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Abstract

The neural metrics recently received consid-
erable attention from the research community
in the automatic evaluation of machine trans-
lation. Unlike text-based metrics that have in-
terpretable and consistent evaluation mecha-
nisms for various data sources, the reliability of
neural metrics in assessing out-of-distribution
data remains a concern due to the disparity be-
tween training data and real-world data. This
paper aims to address the inference bias of neu-
ral metrics through uncertainty minimization
during test time, without requiring additional
data. Our proposed method comprises three
steps: uncertainty estimation, test-time adap-
tation, and inference. Specifically, the model
employs the prediction uncertainty of the cur-
rent data as a signal to update a small frac-
tion of parameters during test time and subse-
quently refine the prediction through optimiza-
tion. To validate our approach, we apply the
proposed method to three representative mod-
els and conduct experiments on the WMT21
benchmarks. The results obtained from both
in-domain and out-of-distribution evaluations
consistently demonstrate improvements in cor-
relation performance across different models.
Furthermore, we provide evidence that the pro-
posed method effectively reduces model un-
certainty. The code is publicly available at
https://github.com/NLP2CT/TaU.

1 Introduction

The evaluation of machine translation (MT) sys-
tems aims to quantitatively assess their perfor-
mance using either automatic metrics or human
evaluators. When developing cutting-edge MT sys-
tems, selecting the optimal model using automatic
metrics is highly significant to save human labor,
given a large number of candidate models. Over the
last decade, the researchers have primarily relied on
traditional metrics based on text overlap (Papineni
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Figure 1: Correlation plot of model uncertainty of
COMET with prediction error when evaluating an
English-Russian MT system from WMT21 submission.
The prediction error is the difference between COMET
score and MQM (Multidimensional Quality Metrics;
Freitag et al., 2021a) expert-based human evaluation
score. COMET scores are scaled up to MQM range.

et al., 2002; Snover et al., 2006; Popović, 2015)
to evaluate system performance. However, these
metrics fall short in capturing semantic-level infor-
mation and exhibit poor correlation with human rat-
ings when assessing the latest neural MT systems
because of increased model capacity (Ma et al.,
2019; Mathur et al., 2020). Consequently, several
neural metrics (Zhang et al., 2020; Rei et al., 2020;
Sellam et al., 2020; Zhan et al., 2021a; Wan et al.,
2022) and test sets (Müller et al., 2018; Stanovsky
et al., 2019; Zhan et al., 2021b; Freitag et al.,
2021b) have been proposed to provide broader eval-
uation perspectives and show outstanding perfor-
mance in evaluating state-of-the-art systems. De-
spite the superiority of neural metrics, the adop-
tion of these metrics over traditional overlap-based
measures has witnessed a gradual pace. The peo-
ple engaged in MT research and industry remain
cautious due to concerns surrounding potential ro-
bustness issues, thereby hindering the progress of
popularizing neural metrics.
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The source of robustness problem can be at-
tributed to data shift. The fine-tuning data used
when developing neural metrics is composed of
labels derived from human ratings obtained when
evaluating strong MT systems in the News domain,
which largely limits the generalization capability
of the obtained model. In real-world scenarios, the
evaluation metric must be capable of assessing text
originating from diverse domains with varying lev-
els of quality. However, neural metrics, trained
on limited data, may exhibit biases when dealing
with out-of-distribution data. These factors present
challenges in establishing neural metrics as reliable
evaluation measures across a wide range of applica-
tions. Glushkova et al. (2021) proposed employing
uncertainty quantification (Gal and Ghahramani,
2016; Lakshminarayanan et al., 2017) to assess
the risk associated with utilizing neural metrics in
evaluation and discovered a correlation between
model uncertainty and model prediction errors, as
depicted in Figure 1. While Glushkova et al. (2021)
have explored the uncertainty of neural metrics, the
quest for a solution to mitigate uncertainty in MT
evaluation remains an under-explored research area.
One intuitive approach is fine-tuning the model us-
ing diverse and multi-domain data. Unfortunately,
there is currently no publicly available dataset that
satisfies this requirement.

In this paper, we propose an unsupervised ap-
proach for neural metrics aimed at minimizing un-
certainty during test time and mitigating the chal-
lenges posed by out-of-distribution data. Our pro-
posed method involves two additional stages inte-
grated before the normal inference process: uncer-
tainty estimation and test-time adaptation. Firstly,
our model leverages the Monte Carlo approach
(Gal and Ghahramani, 2016) to estimate the un-
certainty of the current input data. Subsequently,
the estimated uncertainty serves as a guiding signal
to optimize a small fraction of model parameters
using gradient descent. Finally, the model proceeds
with the regular inference procedure, utilizing the
adapted parameters to make predictions. In this
way, the model can adjust its parameters dynam-
ically to better cope with diverse data, which is
flexible and does not require any labeled data.

We use the representative metric family
COMET (Rei et al., 2020) as our testbed and con-
duct experiments on WMT21 benchmark (Freitag
et al., 2021b), which accounts for evaluating out-
of-distribution data. The experimental results show

that our method can improve the system-level corre-
lation performance as well as the ranking accuracy
of partial COMET baselines. Furthermore, our
analysis highlights the applicability of our method
and confirms its efficacy in reducing uncertainty.

2 Background

MT Metrics Ideally, human labor is used to eval-
uate the translation quality of MT models and iden-
tify the optimal model. Since human assessment is
expensive, there is a need for automatic evaluation
methods that can provide instantaneous measure-
ments of a model’s capability. More specifically,
given the model hypothesis h, ground truth r, and
source s, the metric M(·) will quantify the transla-
tion quality q by comparing the model hypothesis
and reference ⟨h, t⟩:

q =





M(h, s) s = ø
M(h, r) t = ø
M(h, s, r) s, t ̸= ø

(1)

There are three types of metrics based on their uti-
lization of reference information: reference-based
metric M(⟨h, ·, r⟩) (which solely utilize the tar-
get translation or jointly consider both the source
and target information), and reference-free metric
M(⟨h, s⟩) (which solely rely on the source input).
Among these, reference-based metrics are widely
employed, and reference-free metrics are often cat-
egorized as quality estimation metrics (Fonseca
et al., 2019).

The neural metrics build a regression scoring
model by leveraging pre-trained representation,
which have achieved remarkable performance in
MT evaluation. In this way, the metric M is param-
eterized by model θ:

q = M(⟨h, s, r⟩; θ) (2)

As an example, the COMET (Rei et al., 2020)
framework employs two distinct downstream ar-
chitectures to leverage a pre-trained XLM (Con-
neau et al., 2020) model. It fine-tunes the addi-
tional regression and ranking models using human
rating data obtained from the WMT Metrics task,
ensuring that the tuned parameters can evaluate the
translation quality.

Uncertainty As deep neural networks are widely
used in real-world applications, uncertainty is a crit-
ical measurement that indicates how a model is con-
fident in the predictions in order to prevent causing
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Figure 2: Illustration of the proposed method: Test-time Adaption by Uncertainty estimation (TAU).

serious consequences such as gender bias (Savoldi
et al., 2021). There are two kinds of uncertainty pro-
posed by previous research: aleatoric uncertainty
and epistemic uncertainty (Der Kiureghian and
Ditlevsen, 2009; Kendall and Gal, 2017). While
aleatoric uncertainty pertains to data noise in obser-
vations and cannot be easily eliminated, epistemic
uncertainty stems from the insufficient knowledge
of a model. Given that the training data for neural
metrics primarily revolves around the News do-
main, this paper focuses on reducing epistemic un-
certainty, particularly for out-of-distribution data.

Test-time Adaptation Domain adaptation (Pan
and Yang, 2010) offers a deterministic target and
can be trained with additional data through super-
vised or unsupervised methods, providing an in-
tuitive approach to reduce epistemic uncertainty.
However, there is a dearth of research exploring
domain adaptation in MT evaluation due to the
scarcity of multi-domain human ratings. Another
limitation of using domain adaptation methods to
mitigate epistemic uncertainty is the unknown do-
main of input data in real-world scenarios. This
becomes particularly crucial for neural metrics, as
they need to score diverse inputs without introduc-
ing domain bias. Test-time adaptation paradigm
handles this challenge as a viable solution and can
be categorized into test-time training (Sun et al.,
2020) and source-free test-time adaptation (Kundu
et al., 2020; Liang et al., 2020; Wang et al., 2021).
It generalizes the model to out-of-distribution data
during the testing phase without necessitating ad-
ditional fine-tuning operations. Notably, a con-

current work (Lee and Lee, 2023) in the image
classification tasks has also proposed minimizing
uncertainty during test time. However, there are no-
table distinctions between our approach and theirs
in terms of learning objectives and the specific type
of uncertainty being targeted. In the context of
MT evaluation, we present the first application of
this paradigm and contribute a novel method that
minimizes epistemic uncertainty at test time.

3 Method

The proposed method, as illustrated in Figure 2, is
comprised of three distinct stages. These stages
will be thoroughly discussed in the following sec-
tion. Since both reference-based regression model
and quality estimation (QE) model are used in
COMET framework, we use ⟨h, s, ·⟩ to denote in-
put data in order to take two major types of metrics
mentioned in Section 2.

3.1 Uncertainty Estimation

The uncertainty is widely used in the classification
model to obtain confidence about the classifica-
tion results over a distribution P . Due to the fact
that most neural metrics are regression models in-
stead of classification model, for an input ⟨h, s, ·⟩,
the regression model only produce a single score
q rather than a score distribution P (q). There-
fore, it is a non-trivial question that how can obtain
score distribution P . Glushkova et al. (2021) high-
lighted that Monte Carlo Dropout (MCD; Gal and
Ghahramani, 2016) and Deep Ensemble (DE; Lak-
shminarayanan et al., 2017) are two approaches
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used for estimating the uncertainty of a regression
model. DE involves using multiple models that
vary in randomization methods to predict scores
for the same input, and then aggregating them to
obtain a scoring distribution. Similarly, MCD also
relies on models with different randomization, but
only requires a single model with dropout enabled
(Srivastava et al., 2014). The dropout technique
introduces randomness by altering the activation
status of model parameters during inference, simu-
lating the effects of multiple homologous models
used in DE.

Since our method focuses on adapting a sin-
gle model to the target distribution, we choose
MCD to estimate the score distribution due to
its convenience and relatively low computational
cost. Specifically, given an input ⟨h, s, ·⟩ and a
model parameterized with θ, MCD makes model
perform K-times feed-forward pass with different
sets of parameters θk to get a score distribution
P (q) = {M(⟨h, s, ·⟩; θk)}Kk=1. Subsequently, the
uncertainty can be calculated by the variance of
score distribution P (q), which can be formally ex-
pressed as:

u(⟨h, s, ·⟩) = Var({M(⟨h, s, ·⟩; θk)}Kk=1) (3)

where Var is the calculation process of variance.
We use the standard deviation in implementation:

Var(P ) =
√
E [(P − µP )2] (4)

3.2 Adaptation by Uncertainty Minimization

After acquiring the model uncertainty through the
methodologies outlined in the preceding section,
it is advisable to expand the estimation procedure
from instance-level to batch-level and run the es-
timation method in parallel. This approach serves
two purposes: firstly, it enables seamless integra-
tion of the proposed method with the original infer-
ence process; secondly, it promotes stability in the
optimization process by incorporating batch-level
characteristics. Utilizing the uncertainty of each
sentence independently as a guide for optimizing
the model parameters would hinder the acquisition
of adequate domain-specific features and poten-
tially lead to a compromised starting point. To
circumvent these challenges, the adaptation algo-
rithm is designed at the batch level.

Another crucial problem is the choice of opti-
mization parameters. Despite the existing catego-
rization of data instances into different domains

within the benchmark, there still exist differences
among these domain-specific instances (Moore and
Lewis, 2010). To deal with this problem, we ought
to make the optimization process flexible to switch
between different batches but not deviate too far
from the original representation. Therefore, we
choose to optimize a small fraction of the original
model parameters, including the layer-wise atten-
tion and the corresponding coefficients.

The architecture of neural metric model typically
consists of a pre-trained encoder and a score estima-
tor, as illustrated in Figure 2. The score estimator
is responsible for regression-based prediction of
score q and takes the sentence embedding Oembed
generated by L-layer1 encoder as its input. In the
COMET framework, the sentence embedding is
obtained by aggregating the output hi of each layer
using layer-wise attention w = {wi}Li=1, which
can be formulated as follows:

Oembed = γ ·
L∑

l=1

wi · LayerNorm(hi) (5)

where γ is a learnable scaling coefficient and
LayerNorm(·) denotes layer normalization opera-
tion (Ba et al., 2016). Therefore, it is intuitive to
achieve flexible adaptation by influencing the com-
putation of sentence embedding, given its pivotal
role in comprehending the semantic aspects of the
text. We choose γ and w as the optimization pa-
rameters θ∗. For the empirical exploration of other
optimization choices, we leave the discussion of
this question in Section 5.1.

Algorithm 1 outlines the process of test-time
adaptation by uncertainty minimization (TAU)
when evaluating a specific MT system. The batch-
level optimization, as described in the fifth to the
eighth line, aligns with the aforementioned expla-
nations. However, a notable challenge arises dur-
ing the initial stages of optimization, commonly
known as the “cold start” problem, if the test set is
traversed only once. At the beginning of optimiza-
tion, the model estimates the uncertainty using a
small portion of the data, which prevents the early
samples from benefiting from test-time adaptation
compared to subsequently encountered samples.
Therefore, the proposed method considers perform-
ing multiple adaptations for the entire system-level
data, as indicated in the third line of Algorithm 1.
In this way, the well-adapted model can re-score

1For the XLM-R model used by COMET framework, L
is set to 24.
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Algorithm 1 TAU: Test-time Adaptation by Uncer-
tainty Minimization

Require: Model θ, System-level evaluation tuple
D = {⟨h, s, ·⟩}, Adaptation rate α, Adaptation
times J .

1: Backup original model θ
′ ← θ

2: Select parameters for adaptation |θ∗| ≪ |θ|
3: for adaptation iteration j = 1, ..., J do
4: Score set q = {ø}
5: for mini-batch {⟨h, s, ·⟩}Ni=1 ∈ D do
6: Estimate uncertainty u by Equation 3
7: Optimize θ∗ ← θ∗ − α∇θ∗

1
N

∑N
i=1 ui

8: end for
9: Infer score [q] by Equation 7

10: q⇐ [q]
11: end for
12: Restore to original model θ ← θ

′

13: return q

the previous samples that may receive an uncertain
score suffered by the cold start problem.

To conclude, the optimization objective of TAU
can be formally expressed as follows:

θ∗ = argmin
θ∗

E⟨h,s,·⟩∈D [u(⟨h, s, ·⟩)] (6)

3.3 Inference

Although the mean of the score distribution P (q)
estimated by MCD process can be viewed as a pre-
diction score, it is not adopted in order to ensure
comparability with other baseline models. Conse-
quently, the inference stage of the adapted model
aligns with conventional inference practices. To
achieve this, the adapted model does not employ
back-propagation of gradients and dropout during
the inference process, as stated in the 9th line of
Algorithm 1. The inference process can be formu-
lated as follows:

q = Mθ+∆θ∗({⟨h, s, ·⟩}) (7)

In summary, the model leverages the MCD to es-
timate prediction uncertainty u of current data D.
This uncertainty serves as a signal to update the
partial parameters θ∗ during test time, ultimately
leading to self-corrected predictions. Moreover, the
update process is performed online, ensuring that
no additional storage costs are incurred.

4 Experiments

4.1 Experimental Setups

Data We conduct experiments on a multi-domain
benchmark of WMT21 Metrics Task2, which in-
cludes three language pairs and corresponding
MQM scores. Compared to previous WMT crowd-
sourced evaluations, MQM framework is a more
granular evaluation protocol that focuses on ex-
plicit errors. Freitag et al. (2021a) explored the
application of the MQM framework (Lommel et al.,
2014) in the evaluation of WMT submissions and
published an alternative set of reference scores an-
notated by human experts3. We used MQM scores
as the reference and evaluate how well the scores
produced by metrics correlate with them. For News
domain that has multiple references, we extend the
evaluation of metrics to include human translations
(HT) alongside the standard reference. It is impor-
tant to note that HT is out-of-distribution data for
neural metrics, given that these metrics have pri-
marily been trained on the scoring data related to
existing MT systems. Specifically, the metrics need
to conduct the system-level evaluation by involving
(w/ HT) or excluding HT text (w/ HT).

Baselines The baselines cover three mainstream
types of metrics:

• Text-based Metrics: Traditional metrics
quantify the n-gram overlap between the hy-
pothesis and reference, such as BLEU (Pap-
ineni et al., 2002) and CHRF (Popović, 2015),
or measure the edit distance like TER (Snover
et al., 2006). These metrics employ transpar-
ent evaluation mechanisms that draw inspira-
tion from human evaluation. However, their
scope is limited to assessing the surface-level
coverage at the morphological level.

• Embedding-based Metrics: The evaluation
process of embedding-based metrics is also
transparent and characterized by strong in-
terpretability. These metrics measure the
semantic-level similarity between reference
and hypothesis embeddings, which are en-
coded using a pre-trained encoder or language
model (Devlin et al., 2019). This approach
provides a more nuanced evaluation perspec-
tive compared to text-based metrics. Among

2https://www.statmt.org/wmt21/metrics-task.html
3https://github.com/google/wmt-mqm-human-evaluation/
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Metrics News w/o HT News w/ HT TED

En-De Zh-En En-Ru En-De Zh-En En-Ru En-De Zh-En En-Ru
Avg.

Baselines

TER 93.0 41.6 -4.1 7.4 -8.5 -28.9 50.6 42.1 69.7 29.2
BLEU 93.7 31.0 50.7 13.2 -15.2 -4.3 62.0 32.4 82.8 38.5
CHRF 89.8 30.2 78.3 1.7 -14.3 12.3 47.1 36.3 82.5 40.4
BERTSCORE 93.0 54.2 62.9 7.4 9.5 -12.3 50.6 30.6 83.1 42.1
COMET-DA2020 81.4 51.1 67.6 65.8 22.1 55.6 78.8 25.1 85.9 59.3
COMET-MQM-QE2021 71.1 52.9 63.2 79.2 61.9 68.1 69.4 -20.9 88.4 59.3
COMET-MQM2021 77.1 62.8 65.9 72.0 33.6 68.5 81.8 26.6 84.1 63.6

Reproduced Results and Our Methods

♢ COMET-DA2020 81.5 51.1 67.5 58.0 26.4 56.8 78.8 25.0 85.9 59.0
+TAU 85.7 53.5 71.0 48.0 27.4 54.5 85.9 28.3 87.3 60.2

♢ COMET-MQM-QE2021 71.2 53.0 68.8 79.2 61.9 68.1 69.4 -20.8 81.7 59.2
+TAU 62.8 57.4 70.3 72.0 65.2 78.1 82.9 25.7 80.7 66.1

♢ COMET-MQM2021 77.2 62.8 65.9 69.8 48.7 69.7 81.8 26.6 84.1 65.2
+TAU 76.5 69.2 67.1 75.4 67.8 71.4 87.5 24.5 84.9 69.4

Table 1: System-level Pearson correlations of metrics with MQM scores on available language pairs for WMT21
Metrics Shared Task. Bold values indicate that the model receives improvement by applying our proposed method.
“Avg.” denotes averaged results.

them, the representative BERTSCORE (Zhang
et al., 2020) metric is used in our experiments.

• Neural Metrics: Since the evaluation mech-
anism of neural metric has been described in
Section 2, we will not go into details in this
part. There are several models provided in
COMET framework (Rei et al., 2020, 2021)
including reference-based and reference-free
models. We choose three representative mod-
els as the baselines and testbed: COMET-
DA2020, COMET-MQM2021 and COMET-
MQM-QE2021, where the last one only re-
quires source text to evaluate the translation.

The reported performance of baselines is taken
from official results (Freitag et al., 2021b). To
minimize the possible bias in our experiments, we
reproduced COMET baselines using open-sourced
repository4 and implement our method on the same
code skeleton.

Settings During the process of test-time adapta-
tion, the learning rate α is set to 1e − 4 by using
WMT20 benchmark as the development set. We
only tune the batch size N and adaptation times J
for better performance. We use Adam optimizer
(Kingma and Ba, 2015) to update parameters θ∗

with β1 = 0.9, β2 = 0.99 and ϵ = 10−8. For esti-

4https://github.com/Unbabel/COMET

mating the uncertainty, we perform feed-forward
operation K = 30 times with dropout enabled.

4.2 Meta-Evaluation

To assess the system-level performance of the met-
ric, we employ two meta-evaluation methods: cor-
relation performance and pairwise accuracy. The
Pearson correlation, renowned for its widespread
application, serves as a common metric used in
evaluating system-level performance. This mea-
surement has also been adopted by the WMT
Shared Task as a means to evaluate the performance
of metrics. In addition, pairwise accuracy (Kocmi
et al., 2021) measures how many system pairs are
correctly ranked by the metric, which can be calcu-
lated as follows:

Acc. =
|sign(metric∆) = sign(human∆)|

|system pairs| (8)

where ∆ and sign(·) denote the differences and
the sign function, respectively. While most exist-
ing work calculates the correlation (e.g., Pearson
correlation) between metric scores and human judg-
ments to evaluate their performance, a reliable met-
ric should also be able to correctly compare and
rank MT systems. Therefore, we report pairwise
accuracy in addition to Pearson correlation per-
formance to demonstrate the system-level ranking
performance, serving as a cross-validation metric.
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Metrics News w/o HT News w/ HT TED

En-De Zh-En En-Ru En-De Zh-En En-Ru En-De Zh-En En-Ru
Avg.

♢ COMET-DA2020 82.1 70.5 68.1 72.4 61.5 66.7 82.1 69.2 82.4 72.8
+TAU 89.7 69.2 73.6 76.2 59.3 70.5 85.9 67.9 83.5 75.1

♢ COMET-MQM-QE2021 73.1 78.2 69.2 78.1 81.3 73.3 71.8 41.0 80.2 71.8
+TAU 71.8 75.6 75.8 77.1 79.1 79.0 80.8 57.7 80.2 75.3

♢ COMET-MQM2021 79.5 66.7 68.1 77.1 61.5 70.5 87.2 66.7 78.0 72.8
+TAU 83.3 66.7 64.8 80.0 63.7 68.5 88.5 65.4 82.4 73.7

Table 2: Pairwise accuracy of metrics with MQM ranking results on available language pairs for WMT21 Metrics
Shared Task. Bold values indicate that the model receives improvement or maintains the performance by applying
our proposed method. Among them, identical results are underlined. “Avg.” denotes averaged results.

We use functions from mt-metrics-eval5 toolkit
to calculate the above two meta-evaluation results.

4.3 Main Results

As can be seen from Table 1, the proposed method
TAU partially improves the averaged correlation
performance of COMET metrics, and the improve-
ments vary from model to model. Models trained
on MQM scores demonstrate a greater benefit
from adaptation compared to COMET-DA mod-
els whose training data is direct assessment (DA)
scores. This observation suggests that TAU exhibits
characteristics akin to continual learning when the
test data is related to the training data source. The
cross-validation results in Table 2 show a similar
tendency as what is observed in Table 1. Since
we did not perform hyper-parameter searching on
pairwise accuracy, which further supports the ef-
fectiveness of the proposed method. From a model-
level comparison standpoint, the QE model still
receives larger improvements. However, it is no-
table that adaptation may occasionally result in a
performance decline. Therefore, the decision to
do adaptation or not becomes a vital considera-
tion for in-domain data, and the subsequent section
will delve into the effect of distribution differences
through an empirical study.

5 Analysis

In this section, we will discuss the effectiveness of
our method by answering three questions: 1) How
do different optimization settings impact perfor-
mance? 2) When does test-time adaptation work?
3) Can the proposed method effectively reduce epis-
temic uncertainty? Among these questions, the last
one serves to justify our research objective and en-
tails a segment-level analysis to understand why

5https://github.com/google-research/mt-metrics-eval/

the proposed method is effective.

Domain LAtt. LN. Estim. ρ Acc.

News

✓ ✗ ✗ 85.7 89.7
✗ ✓ ✗ 79.5 76.9
✗ ✗ ✓ 78.7 80.8
✓ ✓ ✗ 79.6 76.9
✓ ✗ ✓ 78.6 80.8
✓ ✓ ✓ 78.0 79.4

TED

✓ ✗ ✗ 85.9 85.9
✗ ✓ ✗ 79.4 82.1
✗ ✗ ✓ 77.2 76.9
✓ ✓ ✗ 79.4 82.1
✓ ✗ ✓ 77.1 76.9
✓ ✓ ✓ 76.9 76.9

Table 3: Performance of TAU when optimizing different
modules. “LAtt.”, “LN.” and “Estim.” denotes layer-
wise attention, layer normalization, and estimator. Over-
all, optimizing layerwise attention is a suitable choice.

5.1 Ablation Study

We use COMET-DA model to conduct an ablation
study since it was not tuned for MQM scoring.

Adaptation Parameters Table 3 reveals that the
parameters of layerwise attention module are suit-
able to optimize at test time, addressing the con-
cerns raised in Section 3.2. The conducted compar-
isons reveal that optimizing parameters other than
the layerwise attention module ultimately results
in performance degradation. This degradation per-
sists even when jointly tuning with the layerwise
attention module. These findings confirm our ini-
tial hypothesis that optimization should not deviate
too far from the original parameters, thereby avoid-
ing extensive optimization of core components or a
larger number of parameters. A closer examination
of the degree of performance degradation indicates
that optimizing the estimator produces the most
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Figure 3: Performance of TAU with different settings of adaptation times. The out-of-distribution data requires
more adaptation times than in-domain data, and both of them would suffer from extreme settings.

significant decline in performance, aligning with
the aforementioned reasons.

Adaptation Times To address the “cold start‘’
problem discussed earlier, Algorithm 1 incorpo-
rates a multiple adaptation policy. The empirical
results presented in Figure 3 reveal a relationship
between the choice of adaptation times and the
domain. Specifically, in-domain data (News) suf-
fers from continuous adaptation, whereas out-of-
distribution data (TED) demonstrates improved per-
formance through multiple adaptations. In the case
of in-domain data, the data shift between train-
ing and inference is relatively smaller compared to
out-of-distribution data, allowing the performance
to reach its peak with fewer adaptation runs. In
contrast to in-domain behaviors, optimizing out-of-
distribution data takes longer due to the need for
dissimilar data features, leading to fluctuations in
performance indicators. Nevertheless, a common
trend emerges where larger adaptation times eventu-
ally hinder performance, particularly for in-domain
data. To strike a balance between computational
time and performance, all the adaptation times uti-
lized in the previous experiments are limited to no
more than 5 times.

5.2 Effects of Data Types

In order to determine which type of data benefits
more from the proposed method TAU, we catego-
rize the evaluation tasks into three distinct types,
and then report the performance changes for each
type in Table 4. The scope of out-of-distribution
data extends beyond TED data from out-of-domain
sources, encompassing human translations (HT)

as well. The human translations rarely present in
training data and differ significantly from the text
generated by MT systems. Thus, the tasks within
“News w/HT” category are regarded as partial out-
of-distribution scenarios. Overall, the proposed
method achieves the highest improvement for each
model when evaluated on out-of-distribution data,
as evidenced by the average correlation metric. It
is plausible because a major source of uncertainty
is out-of-distribution data, and TAU is able to alle-
viate inference bias in these cases.

Models ∆ID. ∆Partial OD. ∆OD.

DA 3.4 -3.8 4.0
MQM 2.4 8.8 1.5

QE-MQM -0.8 2.0 19.7
Avg. 1.7 2.4 8.4

Table 4: Performance variation of different data types
for each model. ∆, “ID.”, “OD.” represent performance
changes, in-domain, out-of-distribution, respectively.

5.3 Model Uncertainty

In response to our research objectives, we inves-
tigate whether the uncertainty has been reduced
after applying the proposed method. We aggre-
gated the uncertainty values at the segment level
and visualized their distributions grouped by lan-
guages and models, as depicted in Figure 4. These
visualizations demonstrate a shift in the distribu-
tions for both in-domain and out-of-distribution
data, affirming the effectiveness of uncertainty min-
imization. However, it is worth delving into the rea-
sons behind the larger uncertainty shift observed in
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Figure 4: Uncertainty distribution of COMET baselines and corresponding models optimized by TAU. TAU can
reduce the uncertainty of different models on different domains.

COMET-DA model compared to COMET-MQM
model. The discrepancy could be attributed to the
training data. COMET-MQM model is derived
by fine-tuning COMET-DA model on normalized
MQM scores, which employ a scoring protocol
that deviates from the traditional point-wise scale.
Specifically, the segment-level MQM score is de-
rived from the count of explicit errors and ranges
from -25 to 0, unlike the continuous [1, 100] scale
adopted by WMT (Freitag et al., 2021a). We ob-
served that there are many identical scores such as
“0”, which means that the annotators consider them
to be perfect translations. As a consequence, the
MQM scores exhibit less diversity compared to the
DA scores, subsequently influencing the prediction
behavior of the models fine-tuned on MQM scores.
Encouragingly, despite these factors, we were able
to reduce uncertainty in the MQM models and im-
prove their overall performance.

6 Conclusion

The uncertainty of neural metrics is proven to be
associated with prediction error and limits gener-
alizing them for a wider range of applications. In
this paper, we propose a novel method, TAU, to
minimize the uncertainty of neural metrics at test
time in unsupervised settings without learning ex-
tra data. Our experimental results showcase the
efficacy of TAU in reducing test-time uncertainty
while simultaneously improving the performance
of widely used metrics. In addition, our findings in-
dicate that the proposed method exhibits enhanced
effectiveness when applied to out-of-distribution
data in comparison to in-domain data, which lays

a solid foundation for its potential application to
other models. However, the segment-level perfor-
mance does not significantly outperform the base-
lines. In the future, we will polish the methods for
better segment-level correlation performance and
explore the test-time adaptation on large language
models across various tasks.

Limitations

The methodology and experimental approach pre-
sented in this paper have certain limitations con-
cerning their practical application and the availabil-
ity of language resources. The proposed method
estimates uncertainty using Monte Carlo Dropout
with K iterations and subsequently performing
adaptation J times. These additional computations
result in increased inference time in real-world ap-
plications. Empirical evidence suggests that larger
values of J lead to a linear increase in time costs
in practical scenarios. Although the number of J
on the WMT21 benchmark was limited in our ex-
periments, the exact cost associated with achieving
successful adaptation for new models or datasets
remains uncertain. In terms of language resources,
the majority of MT metric benchmarks still focus
on the News domain, leaving a dearth of multi-
domain MQM benchmarks for conducting more
meta-evaluation experiments during the prepara-
tion of this paper. To address these limitations,
it is imperative to explore the performance of the
proposed methodology on a wider range of out-of-
distribution benchmarks in the future. Furthermore,
as highlighted by the reviewer, it is also important
to note that the proposed methodology does not
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consistently exhibit performance improvements on
certain specific test sets. One possible explanation
for this observation could be attributed to our in-
vestigation of the optimal learning rate using the
WMT20 dataset. The divergence in scoring per-
spectives between the conventional WMT score
and the MQM score might lead to discrepancies in
improvement trends.

Ethics Statement

An ethical concern associated with neural metrics
is the presence of unpredictable bias in the evalua-
tion process. Unlike traditional text-based metrics,
neural metrics pose challenges in mitigating eval-
uation bias due to their black-box nature, which
also introduces potential issues like gender bias in-
herent in pre-trained language models. While our
current study does not investigate the bias problem,
reducing uncertainty in the evaluation process may
help contribute to mitigating the potential risks as-
sociated with generating biased results.
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