ yield(t) = ∅ or yield(s) ⊂ yield(t)
or yield(t) ⊂ yield(s).5 We can build a tree
from any consistent S as follows. For each s with
| yield(s)| < n, we define Ps ⊂ S as a set of spans
in which s is properly contained. We say t is par-
ent node of s if t = arg min

t′∈Ps

len(t′). We can thus

determine the parent node of each span and thereby
construct the whole tree. We find it convenient to
reconstruct the tree if all spans are sorted in post-
order tree traversal order , i.e., spans of smaller end
position (i.e., maxyield(s)) come first, and for tie
breaking, spans of smaller width come first. As
such, we only need to sequentially scan the sorted
spans to build the tree from the bottom up: for a
scanned span we build a node for it by looking up
prior decoded nodes to find all its children nodes.
Finally, we add a <TOP> node spanning the whole
sentence to connect all unconnected nodes for ob-
taining the final parse tree.

It also gives us a simple heuristic to build a tree
from a set of inconsistent spans: sort spans by post-
order, scan sorted spans and if a span crosses to
any prior decoded spans, simply discard it, oth-
erwise build a node for it likewise the aforemen-
tioned procedure. We adopt this strategy in the

5Here we slightly abuse the notation yield.

post-processing stage to build trees.

Handling discontinuous spans. We use a sim-
ple strategy to deal with discontinuous spans.
For a given discontinuous span of fan-out f
{(l1, r1), ..., (lf , rf )}, we label all but the last
subspans (i.e., {(l1, r1), ..., (lf−1, rf−1)}) with a
special discontinuous label <dis> and the last
subspan (i.e., (lf , rf )) with the label of the en-
tire discontinuous span. For example, a discon-
tinuous span ((0, 2), (4, 7), (10, 14)),NP) would
be transformed to (0, 2,<dis>), (4, 7,<dis>),
(10, 14,NP). As such, we can reduce discontin-
uous parsing to continuous parsing, except that
we need to guarantee all continuous subspans of
a discontinuous span occur consecutively in the
(ordered) decoded span list (and also with correctly
predicted labels <dis>), so that we can connect
subspans to recover the parent discontinuous span.
We achieve it using an autoregressive decoder as
described later. The key advantage here is that we
can handle discontinuous spans of arbitrary fan-out
easily.

Example. We take the discontinuous
parse tree from Fig. 1(b) for example to
show how we convert it to a list of sorted
spans. First, we sort all spans in post-order,
obtaining {(0, 2,NP), (5, 7,NP), (4, 7,PP),
((0, 2), (4, 7),NP), (7, 8,NP), ((0, 2), (3, 8),VP)
(0, 8,VP)}. Then we use the introduced simple
trick to handle discontinuous spans, resulting in
{(0, 2,NP), (5, 7,NP), (4, 7,PP), (0, 2,<dis>),
(4, 7,NP), (7, 8,NP), (0, 2,<dis>), (3, 8,VP),
(0, 8,VP)}.

2.2 Neural architecture

Input. Given a sentence w = w1, · · · , wn, we
add <bos> at w0 and <eos> at wn+1, and sort the
gold spans (for discontinuous parsing we first do
the transformation descried earlier) by post-order
to get S = {(li, ri, yi)}i where li, ri, yi are the
left boundary index, right boundary index, and the
label index of the i-th span, respectively. Since we
adopt an autoregressive selection strategy, we need
to inform the model when to stop. We achieve it by
appending a special indicator span (0, 0,<end>)
to S, and denote the resulting size of S as m.

Encoder. We tokenize the input sentence and
feed it into pre-trained language models such as
BERT (Devlin et al., 2019) and XLNet (Yang et al.,
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Figure 2: The depiction of the decoder architecture and how it outputs spans of the discontinuous parse tree from
Fig. 1(b).

2019) to obtain word-level 6 contextualized embed-
ding x = x1, · · · , xn, then feed x into a multi-layer
bidirectional LSTM (BiLSTM):

. . . , (
−→
fi ,
←−
fi ), · · · = BiLSTM([. . . , xi, . . . ])

We use the fencepost representation (Cross and
Huang, 2016; Stern et al., 2017) to represent the
i-th boundary sitting between xi and xi+1:

bi = [
−→
fi ;
←−−
fi+1]

and obtain span embedding ei,j for (i, j) using the
concatenation of the LSTM-minus feature (Wang
and Chang, 2016; Cross and Huang, 2016) and
max-pooling over representations of all words in
the span:

ei,j = [bj − bi; max-pooling(xi+1, ..., xj)]

Decoder. For the decoder we use a uni-
directional LSTM network,

d1 = LSTM(d0, e
start)

dt = LSTM(dt−1, [MLP(elt−1,rt−1);Eyt−1 ]), t ≥ 2

where dt is the hidden state of the LSTM decoder
at time step t; d0, estart are randomly initialized
trainable vectors; E is the label embedding matrix.
Fig. 2 demonstrates the working mechanism of the
autoregressive decoder for outputting spans of the
discontinuous parse tree from Fig. 1(b).

For each step, the decoder hidden state is used
as a query to select the target spans and then the
decoder hidden state and the selected span are used
together to predict the label of the selected span.
For span selection, we use deep triaffine attention
(Zhang et al., 2020a) to estimate the score sti,j of
selecting the span (i, j) at time step t,

b
l/r
i = MLPl/r(bi)

d′t = MLPdecoder(dt)

sti,j = TriAff(bli, b
r
j , d

′
t),

6For each word we take its last subtoken’s representation
from the last output layer of BERT or XLNet

For span labeling, we compute the label score gt ∈
RL as,

Ht = MLPlabel([dt; elt−1,rt−1 ])

gt = HtET

where L is the size of label set, E is the label
embedding matrix. We remark that it is crucial
to incorporate decoder state embedding into label
prediction in discontinuous parsing. A span can be
both a standalone continuous span and a continuous
subspan of a discontinuous parent span (e.g, (0, 2)
and (4, 7) in Fig. 1(b)) simultaneously. If we do
not use the decoder state embedding to provide side
information, it would be hard to distinguish such
difference, thereby confusing the model.

2.3 Training and decoding
We decompose the training loss L as the span se-
lection loss and the span labeling loss,

L = Lselect + Llabeling

Lselect = −
m∑

t=1

log
exp{stlt,rt}∑

0≤i<j≤n
or i=j=0

exp{sti,j}

Llabeling = −
m∑

t=1

log
exp{gtyt}∑L
j=1 exp{gtj}

For inference, we autoregressively decode spans
with no constraint until the special span (0, 0) is
selected, and use the simple heuristic (introduced
in Sect. 2.1) to build the final parse.

3 Experiments

3.1 Setting
Data. For continuous parsing, we conduct ex-
periments on Penn Treebank (PTB, Marcus et al.,
1993) 3.0 with the standard splits of section 02-21
for training, section 22 for development and sec-
tion 23 for testing; and Chinese Treebank (CTB,
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Xue et al., 2005) 5.1 with the same split from
(Zhang et al., 2020b). For multilingual experi-
ments, we follow Cui et al. (2022) and select six
languages from SPMRL 2013-2014 shared task
(Seddah et al., 2013), including three rich-resource
languages: French (fr), German (de), and Korean
(ko), and three low-resource languages: Hungarian
(hu), Basque (eu), and Polish (pl). For discontinu-
ous parsing, we conduct experiments on discontinu-
ous version of the English PTB (DPTB, Evang and
Kallmeyer, 2011) using the standard split; German
Negra treebank (Skut et al., 1997) using the split
from Dubey and Keller (2003); and German Tiger
treebank (Brants et al., 2001) using the split from
SPRML 2014 shared task (Seddah et al., 2014).

Evaluation. We use the script evalb7 and
discodop8 to evaluate continuous and discon-
tinuous parsing respectively, reporting labeled F1
measures for continuous parsing; labeled overall F1
meansures and labeled discontinuous F1 measures
(DF1) for discontinuous parsing. All reported val-
ues are averaged over three independent runs with
different random seeds.

Implementation details. We refer readers to Ap-
pendix A for details.

3.2 Continuous parsing results

Main result. We re-implement the neural
TreeCRF parser (Zhang et al., 2020b) — a strong
span-based parser — as our baseline, using the
same neural architectures (for scoring) and training
settings for a fair comparison.

Table 1 shows the results on PTB test set. Our
model outperforms the TreeCRF baseline and all
other compared models. Interestingly, our model
performs similarly to (Yang and Tu, 2022) (both
their and our models have similar encoder-decoder
neural architectures), suggesting that their bespoke
decoding algorithm is not very useful in improving
performance. We posit the improvement of their
model mainly stems from the autoregressive de-
coder (sec. 3.4). Table 2 show the results on CTB
test set and we can see our model outperforms the
TreeCRF baseline and obtains competitive perfor-
mance compared to other models.

Multilingual evaluation. We additionally report
the results on multilingual SPMRL datasets fol-

7https://nlp.cs.nyu.edu/evalb
8https://github.com/andreasvc/

disco-dop

Model P R F

w/ BERTlarge

Kitaev et al. (2019) 95.46 95.73 95.59
Zhou and Zhao (2019)† 95.70 95.98 95.84
Zhang et al. (2020b) 95.85 95.53 95.69
Nguyen et al. (2020) - - 95.48
Wei et al. (2020) 95.5 96.1 95.8
Tian et al. (2020) 96.09 95.62 95.86
Yang and Deng (2020) 96.04 95.55 95.79
Xin et al. (2021) 96.29 95.55 95.92
Nguyen et al. (2021) - - 95.7
Cui et al. (2022) 95.70 96.14 95.92
Yang and Tu (2022) 96.19 95.83 96.01
TreeCRF (re-impl.) 96.03 95.63 95.83
Ours 96.21 95.87 96.04

w/ XLNetlarge

Zhou and Zhao (2019)† 96.21 96.46 96.33
Mrini et al. (2020)†⋆ 96.24 96.53 96.38
Tian et al. (2020) 96.64 96.07 96.36
Tian et al. (2020)⋆ 96.61 96.19 96.40
Yang and Deng (2020) 96.55 96.13 96.34
Ours 96.64 96.34 96.48

Table 1: Results on PTB test set. †: using additional
dependency parse tree information. ⋆: using additional
POS tag information.

lowing the settings from Cui et al. (2022). For
rich-resourced languages our model clearly im-
proves the performance, while for low-resourced
languages our approach performs similarly to Cui
et al. (2022). We posit that a learnable neural de-
coder is data hungry, and thus when the amount
of training data is limited our model might not be
advantageous.

3.3 Discontinuous parsing results

Table 4 shows the main results of discontinuous
parsing.9 Our model outperforms the recent parser
Sun et al. (2022), obtaining state-of-the-art perfor-
mances. Notably, our model’s discontinuous F1
measures are significantly higher than all other ap-
proaches. This is surprising since our model is
conceptually much more simpler, indicating that
there is no need to design complex models for dis-
continuous parsing and warranting rethinking of
this research field.

9The running speed is measured based on a single NVIDIA
A40 GPU and each batch contains five thousands tokens
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Model P R F

Kitaev et al. (2019) 91.96 91.55 91.75
Zhou and Zhao (2019)† 92.03 92.33 92.18
Zhang et al. (2020b) 92.51 92.04 92.27
Wei et al. (2020) 91.9 92.3 92.1
Mrini et al. (2020)† 93.45 91.85 92.64
Tian et al. (2020) 92.50 91.98 92.20
Yang and Deng (2020) 93.80 93.40 93.59
Xin et al. (2021) 92.94 92.06 92.50
Cui et al. (2022) 92.45 92.17 92.31
TreeCRF (re-impl.) 92.27 92.06 92.17
Ours 92.83 91.97 92.41

Table 2: Results on CTB 5.1 test set. All models use the
base version of BERT. †: using additional dependency
parse tree information.

3.4 Ablation study
We conduct ablation studies on PTB (with
BERTlarge) and show the results on Table 5.

The influence of the decoder. As previously
mentioned, span-based parsing amounts to non-
autoregreesive span selection with independent as-
sumptions. To show the importance of incorpo-
rating an autoregressive neural decoder, we train
a span-based parser with local span binary clas-
sification loss (Teng and Zhang, 2018) and per-
form greedy decoding as used in our approach. We
find it hurts the performance significantly, verifying
the importance of neural decoder when adopting
greedy decoding. We further use the CKY algo-
rithm for decoding with the implicit binarization
(Stern et al., 2017; Kitaev and Klein, 2018) strat-
egy10 instead of using greedy decoding and observe
quite marginal improvement, which aligns with
the experimental results of (Fig. 1, Zhang et al.,
2019) in dependency parsing, questioning the util-
ity of global decoding, while we indeed observe
that global TreeCRF training (Zhang et al., 2020b)
improves the performance compared to local train-
ing (but still underperforms our model). We be-
lieve this is because TreeCRF modeling weakens
the strong independence assumption by introduc-
ing a global factor connecting all possible spans
to enforce hard tree constraint (Smith and Eisner,
2008). However we are not aware of any greedy
(or local) decoding strategies for globally-trained
TreeCRF parser, thus cannot investigate the influ-

10It is also possible to use the algorithm from (Section 4.2,
Corro, 2022) for global non-binary parsing

ence of global decoding here.

The effect of span selection order. It is also pos-
sible to use other (span) sorting orders e.g. the
pre-order tree traversal order as used in (Nguyen
et al., 2021). We find using post-order indeed per-
forms better than pre-order, which might explain
the performance gap between (Nguyen et al., 2021)
and (Yang and Tu, 2022) on PTB. We propose
that this phenomenon can be attributed to the order
in which spans are generated. In general, shorter
spans are more easily predictable. Post-order gen-
eration prioritizes the generation of child spans
before parent spans, whereas pre-order generation
generates parent spans before child spans. As a
result, pre-order generation is more prone to the
issue of error propagation.

4 Related work

Continuous parsing. Continuous parsing is well-
studied in the literature. Span-based parsing is
the most popular paradigm and achieves great suc-
cess. The main issue of span-based parsing stems
from the unreasonable conditional independence
assumptions imposed in local span scoring. To re-
solve this issue, one line of work aims to enhance
span representation learning. Mrini et al. (2020)
propose a Label Attention Layer to bring label in-
formation into encoding; Tian et al. (2020) incor-
porate n-gram features and enhance self-attention
mechanism to learn better span representation; and
Cui et al. (2022) introduce auxiliary tasks to help
the model learn non-local patterns. Another line
of work focuses on improving output modeling
(Zhang et al., 2019) by wearkening independence
assumptions. Zhang et al. (2020b) propose a span-
based TreeCRF parser, which can be viewed as
introducing a global (hard tree constraint) factor
(Smith and Eisner, 2008) to connect all spans and
thereby reduce independence assumptions. Xin
et al. (2021) weaken the independence assumption
by taking into accounts the correlations of sibling
spans under a common parent span, designing an
O(n4) dynamic programming algorithm to incor-
porate the interaction scores between sibling spans
into global decoding. Our model weakens the inde-
pendence assumption by using a neural autoregres-
sive decoder so that spans are decoded conditioned
on all previously decoded spans.

Discontinuous parsing. Discontinuous parsing
is a much more complex problem than continuous
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Model Rich resource Low Resource Avgfr de ko Avg hu eu pl Avg
Kitaev and Klein (2018) 87.42 90.20 88.80 88.81 94.90 91.63 96.36 94.30 91.55
Nguyen et al. (2020) 86.69 90.28 88.71 88.56 94.24 92.02 96.14 94.13 91.34
Cui et al. (2022) 87.51 90.43 89.07 89.00 94.95 91.73 96.33 94.34 91.67
Ours 87.89 91.07 89.31 89.41 95.06 91.72 96.18 94.32 91.87

Table 3: Results on SPMRL test sets. We use ISO 639-1 codes to represent languages. All models use the base
version of multilingual BERT as the encoders.

TIGER NEGRA DPTB
Parser (no tags or predicted PoS tags) F1 DF1 sent/s F1 DF1 sent/s F1 DF1 sent/s

w/o pre-trained language models

Coavoux and Cohen (2019) 82.5 55.9 64 83.2 56.3 - 90.9 67.3 38
Coavoux et al. (2019) 82.7 55.9 126 83.2 54.6 - 91.0 71.3 80
Stanojević and Steedman (2020) 83.4 53.5 - 83.6 50.7 - 90.5 67.1 -
Corro (2020) 85.2 51.2 474 86.3 56.1 478 92.9 64.9 355
Ruprecht and Mörbitz (2021) 82.5 55.9 101 82.7 49.0 136 90.1 72.9 95
Vilares and Gómez-Rodríguez (2020) 77.5 39.5 568 75.6 34.6 715 88.8 45.8 611

w/ pre-trained language models

Corro (2020) + BERTbase 90.0 62.1 - 91.6 66.1 - 94.8 68.9 -
RM21 + BERTbase 88.3 69.0 60 90.9 72.6 68 93.3 80.5 57
Coavoux (2021) + BERTbase 90.2 72.9 - 91.7 73.3 - 95.0 82.5 -
VG20 + BERTbase 84.6 51.1 80 83.9 45.6 80 91.9 50.8 80
VG20 + BERTlarge - - - - - - 92.8 53.9 34
FG21 + BERTbase 88.5 63.0 238 90.0 65.9 275 94.0 68.9 231
FG21 + BERTlarge 90.5 68.1 207 92.0 67.9 216 94.7 72.9 193
FG21 + XLNetlarge - - - - - - 95.1 74.1 179
FG22 + BERTbase 89.8 71.0 - 91.0 76.6 - - - -
FG23 + GottBERTbase/RoBERTalarge 88.53 67.76 - 89.08 67.06 - 95.47 83.80 -
Sun et al. (2022) + BERTlarge 91.86 74.24 185 93.67 77.18 193 95.76 79.83 153
Sun et al. (2022) + XLNetlarge - - - - - - 95.82 81.72 101
Ours + BERTlarge 92.26 76.91 192 93.79 78.81 200 95.71 86.65 161
Ours + XLNetlarge - - - - - - 96.10 87.05 110

Table 4: Results on test sets of discontinuous constituency parsing benchmarks. VG20: Vilares and Gómez-
Rodríguez (2020). FG21: Fernández-González and Gómez-Rodríguez (2021). FG22: Fernández-González and
Gómez-Rodríguez (2022) FG23: Fernández-González and Gómez-Rodríguez (2023). RM21: Ruprecht and Mörbitz
(2021).

Model F1

Ours 96.05
TreeCRF (reimp.) 95.83
w/o neural decoder w/ greedy 95.58
w/o neural decoder w/ CKY 95.61
w/o post-order w/ pre-order 95.87

Table 5: Ablation studies on PTB test set.

parsing due to the much larger search space of dis-
continuous parse trees. Reducing discontinuous

parsing to simpler problems such as nonprojective
dependency parsing (Fernández-González and Mar-
tins, 2015; Corro et al., 2017; Fernández-González
and Gómez-Rodríguez, 2020) and continuous
constituency parsing (Versley, 2016; Fernández-
González and Gómez-Rodríguez, 2021; Sun et al.,
2022) is a viable way to decrease the complex-
ity of discontinuous parsing. This work is closely
related to the line of work of reduction to continu-
ous constituency parsing. Boyd (2007) and Versley
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(2016) convert the original discontinuous treebanks
into continuous ones, using special nonterminal
nodes to encode discontinuous constituents similar
to pseudo-projective parsing (Nivre and Nilsson,
2005). After treebank transformation, any contin-
uous constituency parsers can be used for train-
ing and decoding, and post-processing is needed
to recover discontinuous trees. In another line of
work that does not involve treebank transforma-
tion, researchers reorder words in the sentence so
that a discontinuous tree becomes continuous, and
then they train off-the-shelf constituency parsers
on the resulting reordered sentences. This strategy
is referred to as reorder-then-parse. Research in
this line mainly focuses on the design of the re-
ordering module. Fernández-González and Gómez-
Rodríguez (2021) use a pointer network to do the re-
ordering, while Sun et al. (2022) use a dependency
graph parsing strategy to improve the reordering ac-
curacy, which they show is crucial to the final pars-
ing performance. In this work, we view a discontin-
uous span as a combination of multiple continuous
subspans and use a simple labeling mechanism to-
gether with the autoregressive decoder to connect
all (nonadjacent) subspans. Our approach is con-
ceptually simpler than previous models, not involv-
ing any treebank transformation or reordering and
eliminating the need for off-the-shelf continuous
constituency parsers.

Constituency parsing with pointer nets. Our
model has a very similar neural architecture com-
pared to prior pointer network-based constituency
parsers: Nguyen et al. (2021) and Yang and Tu
(2022). The major difference is that our model di-
rectly points to spans using deep triaffine attentions,
while their models point to span boundaries using
deep biaffine attentions so that spans are implicitly
built. Therefore, their models are highly coupled
with bespoke decoding algorithms: Nguyen et al.
(2021) decode spans with pre-order tree traversal
by splitting each input parent span into two sub-
spans based on the selected splitting point (i.e.,
boundary); Yang and Tu (2022) decode spans with
post-order tree traversal, and since every two con-
secutively visited spans share a boundary, their
method selects the unshared boundary for each new
span. We believe bespoke decoding algorithms are
not the keys for obtaining high parsing accuracy
and show a much simpler greedy decoding strategy
instead. Moreover, both of their models are hard to

be extended to discontinuous parsing. 11 This is be-
cause their bespoke decoding algorithms leverage
locality properties of continuous parse trees, which
does not hold for discontinuous parse trees due to
the cross dependencies of discontinuous spans. In
contrast, our model is very flexible in decoding
spans and can be easily extended to discontinuous
parsing.

Seq2seq constituency parsing. Our work is also
closely connected to the recent work of (Fernández-
González and Gómez-Rodríguez, 2023), who pro-
pose a unified seq2seq method for both continuous
and discontinuous parsing like ours. The main dif-
ference is that they linearize (discontinuous) con-
stituency parse trees to transition action sequences
(e.g., SHIFT, REDUCE). As such, they rely on tran-
sition systems to convert a decoded action sequence
to a parse tree. In contrast, we directly linearize
trees to span sequences and leverage pointer net-
works to decode a span for each step .

5 Conclusion

In this work, we have presented a simple yet effec-
tive method for both continuous and discontinuous
constituency parsing. We showed that an autore-
gressive decoder is more desirable than global CKY
decoding in span-based continuous parsing, and
with a simple labeling mechanism, we obtained
state-of-the-art performance in discontinuous pars-
ing.

Limitations

Though autoregressive span selection effectively
weakens the conditional independence assumptions
imposed by current span-based parsing methods,
this strategy imposes another arguably unreason-
able inductive bias of forcing a predefined span
selection order. We find using post order performs
fairly well but this does not necessarily means it is
the best order for span selection, and this work
might leave other potentially better order unex-
plored. Future works might consider using set pre-
diction methods (Sui et al., 2020; Tan et al., 2021)

11For instance, if we want to extend the model of Nguyen
et al. (2021) to discontinuous parsing (assuming binarization),
the number of splitting points is nondeterministic which can
be difficult to handle: a continuous parent span could be
split into two continuous subspans with one splitting point,
or one continuous subspan and one discontinuous subspan
with two splitting points, or two discontinuous subspans with
at least three splitting points (depending on the fan-out of
subspans). The cases of discontinuous parent spans are even
more complicated.
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to eliminate such implausible inductive bias (of
forcing orders) while still benefiting from explicit
span correlation modeling.

Another issue is regarding time complexity.
Though our model needs only linear steps (in sen-
tence length) for parsing, each step takes O(n2)
time to select a single span over O(n2) total spans,
making the overall time complexity cubic. We
remark that for each step the O(n2) operation is
parallelizable and—with full GPU parallelization—
fairly fast in practice, but it would still be problem-
atic when the sentence is extremely long.
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A Implementation details

BERT versions We use bert-large-cased
and xlnet-large-cased for PTB and
DPTB; bert-base-chinese for CTB;
bert-base-multilingual-cased for
SPMRL; deepset/gbert-large for NeGra
and Tiger.

We tune the number of warmup and total train-
ing epochs—which influence performance the
most—separately for each dataset, leaving all other
hyperparameters (almost) the same. Candidate
epoch numbers are {10, 15, 20, 30, 40, 50, 100}
and warmup rates (i.e., the ratio of number
of warmup epochs against total epochs) are
{0.1, 0.3, 0.5} and we use random search to se-
lect hyperparameters. We use (10, 0.1) for PTB;
(15, 0.1) for CTB, Tiger, and rich-sourced lan-
guages in SPMRL; (20, 0.3) for DPTB; (40, 0.5)
for Negra; (100, 0.5) for low-resourced languages
in SPMRL.

The hyperparameters are summarized in Table 6.
Additionally, for the experiments on PTB (XLNet)
and SPRML, we do not use max-pooling as part of
span representations, using only the LSTM-minus
feature, which is slightly better. For CTB the hid-
den size of Triaffine layer is set to 300 instead of
500, which stabilizes training.

Neural architecture
Embeddings dropout 0.33
BiLSTM encoder layers 3
BiLSTM encoder size 1000
BiLSTM layers dropout 0.33
MLP layers 1
MLP activation function LeakyReLU
MLP layers dropout 0.33
MLP size (span) 2000
MLP size (label) 500
MLP size (triaffine) 500
Training
Learning rate for BERT 5e-5
Learning rate for others 2.5e-3
Optimizer AdamW
Scheduler linear warmup
Gradient clipping 5.0
Tokens per batch 3000
Maximum training sentence length 200

Table 6: Summary of hyper-parameters.

8431

https://doi.org/10.24963/ijcai.2020/560
https://doi.org/10.18653/v1/P19-1562
https://doi.org/10.18653/v1/P19-1562
https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/P19-1230


ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

after conclusion selection, page 9

�7 A2. Did you discuss any potential risks of your work?
we do not see any ethical implications or risks of our work

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
abstract and section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
section 3

�3 B1. Did you cite the creators of artifacts you used?
section 3.1

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Not applicable. Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

�7 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Left blank.

�7 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Left blank.

C �3 Did you run computational experiments?
section 3

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
section 3.2 shows the discontinuous parsing speed

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

8432

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
section3 and appendix A

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
section 3

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
section 3.1

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

8433


