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Abstract

We investigate knowledge retrieval with multi-
modal queries, i.e. queries containing informa-
tion split across image and text inputs, a chal-
lenging task that differs from previous work on
cross-modal retrieval. We curate a new dataset
called ReMuQ 1 for benchmarking progress on
this task. ReMuQ requires a system to retrieve
knowledge from a large corpus by integrating
contents from both text and image queries. We
introduce a retriever model “ReViz” that can di-
rectly process input text and images to retrieve
relevant knowledge in an end-to-end fashion
without being dependent on intermediate mod-
ules such as object detectors or caption gen-
erators. We introduce a new pretraining task
that is effective for learning knowledge retrieval
with multimodal queries and also improves per-
formance on downstream tasks. We demon-
strate superior performance in retrieval on two
datasets (ReMuQ and OK-VQA) under zero-
shot settings as well as further improvements
when finetuned on these datasets.

1 Introduction

Humans recall, retrieve, and communicate infor-
mation using many indirect hints and cues. For
instance, if we want to explain the concept of a
“leopard” but have forgotten the name, we can re-
late the concept to a picture of a tiger and say “it
is an animal that looks like this, but has spots in-
stead of stripes”. Similarly, when children learn
to draw a new shape like an oval, teachers often
prompt them by showing a circle, but saying “make
the circle stretched-out”. This method of learning
new concepts from visual aids and language de-
scriptions is a common way of reinforcing existing
knowledge and allowing learners to explore and
retrieve new concepts (Kinder, 1942).

We propose a task for vision-language models
to retrieve knowledge with multi-modal queries,

1pronounced re–µ-queue. Data and code: https://
github.com/luomancs/ReMuQ.

i.e. queries in which hints about the information to
be retrieved are split across image and text inputs.
Figure 1 contains an example of this task, where
the image shows the Empire State Building in New
York City. If we retrieve knowledge using only
the image, is it likely that the retrieved information
(K1) will be related to the Empire State Building.
However, K1 is insufficient to answer the question.
On the other hand, if we retrieve knowledge using
only the question, then the information retrieved
(K2) is likely to be related to the tallest building in
all cities (and not restricted to New York City). K2
by itself is also insufficient to answer the question.
This example shows that the combined query con-
taining both image and text (question) is necessary
for retrieving relevant knowledge (K3).

We introduce a new benchmark and dataset
called ReMuQ (Retrieval with Multimodal
Queries) to train and evaluate models to retrieve
the answer from a corpus given multimodal (vi-
sion + language) queries. To create multimodal
queries, we start with the WebQA (Chang et al.,
2022) dataset as a source – WebQA contains im-
ages annotated with questions and answers. We
select questions from WebQA where the answer
includes both an image and text. We then remove
any image information from text and combine the
image and the augmented text to form a new mul-
timodal query. We also construct a large retrieval
corpus consisting of answer options of all questions
as the source of knowledge for this task.

This task requires integrating the contents from
both modalities and retrieve knowledge – in this
paper we denote such a system as a “VL-Retriever”.
Existing VL-Retrievers (Qu et al., 2021; Luo et al.,
2021; Gao et al., 2022) typically follow a two-step
process to retrieve knowledge: (1) converting the
image into captions or keywords, appending them
to the text query, and (2) using a text-retriever sys-
tem to retrieve the knowledge. However, this ap-
proach can result in a loss of important information
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K1: The Empire State Building is a 102-story Art Deco skyscraper in Midtown Manhattan,

New York City

K2: The 828 metre (2,717 ft) tall Burj Khalifa in Dubai has been the tallest building since

2010. The Burj Khalifa has been classified as megatall.

K3: The tallest building in New York is One World Trade Center which rise 1,776 feet (541 m).

External Knowledge

Question: Is this the tallest building in the city?

Figure 1: An illustration of the multimodal retrieval task from the ReMuQ dataset. The image shows the Empire
State Building and the question asks if it is the tallest building in “the city”. Neither the image nor the question
explicitly mentions that “the city” is New York. The challenge therefore is to use the cues in the image and question
to retrieve relevant information and answer the question. In this illustration we show the retrieved knowledge using
only the image (K1), only the question (K2), or both image and question (K3). Only K3 can be used to answer the
question correctly.

from the image, such as context and background.
Additionally, using a caption generation model
trained on a particular domain does not transfer
well to other domains in real-world applications.

To address these issues, we propose an end-to-
end VL-Retriever that has the potential to leverage
the entire image, rather than just object categories,
keywords, and captions. We call this model ReViz,
a retriever model for “Reading and Vizualizing”
the query. As part of ReViz, we use a vision
transformer-based model, ViLT (Kim et al., 2021),
to directly encode the image from raw pixels with
context inputs, and we employ BERT (Devlin et al.,
2019) as the knowledge encoder to represent the
long, free-form text as a knowledge embedding.
ReViz differs from previous retrieval models in
two main ways. First, it does not require an extra
cross-modal translator (e.g., a captioning model)
or object detector to represent the images. Second,
its end-to-end design allows for the flexible retrain-
ing of each submodule of the model, which can
mitigate potential issues caused by domain gaps.

Unlike neural text-retrievers (Karpukhin et al.,
2020; Luo et al., 2022), the query and knowl-
edge encoders in ReViz are of different types
of modality (i.e. multimodal transformer and lan-
guage transformer). The different semantic spaces
of the query and knowledge embeddings make
alignment between them difficult. To address
this, we propose a novel multimodal retrieval pre-
training task. To create training data, we con-
struct triplets of (input-image, input-text, output-
knowledge) from the WiT (Srinivasan et al., 2021)
dataset which contains encyclopedia-type knowl-
edge from Wikipedia. We process the data such

that the input image and text have mutually exclu-
sive information.

Our contributions and findings are listed below.

• We introduce a new dataset ReMuQ to facilitate
research on retrieval with multimodal queries.

• We propose an end-to-end VL-Retriever, ReViz,
that directly acquires knowledge given multi-
modal query. ReViz is not dependent on any
cross-modal translator, such as an image caption-
ing model or an object detector.

• We pretrain ReViz on a novel multimodal re-
trieval pretraining task, VL-ICT. We observe that
with the proposed pretraining on the WiT dataset,
our VL-Retriever is a powerful zero-shot mul-
timodal retriever that surpasses existing single-
modal knowledge retrieval methods.

2 Related Work

Cross-Modal Retrieval aims to find information
from a different modality than the query; for in-
stance retrieving images from text (text-to-image),
text from images (image-to-text) (Young et al.,
2014; Lin et al., 2014), text-to-video and video-to-
text (Rohrbach et al., 2015; Xu et al., 2016; Zhou
et al., 2018). In contrast, we consider retrieval of
knowledge for queries comprised of both modali-
ties (i.e. image and text) together.

Knowledge-based Question Answering. Retriev-
ers are important for finding relevant knowledge
to aid knowledge-based question-answering mod-
els for tasks such as FVQA (Wang et al., 2017)
(commonsense knowledge), Text-KVQA (Singh
et al., 2019) which requires knowledge of the text
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WebQA ReMuQ

Corpus Size

40K                              199K

Figure 2: Dataset creation procedure for ReMuQ using WebQA as the source of the raw data. The multimodal-Query
in ReMuQ is the combination of an image and the question from WebQA where the overlapped information with
the image is removed. The ground truth knowledge of ReMuQ is the answer from WebQA. The corpus consists of
all answers and the distracted knowledge candidates given in ReMuQ.

in the image, and KVQA (Shah et al., 2019)(world
knowledge about named entities). Both FVQA and
KVQA are equipped with knowledge graph as ex-
ternal corpus. In OKVQA (Marino et al., 2019) and
its augmented versions S3VQA (Jain et al., 2021)
and A-OKVQA (Schwenk et al., 2022), models
are free to use any existing knowledge bases to re-
trieve relevant knowledge. WebQA (Chang et al.,
2022) is a multi-hop reasoning dataset that requires
a system to aggregate multiple sources to answer
a question, where the answers can be found ei-
ther via image search or general web search. Fang
et al. (2020) introduce a video question answering
dataset that requires a system to answer questions
using commonsense knowledge about intentions
and effects of people’s actions in videos.

Knowledge-Retrieval with Multimodal Queries
While there are methods for retrieving knowledge
from knowledge graphs (Narasimhan et al., 2018;
Li et al., 2020; Marino et al., 2021), in this work,
we focus on systems that retrieve knowledge from
free-form text, which is more readily available and
comprehensive. Previous methods involve convert-
ing images into language representations such as
captions (Qu et al., 2021; Gao et al., 2022) or object
tags (Gui et al., 2022; Yang et al., 2022), and then
using a text-based retriever such as BM25 (Robert-
son and Zaragoza, 2009) or DPR (Karpukhin et al.,
2020) to find relevant knowledge. Gao et al. (2022)
leverage GPT-3 (Brown et al., 2020) to generate the
knowledge. Qu et al. (2021); Luo et al. (2021) use
a vision and language model to obtain cross-modal
representations. CLIP (Radford et al., 2021) has
also been applied to retrieval tasks; however it has
limitations due to its separate encoding of text and

image without a multi-modal fusion module.

3 Retrieval with Multimodal Queries

In this section, we define the problem statement for
knowledge retrieval with multimodal queries and
describe the construction of the ReMuQ dataset to
assess models performing this task.

3.1 Problem Statement

Given a query Q = (I, T ) containing as image I
and text T , we wish to learn a mapping to rele-
vant textual knowledge K from a corpus C. Note
that the two modalities I and T are such that each
contains partial information about K. Both I and
T are necessary for successful retrieval of K and
Only using one of the two modalities is inadequate.

3.2 ReMuQ Dataset Creation

In ReMuQ each query has exactly one ground
truth knowledge associated with it. To create such
queries, we augment WebQA questions (Chang
et al., 2022), and collect a large corpus to serve
as the knowledge source for any retrieval systems.
WebQA is a multihop and multimodalQA dataset
including text questions of different types such
as Yes/No, Open-ended (e.g. shape, color, etc.),
and multi choice (MC) questions. The images are
crawled from Wikimedia Commons, both questions
and text answers are created by annotators.

To create multimodal queries, we utilize the MC
questions in WebQA, which are associated with
multiple choices as knowledge sources in the form
of text or images. The ground truth answers of the
questions include text-only, image-only, or both
text and image. We adapt important steps to create

8575



Figure 3: Overall architecture of ReViz. ReViz consists of a Vision-Language Transformer that encodes the image
and text and a knowledge encoder that projects the knowledge into knowledge embedding. During inference, ReViz
selects the knowledge from the corpus that has the largest relevance score with the image-text embedding.

multimodal queries and explain the pipeline of the
curation procedure below and in Figure 2 (more
examples are given in Appendix).

(1) Question Filtering. We select multiple-choice
questions which have answer choices containing
both image and text.

(2) Multimodal Query Construction. The ini-
tial multimodal query is the combination of the
question and the corresponding image. In order
to enforce a system to integrate information from
both text and images, we use tf-idf to select key-
words and then remove them in the question. Our
new multimodal-query is then the concatenation
of the augmented question and the image, with the
text-answer to be the ground-truth knowledge.

(3) Retrieval Corpus Construction. We aggregate
the textual knowledge from all samples as the com-
mon knowledge corpus for multimodal retrieval,
resulting in a large corpus of ∼ 199k knowledge
descriptions.

(4) Dataset Train-Test Split. We divide ReMuQ
into 70% for training and 30% as testing split.The
new curated dataset contains 8418 training samples
and 3609 testing samples, together with a knowl-
edge corpus with 195, 837 knowledge descriptions.
More statistic of ReMuQ is given in Table 1.

4 Method

Prior work on Vision-Language (VL)-Retrievers
has focused on two-stage methods where the first
stage involves feature-extraction using pretrained
visual and textual encoders and the second stage
learns retrieval using these features. A typical VL-

Retriever can be expressed as:

K = VL-RETRIEVER(T, F ;C), (1)

where C is the knowledge corpus, T is the text com-
ponent of the query, and F denotes the extracted
features of image I . This feature extraction can
be done in two ways; (1) by converting the visual
inputs into a human-readable textual description
via an image captioning model or a series of ob-
ject tags by object detector, (2) by extracting object
features using an object detector.

End-to-End VL-Retriever. Instead, in this work,
we are interested in building an end-to-end VL-
Retriever, that encodes and selects the knowledge
from the corpus using a VL model:

K = VL-RETRIEVER(T, I;C). (2)

We propose ReViz, an end-to-end VL-RETRIEVER

that learns to maximize the multimodal query and
knowledge similarity for knowledge retrieval tasks.
We introduce its architecture below.

4.1 ReViz Model Architecture
ReViz can read and visualize the input query, con-
sists of two components, the multimodal query en-
coder and the knowledge encoder. Figure 3 illus-
trates the pipeline of our model.

Multimodal Query Encoder. We use ViLT (Kim
et al., 2021) to jointly encode the text input T and
the image I . In ViLT, an image is first partitioned
into a set of a fixed size of patches – these patches
are encoded as continuous visual tokens through
a linear projection layer (Dosovitskiy et al., 2020).
These visual tokens are concatenated with the text
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Title/Caption: Angelica lineariloba

Passage

Angelica lineariloba is a species of

Angelica known as poison angelica or

Sierra angelica. It is native to the Sierra

Nevada and nearby slopes and flats in

California and western Nevada from 6000

to 10,600 ft in elevation. This is a

taprooted perennial herb producing an

erect, hollow stem up to about 1.5 meters

tall. The large but feathery leaves are

made up of many highly dissected leaflets

which are linear to threadlike in shape.

WiT Dataset VL-ICT Dataset
Multimodal Query

___________ is a species of Angelica

known as poison angelica or

Sierra angelica.

TI

K
Passage

It is native to the Sierra Nevada

and nearby slopes and flats in

California and western Nevada from 6000

to 10,600 ft in elevation. This is a

taprooted perennial herb producing an

erect, hollow stem up to about 1.5 meters

tall. The large but feathery leaves are

made up of many highly dissected leaflets

which are linear to threadlike in shape.

Figure 4: Figure on the left shows an example of the WIT dataset (Srinivasan et al., 2021), crawled from Wikipedia.
Figure on the right shows our constructed (T, I,K) triplet: T is a sentence from the passage and the words
overlapped with the title/caption is masked; K is the remaining passage after removing the sentence.

tokens and summed with the position embeddings
and fed into a stack of several self-attention blocks.
The final multimodal representation is obtained by
applying linear projection and hyperbolic tangent
upon the first index token embedding.

Zq = ViLT(I, T ) (3)

Knowledge Encoder. To encode knowledge, we
use a pre-trained BERT (Devlin et al., 2019) model,
which produces a list of dense vectors (h1, . . . , hn)
for each input token, and the final representation is
the vector representation of special token [CLS].

Zk = BERT(K) (4)

After the embeddings of query and knowledge are
computed by the encoders, inner-dot product of the
embeddings is considered as the relevancy score.

Score(I, T,K) = Z⊤
k · Zq (5)

4.2 Training
The training objective of ReViz draws inspiration
from the instance discrimination principle based
on contrastive learning. The loss function to be
minimized is given below:

L = −log
exp(zq · zk)

exp(zq · zk) +
∑

k̂∈Bk,k̂ ̸=k

exp(zq · zk̂)
,

(6)
where zq denotes the query embedding, zk denotes
the relevant knowledge embedding, and zk̂ is the
irrelevant knowledge embedding which serves as
negative instances. We use all in-batch samples
(Bk) as the negative instances.

Training with Hard Negatives. Adopting ran-
dom samples as negative instances may cause
sub-optimal metric space. Existing work shows
that mining with hard negative samples leads to
discriminative representations and has been ap-
plied to a broad series of tasks like face recogni-
tion (Zhang et al., 2017), object detector (Shrivas-
tava et al., 2016), and metric learning for retrieval
tasks (Faghri et al., 2018; Harwood et al., 2017).
Inspired by this, we also experiment with the hard
negative technique to further boost the retrieval per-
formance. To obtain the meaningful hard negative
samples, we first train ReViz with the supervisions
in eq. 6. With that, for each training question, we
retrieve the top-100 knowledge instances (exclud-
ing the ground-truth) as the hard negative samples.
Note that we only apply hard negative mining to
fine-tuning on downstream task but not the pretrain-
ing task (introduced in the next section).

5 Pretraining Task for VL Retriever

Previous work (Chang et al., 2020; Lee et al., 2019;
Guu et al., 2020) suggests that pretraining a re-
triever on unsupervised task that closely resembles
retrieval can greatly improve the downstream tasks
performance. We propose a pretraining task called
VL-ICT, which is inspired by ICT (Lee et al., 2019)
task in NLP domain.

ICT aims to train text-based information retrieval
(IR) system for the open-domain question answer-
ing task. To train a model without annotated
data, Lee et al. (2019) propose to construct pseudo
(question, context) pairs as the training data for
IR system. In particular, given a passage P , a
random sentence S in the passage is selected as
the pseudo question, and the remaining passage
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Datasets Source Average Length Size

Image Knowledge Question Knowledge Train-D Test-D Knowledge

VL-ICT Wiki Wiki 24.15 111.79 10,783,957 - -
OKVQA COCO GS/Wiki 9.15 67.05/100.00 8,958 5,046 112,724/21M
ReMuQ Wiki Wiki 14.97 48.60 8,418 3,609 195,837

Table 1: A comparison of the datasets used in our experiment in terms of the sources of images and knowledge,
average length of question and knowledge, and the sizes of each dataset.

P ′ is considered as the relevant context. Such a
weakly-supervised setting enables large-scale ICT
pre-training, leveraging any available knowledge
base as the training corpus.

VL-ICT. We propose VL-ICT task to pre-train
ReViz, which can be applied to multi-modal scenar-
ios when both language and vision inputs exist in
the query. In VL-ICT, a (I, T,K) triplet is used for
training. Importantly, I and T , contain mutually
exclusive information and are both necessary for
knowledge retrieval. However, such condition is
not naturally existing, thus, we propose an auto-
matic procedure to construct triplet satisfying this
condition in the following.

VL-ICT Training Data. Figure 4 shows a snap-
shot of our data construction process where we
use the WiT dataset (Srinivasan et al., 2021) as the
source. Each WiT entry provides a title of the page
or an image caption, a passage, and an image. We
use the image from this WiT entry as the image
I in our VL-ICT triplet. We observe that the title
or caption is usually entities, it allows us to sim-
ply use word matching to find the sentences in the
page passage that include the title/caption. We take
such sentences as the text (T ), then we remove this
sentence from the passage and use the remaining
passage as the knowledge (K). To enforce that
(T ) and (I) have mutually exclusive but important
information, we mask keywords in T that appear
in both T as well as the caption. In our experi-
ments, we only select the English entities in WiT
and execute the above process, and this results in
3.2 million (I, T,K) training triplets.

6 Experiments and Results

Datasets. In addition to ReMuQ, we conduct ex-
periments on OKVQA to obtain stronger evidence
for the efficacy of our method. Here, instead of QA
task, we use OKVQA as a testbed for retrieval task,
i.e. to retrieve a relevant knowledge to a question
such that it contains the answer span. Furthermore,

we use two corpora, a small corpus collected from
Google search API introduced in Luo et al. (2021),
and a large corpus which contains 21M Wikipedia
knowledge used in Gao et al. (2022). The statistic
of each dataset is given in Table 1.

Evaluation Metrics. Following Gao et al.
(2022); Luo et al. (2021), we evaluate the perfor-
mances of models by Precision@K (P@K), Re-
call@K (R@K), and MRR@5. We use similar
metrics to evaluate the ReMuQ challenge except
that P@1 is used instead of P@5 since ReMuQ has
exactly one correct knowledge per query.

6.1 Zero-shot Retrieval

We first introduce three zero-shot baselines and
then present the results.

CLIP Baseline. CLIP (Radford et al., 2021) is a
vision-language model pre-trained on over 400M
image-text pairs. We encode all knowledge descrip-
tions via CLIP’s textual encoder K. Then, given
an image-text pair as the query, we use the image
encoder to get the visual representations (I) and
use the textual encoder to get the embedding of
Q. We compute the inner-dot products between all
encoded visual representations (I) and K to get the
top-100 knowledge for evaluation, similarly for Q.
Finally we sum the scores and re-rank the top-100
knowledge. We find this performs the best than
using individual modality (see Appendix).

BM25 Baseline. BM25 (Robertson and
Zaragoza, 2009) is a well-known efficient retrieval
algorithm for text-based retrieval task based on the
sparse representation. We use the caption of the
image to represent the information of the image
and thus we convert the multi-modal knowledge
retrieval task into a pure text-based retrieval task.

DPR Baseline. We adopt DPR (Karpukhin et al.,
2020) trained on NaturalQuestions (Kwiatkowski
et al., 2019) dataset as a baseline, to retrieve the
knowledge given an input image-text pair. First,
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Model Dataset KB-Size Metric

MRR@5 P@5 R@5 R@10 R@20 R@50 R@100

CLIP-IMG+Q OKVQA GS-112K 19.08 11.13 34.54 50.48 65.08 80.62 88.11
BM25 (GenCap) OKVQA GS-112K 36.36 27.54 51.35 63.04 73.37 84.21 90.39
DPR (GenCap) OKVQA GS-112K 39.15 27.72 55.56 66.44 75.59 87.17 92.42
ReViz+VL-ICT OKVQA GS-112K 45.77 33.18 64.05 75.39 84.21 91.64 94.59

TRiG (Gao et al., 2022) OKVQA Wiki-21M - - 45.83 57.88 72.11 80.49 86.56
CLIP-IMG+Q OKVQA Wiki-21M 16.45 9.66 29.81 43.00 55.73 72.73 82.26
BM25 (GenCap) OKVQA Wiki-21M 36.43 27.89 50.16 60.92 71.62 82.82 88.74
DPR (GenCap) OKVQA Wiki-21M 41.15 28.10 59.41 71.13 81.73 89.90 93.39
ReViz+VL-ICT OKVQA Wiki-21M 44.03 32.94 62.43 73.44 82.28 89.93 93.76

CLIP-IMG+Q ReMuQ 199K 0.34 0.17 0.78 1.36 2.41 7.34 47.88
BM25 (GenCap) ReMuQ 199K 3.80 5.59 8.78 10.75 12.88 15.88 17.98
DPR (GenCap) ReMuQ 199K 31.23 35.79 43.42 48.77 54.47 61.40 67.30
ReViz+VL-ICT ReMuQ 199K 23.61 29.52 39.43 46.77 53.56 63.70 71.13

Table 2: Zero-shot performance of ReViz and baselines on two datasets: OKVQA and ReMuQ. OKVQA is evaluated
on two knowledge sources. ReViz shows superior zero-shot performance in majority of the cases.

Model Dataset KB-Size Metric

MRR@5 P@5 R@5 R@10 R@20 R@50 R@100

ReViz OKVQA GS-112K 46.92 34.51 66.05 77.80 86.33 93.34 95.90
ReViz+VL-ICT OKVQA GS-112K 54.47 41.74 73.35 83.17 89.56 94.73 96.81

ReViz OKVQA Wiki-21M 41.66 30.08 60.88 72.20 81.07 89.16 93.10
ReViz+VL-ICT OKVQA Wiki-21M 43.68 31.36 61.91 72.63 81.05 89.28 93.44

ReViz ReMuQ 199K 41.03 49.08 62.40 71.63 78.92 86.60 92.17
ReViz+VL-ICT ReMuQ 199K 53.39 62.11 76.23 83.32 88.56 93.41 96.12

Table 3: Comparison of ReViz when it is fine-tuned on downstream tasks. We compare ReViz and ReViz+VL-ICT
(our pretraining task). VL-ICT enables ReViz to be a stronger multimodal-query retrieval model.

we use the contextual encoder of DPR to index the
corpus, then we concatenate the question and the
caption of the image as a joint textual query. With
that, the question encoder of the DPR extracts the
dense representation of the query for later computa-
tion. Lastly, we retain the most relevant knowledge
pieces by calculating the inner-dot product between
the query and the knowledge embedding.

Results. Table 2 shows the performances of base-
lines as well as ReViz pretrained on VL-ICT task.
Among the baselines, we see that DPR is the
strongest baselines. Surprisingly, although CLIP
has shown strong performance on many classifica-
tion and cross-modality pretraining task, it does not
perform well on multimodal query retrieval task,
this suggests that multimodal query retrieval is a
challenging task for VL model. More importantly,
we observe clearly that ReViz outperforms the base-
lines in terms of all metrics on OKVQA task on
corpus of small and large size. On the ReMuQ
dataset, ReViz wins CLIP and BM25 on all met-
rics, and DPR on two metrics. This demonstrates

the effectiveness of our proposed pretraining task
and the model design.

6.2 Fine-tuning on Downstream Tasks

To further demonstrate the effectiveness of VL-
ICT pretraining task, we finetune models on down-
stream tasks and compare performance. We com-
pare two versions of ReViz: (1) ReViz directly
trained on the downstream task and (2) ReViz first
pretrained on VL-ICT and then finetuned the down-
stream task. In addition, We study two senarios:
in-domain, where a model is trained on the training
set of X domain and evaluated on the testing set
of X; out-of-domain, where a model is trained on
the training set of X domain and evaluated on the
testing set of Y domain.

In-Domain Results. Table 3 shows the in-
domain performance. On both datasets, pretrained
ReViz consistently outperform vanilla ReViz, sug-
gesting that the pretraining task equips ReViz better
alignment between the multimodal queries and the
relevant knowledge.
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Model FT KB-Size Metric

MRR@5 P@5 R@5 R@10 R@20 R@50 R@100

VRR-IMG (Luo et al., 2021) ✓ GS-112K - 31.80 62.52 73.96 83.04 90.84 94.67
VRR-CAP (Luo et al., 2021) ✓ GS-112K - 39.42 71.52 81.51 88.57 94.13 96.95
ReViz+VL-ICT ✓ GS-112K 54.47 41.74 73.35 83.17 89.56 94.73 96.81

TRiG (Gao et al., 2022) ✗ Wiki-21M - - 45.83 57.88 72.11 80.49 86.56
ReViz+VL-ICT ✗ Wiki-21M 44.03 32.94 62.43 73.44 82.28 89.93 93.76

Table 4: Comparison of our best model with existing models on OKVQA. “FT” denotes fine-tuning. Our model
surpasses existing methods by significant margins with or without fine-tuning and with different knowledge corpus.

Figure 5: Evaluation of out-of-domain performances of ReViz and ReViz+VL-ICT. For OKVQA, we retrieve
knowledge from GS-112K corpus. VL-ICT substantially improves the generalization of ReViz. Other metrics are
given in Appendix. X->Y denotes using X as the training domain and Y as the testing domain.

Out-of-Domain Results. We investigate if the
VL-ICT pretraining task can improve the gener-
alization of ReViz. We study the performances
of ReViz under two settings: train on OKVQA
(domain X) and test on ReMuQ (domain Y); and
the inverse. Table 5 shows that ReViz+VL-ICT+X
shows obviously better results than ReViz+X on Y,
especially when X is OKVQA and Y is ReMuQ.
This suggests that models pre-trained with VL-ICT
tasks are more robust than models without VL-ICT.
We also see that the generalization performance
still has a large gap with the fine-tuning, which sug-
gests that OKVQA and ReMuQ are quite different
tasks, and ReMuQ can be a good complement to
OKVQA to study multimodal query retrieval task.

6.3 Comparison with Existing Methods

We compare ReViz with existing retrieval methods
for the OKVQA task. Note that most of the mod-
els on the leaderboard of OKVQA only report the
final question answering accuracy but not the re-
trieval performance. In our experiments we include
systems which report the retrieval performance.

Baselines. Luo et al. (2021) present two fine-
tuned multimodal retrievers: VRR-IMG which uses
LXMERT (Tan and Bansal, 2019) and VRR-CAP
to convert the image into captions for knowledge re-

trieval. Both retrievers use GS-112K as the knowl-
edge corpus. TriG (Gao et al., 2022) uses zeroshot
retriever and Wikipedia 21M as the knowledge cor-
pus. Since these systems use either fine-tuned re-
triever or zero-shot retrievers, for fair comparison,
we compare the best fine-tuned model and zeroshot
model with the corresponding corpus.

Results. In the fine-tuning scenario, in majority
of the cases (only one exception, R@100), our
models consistently shows better performance than
previous methods overall metrics. Similarly, in the
zero-shot case, our model is better than previous
model on all metrics by large margins.

6.4 Effects of Mask Ratio in VL-ICT Task

In VL-ICT, we mask the keywords in the sentence
to prevent information leakage. Despite this, we
find that the certain masked sentences still some-
how overlap with the retrieved knowledge. We
conjecture that this overlapping makes the VL-ICL
task inevitably easy, and thus impairs the effects of
pre-training. To study the optimal mask ratio, we
conduct experiments to randomly mask the words
in the sentence by different ratios. This study is
performed on a smaller corpus of 1 million VL-
ICT training triplets and models are trained for one
epoch. Figure 7 shows the results. We observe that
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Figure 6: Comparison of captioning-dependent retrievers using generated captions and ground truth captions. The
ground truth captions always lead to better performance than generated caption.
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Figure 7: Effect of the masking ratio of sentences in
VL-ICT task on ReViz’s performance on OKVQA Task.
We use GS112K as the knowledge corpus.

removing 20% of the keywords yields the best per-
formance amongst all ratios and is also better than
maintaining the sentences intact (0% masking).

6.5 Effect of Generated Captions

Previous systems which rely on the caption genera-
tion model are affected by the quality of generated
captions. This may hamper the retrieval perfor-
mance when the caption generation model is not
trained on the same domain as the downstream
task. In our ReMuQ dataset, the images are from
Wikipedia, but the caption generator is trained on

MS-COCO (Lin et al., 2014). We compare our
two baselines, BM25 and DPR, using ground-truth
image captions and the generated captions. Table 6
shows that using the ground truth caption is much
better than the generated caption in all cases. This
suggests that the caption generator is the bottleneck
of the retrieval methods to convert the image infor-
mation to image captioning. This demonstrates the
limitations of previous methods and justifies our
exploration of end-to-end training.

7 Conclusion

We study knowledge retrieval with multimodal (vi-
sion and language) queries, which, compared with
existing retrieval tasks, is more challenging and
under-explored. In addition, multimodal-query in-
formation retrieval has numerous potential appli-
cations, not only in retrieval tasks such as image,
text, and video retrieval, but also in question an-
swering, recommendation systems, and personal
assistant. The proposed dataset (ReMuQ) is ideally
positioned to support the development of such func-
tionalities. We propose an end-to-end VL-retriever
model, ReViz, which does not rely on any interme-
diate image to text translation modules. A novel
weakly-supervised task (VL-ICT) is proposed to en-
able large-scale pre-training. Extensive evaluations
on ReMuQ and OK-VQA datasets demonstrate that
ReViz exhibits strong performance amongst all re-
trieval models in both zero-shot and fine-tuning sce-
narios. Our proposed dataset and model provide a
foundation for future work which could potentially
lead to new findings and innovative applications in
multimodal-query information retrieval.
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Limitations

During the creation of the ReMuQ dataset, we sim-
ply remove the words in the question that are du-
plicated in the image caption – in some cases, this
may result in grammatical errors in the text query.
We performed the experiments for studying opti-
mal masking ratio on a subset of the pretraining
data, due to resource constraints.
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Appendix

A Experimental Setup

All ReViz models consist of a ViLT query en-
coder and a BERT context encoder, both with 12
transformer blocks with 12 attention heads each.
For pretraining, we use Adam optimizer with 100
warm-up steps, learning rate at 1e-6, a dropout
probability of 0.1, and pre-train the model in 5
epochs. For down-stream task fine-tuning, we
use Adam optimizer with 10 warm-up steps in 30
epochs. Learning rate 1e-6 is applied to fine-tune
a pretrained ReViz on the down-stream task, and
learning rate 1e-5 is used if fine-tune a vanilla Re-
Viz. All models use 64 batch-size in the training
on a machine with eight Quadro RTX 8000 GPUs.

B Effect of Hard Negative Training

We show the effectiveness of hard negative training
in Table 6. We experiment with both OkVQA and
our ReMuQ dataset and the pretrained models on
VL-ICT. We see that using the hard negative exam-
ples to train the model is much better than without
this training step.

C Additional Visualizations

Examples of VL-ICT Pretraining Task. Figure 8
presents more examples of VL-ICT pretraining
task.
More Examples of ReMuQ Task. We present
some examples of ReMuQ in Figure 9, consisting
of an image, an input context and the corresponding
knowledge.

D Examples of Retrieval Results

In Table 7, we present some examples of
ReViz+VL-ICT+OKVQA, the best model perform-
ing on the GS-112K corpus for OKVQA dataset. In
Table 8, we present some examples of ReViz+VL-
ICT, the best model performing on the Wiki-21M
corpus for OKVQA dataset.

E CLIP Performance

As we mention in the experiment section that CLIP
is one of the baselines. We compare three meth-
ods to retrieve knowledge using CLIP. First one is

8584

https://doi.org/10.1109/ICCV.2019.00470
https://doi.org/10.1109/ICCV.2019.00470
https://doi.org/10.1109/ICCV.2019.00470
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.1109/CVPR.2016.571
https://doi.org/10.1109/CVPR.2016.571
https://doi.org/10.1109/CVPR.2016.571
https://doi.org/10.1162/tacl_a_00166
https://doi.org/10.1162/tacl_a_00166
https://doi.org/10.1162/tacl_a_00166
https://doi.org/10.1109/ICCV.2017.578
https://doi.org/10.1109/ICCV.2017.578
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17344
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17344


Title/Caption: Máriusz Révész

Page Passage: Máriusz Révész is a 
Hungarian politician of the Fidesz party 
and member of the Parliament of 
Hungary. After the Fall of Communism 
in Hungary he entered the local 
government of the 10th district of 
Budapest shortly after the first free 
elections in 1990. In 1991 he became 
the chairman of the local Fidesz chapter 
in the same district. He was first elected 
as a member of the Hungarian 
Parliament in 1998. 

T: _ is a Hungarian politician of 
the Fidesz party and member 
of the Parliament of Hungary.

K After the Fall of Communism in 
Hungary he entered the local 
government of the 10th district 
of Budapest shortly after the first 
free elections in 1990. In 1991 he 
became the chairman of the 
local Fidesz chapter in the same 
district. He was first elected as a 
member of the Hungarian 
Parliament in 1998. 

I :

Multimodal-QueryWiT Dataset VL-ICT 

Title/Caption: First Methodist Church

Page Passage: The First 
Methodist Church in Monroe, 
Green County, Wisconsin, now 
the Monroe Arts Center, is a 
Gothic Revival edifice designed 
by the former Wisconsin State 
Architect E. Townsend Mix of 
Milwaukee and constructed of 
Cream City brick. It was 
commissioned in 1869 by the 
First Methodist Episcopal 
congregation of Monroe to 
replace an earlier church 
building that dated to 1843. 

T: The _ in Monroe, Green 
County, Wisconsin, now the 
Monroe Arts Center, is a 
Gothic Revival edifice 
designed by the former 
Wisconsin State Architect E. 

K: Townsend Mix of Milwaukee 
and constructed of Cream City 
brick. It was commissioned in 
1869 by the First Methodist 
Episcopal congregation of 
Monroe to replace an earlier 
church building that dated to 
1843. 

I :

Multimodal-QueryWiT Dataset VL-ICT 

Figure 8: More examples of VL-ICT pretraining Task.

Question: does the flower have petals in a cup shape?
knowledge: No, a Minnetonka Rhododendron flower
does not have petals in a cup shape.

Question: on what is the clock in ceiling of hung on?
Knowledge: The clock on the ceiling of Dijon Halles
intérieur is hung on a black railing structure.

Figure 9: Examples of ReMuQ datasets.
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Model Dataset Metric

MRR@5 P@K R@5 R@10 R@20 R@50 R@100

CLIP-IMG OKVQA 18.96 11.03 34.50 50.48 65.12 80.60 88.11
CLIP-Q OKVQA 5.06 4.46 10.15 13.77 20.61 35.63 44.03
CLIP-IMG+Q OKVQA 19.08 11.13 34.54 50.48 65.08 80.62 88.11

CLIP-IMG ReMuQ 0.28 0.11 0.69 1.27 2.33 7.29 47.88
CLIP-Q ReMuQ 0.00 0.00 0.00 0.03 0.03 0.11 0.17
CLIP-IMG+Q ReMuQ 0.34 0.17 0.78 1.36 2.41 7.34 47.88

Table 5: CLIP performance on two datasets using three approaches to retrieve knowledge. For OKVQA, GS-112K
corpus is used. P@5 is used for OKVQA and P@1 is used for ReMuQ as shown in the main paper.

Model KB-Size Metric

MRR@5 P@5 R@5 R@10 R@20 R@50 R@100

ReViz+VL-ICT+OKVQA− GS-112K 47.82 36.50 66.49 77.35 86.23 95.14 95.70
ReViz+VL-ICT+OKVQA GS-112K 54.47 41.74 73.35 83.17 89.56 94.73 96.81

ReViz+VL-ICT+ReMuQ− ReMuQ 50.93 42.67 64.17 72.10 79.27 86.81 90.58
ReViz+VL-ICT+ReMuQ ReMuQ 62.11 53.39 76.23 83.32 88.56 93.41 96.12

Table 6: Compare the performance of without using hard negative (-) and with hard negative.

Image Question Retrieved Knowledge Answer
This bear is what
kind of bear?

brown bears are found in asia, europe, and
north america, giving them the widest ranges
of bear species.they also inhabited north africa
and the middle east. in north america, grizzly
bears previously ranged from alaska down to
mexico and as far east as the western shores
of hudson bay...

grizzly; brown

What do you call
the device that
keeps boats in place
at sea?

an anchor is a device, normally made of metal,
used to connect a vessel to the bed of a body
of water to prevent the craft from drifting due
to wind or current. they have the reputation
of not breaking out with tide or wind changes,
instead slowly turning in the bottom to align
with the force...

anchor; locator

How long do these
animals live?

we usually consider 1 year for dog equals to
7 years for you. similar to dogs, birds’ age
should be viewed relative to its life span. dif-
ferent bird species have different life span.

15 years; fifteen
years

Table 7: Examples of retrieved knowledge for OKVQA under GS-112K corpus by ReViz+VL-ICT+OKVQA.

only using the image, the second one is only by
question, and the last one is by both image and
question. In the last method, we firstly use the im-
age embeddings and the knowledge embeddings
to obtain the top-100 relevant knowledge, then we
use the question embeddings to obtain the top-100

relevant knowledge. Lastly, we obtain the final
top-100 knowledge by the sum of the scores given
by the image and question embeddings. Table 5
shows the performance of CLIP using three meth-
ods. Using both image and question achieves the
best performance.
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Image Question Retrieved Knowledge Answer
This bear is what
kind of bear?

a 1,600-square mile island. There are currently
about 55,000 wild grizzly bears total located
throughout North America, most of which re-
side in Alaska. Only about 1,500 grizzlies are
left in the lower 48 states of the US. Of these,
about 800 live in Montana...

grizzly; brown

What do you call
the device that
keeps boats in place
at sea?

the vessels are not controlled when they arrive
in harbor, it depends of many characteristics
(old, flag state, cargo, quality of classification
society ...). The Memorandum of understand-
ing (MOU) is a group (area) to avoid this re-
strictive investigation...

anchor; locator

How long do these
animals live?

in the morning and their dog cries at the win-
dow, it exhibits sadness. A growling dog who
doesn’t like it when someone touches its fa-
vorite toy is showing anger. Animals can feel
love as well as other basic emotions humans
feel. Dogs that grow up with siblings create
strong bonds to their sibling.

15 years; fifteen
years

Table 8: Examples of retrieved knowledge for OKVQA under Wiki-21M corpus by ReViz+VL-ICT model.
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