
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 8590–8604

July 9-14, 2023 ©2023 Association for Computational Linguistics

AV-TranSpeech: Audio-Visual Robust Speech-to-Speech Translation

Rongjie Huang1∗, Huadai Liu1∗, Xize Cheng1∗, Yi Ren2, Linjun Li1, Zhenhui Ye1,
Jinzheng He1, Lichao Zhang1, Jinglin Liu2, Xiang Yin2, Zhou Zhao1†

Zhejiang University1, ByteDance2

{rongjiehuang,liuhuadai,zhaozhou}@zju.edu.cn
{ren.yi,liu.jinglin,yinxiang.stephen}@bytedance.com

Abstract

Direct speech-to-speech translation (S2ST)
aims to convert speech from one language
into another, and has demonstrated significant
progress to date. Despite the recent success,
current S2ST models still suffer from distinct
degradation in noisy environments and fail to
translate visual speech (i.e., the movement of
lips and teeth). In this work, we present AV-
TranSpeech, the first audio-visual speech-to-
speech (AV-S2ST) translation model without
relying on intermediate text. AV-TranSpeech
complements the audio stream with visual in-
formation to promote system robustness and
opens up a host of practical applications: dic-
tation or dubbing archival films. To mitigate
the data scarcity with limited parallel AV-S2ST
data, we 1) explore self-supervised pre-training
with unlabeled audio-visual data to learn con-
textual representation, and 2) introduce cross-
modal distillation with S2ST models trained on
the audio-only corpus to further reduce the re-
quirements of visual data. Experimental results
on two language pairs demonstrate that AV-
TranSpeech outperforms audio-only models un-
der all settings regardless of the type of noise.
With low-resource audio-visual data (10h, 30h),
cross-modal distillation yields an improvement
of 7.6 BLEU on average compared with base-
lines.1

1 Introduction

Speech-to-speech translation (S2ST) models (Tjan-
dra et al., 2019; Zhang et al., 2020; Jia et al., 2021)
relying on speech data have achieved high perfor-
mance and significantly broken down communica-
tion barriers between people not sharing a common
language, which attracts broad interest in the ma-
chine learning community (Huang et al., 2022c;
Huang et al.). Among them, direct systems (Lee
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1Audio samples are available at https://
AV-TranSpeech.github.io/.

et al., 2021a,b; Huang et al., 2022d) leverage recent
progress on self-supervised discrete units learned
from unlabeled speech for building textless S2ST,
further supporting translation between unwritten
languages (Chen et al., 2022).

As speech production (Huang et al., 2023; Lam
et al., 2021; Huang et al., 2022b) is accompanied
by the movement of lips and teeth, it can be visually
interpreted to understand speech. In recent years,
significant research (Shi et al., 2022a; Prajwal et al.,
2022) has introduced joint modeling of spoken lan-
guage and vision: Shi et al. (2022b) investigate to
learn lip-based audio-visual speaker embeddings,
where the speaker’s mouth area is used alongside
speech as inputs. Chern et al. (2022) focus on
audio-visual speech enhancement and separation
which better integrates visual information. Despite
their success, it is unclear how lip can contribute
to audio-based S2ST, and how to incorporate vi-
sual modality as auxiliary information in S2ST.
A visual translator may open up a host of practi-
cal applications: improving speech translation in
noisy environments, enabling dictation, or dubbing
archival films.

Despite the benefits of audio-visual approaches,
training direct speech translation models without re-
lying on intermediate text typically requires a large
amount of training data, while there are very few
resources providing parallel audio-visual speech
due to the heavy workload. To mitigate the data
scarcity, researchers have leveraged multitask learn-
ing (Lee et al., 2021a), data augmentation (Popuri
et al., 2022), and weekly-supervised data with syn-
thesized speech (Jia et al., 2022a) in audio S2ST.

In this work, we propose AV-TranSpeech, in-
troducing the first AV-S2ST system without us-
ing text. As illustrated in Figure 1, our textless
AV-TranSpeech inherits speech-to-unit translation
(S2UT) framework (Lee et al., 2021b; Huang et al.,
2022d), which consists of an audio-visual speech-
to-unit translation (AV-S2UT) model followed by
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(a) Direct audio-visual speech-to-speech translation (AV-S2ST) system
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Figure 1: Beyond speech-to-speech translation (S2ST), we introduce visual-to-speech translation (V2ST) and
audio-visual speech-to-speech translation (AV-S2ST), unlocking the ability for high-quality translation given a
user-defined modality input.

a unit-based vocoder that converts discrete units
to speech. AV-TranSpeech complements the audio
stream with the auxiliary visual information, which
is invariant to speaking environments and promotes
system robustness. To tackle the challenges of
data shortage, we 1) build upon the recently in-
troduced Audio-Visual HuBERT (AV-HuBERT)
which learns contextual representations through
self-supervised masked prediction, and show that
large-scale pre-training benefits AV-S2ST training;
2) introduce cross-modal distillation and leverage
S2ST models trained on the audio-only corpus,
which further reduces the requirements of visual
data and boosts the performance of visual systems
in low-resource scenarios.

Experimental results on two language pairs
demonstrate the robustness of AV-TranSpeech in
noisy scenarios, outperforming audio-only S2ST
under all settings regardless of the SNR and the
type of noise. With low-resource audio-visual data
(10h, 30h), cross-modal distillation yields an im-
provement of 7.6 BLEU on average compared with
baselines. The main contributions of this work
include:

• We propose the first textless audio-visual speech-
to-speech (AV-S2ST) translation model AV-
TranSpeech and collect a benchmark dataset
LRS3-T which we plan to release.

• We leverage the recent success of audio-visual
self-supervised learning for contextual represen-
tations and show that large-scale pre-training al-
leviates the data scarcity issue in AV-S2ST sys-
tems.

• We introduce cross-modal knowledge distillation,
which further reduces the requirements of visual
data and boosts AV-S2ST performances in low-
resource scenarios.

• Experimental results on two language pairs
demonstrate the robustness of AV-TranSpeech
in the noisy environment under all settings re-
gardless of the type of noise, and cross-modal
distillation yields a significant improvement com-
pared with baselines.

2 Related Work

2.1 Speech-to-Speech Translation

Direct speech-to-speech translation has made mas-
sive progress to date. Translatotron (Jia et al.,
2019) is the first direct S2ST model and shows
reasonable translation accuracy and speech natu-
ralness. Translatotron 2 (Jia et al., 2021) utilizes
the auxiliary target phoneme decoder to promote
translation quality but still needs phoneme data
during training. UWSpeech (Zhang et al., 2020)
builds the VQ-VAE model and discards transcript
in the target language, while paired speech and
phoneme corpora of written language are required.
Most recently, a textless S2ST system (Lee et al.,
2021a) takes advantage of self-supervised learn-
ing (SSL) and leverages speech-to-unit translation
(S2UT) model followed by a unit-based vocoder
that converts discrete units to speech, demonstrat-
ing the results without using text data. Popuri
et al. (2022) show that self-supervised encoder and
decoder pre-training with weakly-supervised data
improves model performance. Huang et al. (2022d)
apply speech normalization on rhythm, pitch, and
energy to create deterministic training targets.

Despite their recent success, current S2ST mod-
els still suffer from distinct degradation in noisy
scenarios and fail to translate visual speech. In this
work, we complement the audio stream with the
visual information, opening up a host of practical
applications (improving speech translation in noisy
environments, enabling silent dictation, or dubbing
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silent archival films), which has been relatively
overlooked.

2.2 Audio-Visual Speech Self-Supervised
Learning

It has been an increasing interest in self-supervised
learning in the machine learning and speech-
processing community. Wav2vec 2.0 (Baevski
et al., 2020) trains a convolutional neural net-
work to distinguish true future samples from ran-
dom distractor samples using a contrastive predic-
tive coding (CPC) loss function. HuBERT (Hsu
et al., 2021) is trained with a masked prediction
with masked continuous audio signals. For audio-
visual representation learning, they rely on spatio-
temporal CNNs consisting of multiple 3D convolu-
tional layers or a single 3D convolutional layer fol-
lowed by 2D ones. Stafylakis and Tzimiropoulos
(2017) propose a residual network with 3D convo-
lutions to extract more powerful representations.

Very recently, Shi et al. (2022a) propose AV-
HuBERT with a self-supervised representation
learning framework by masking multi-stream video
input and predicting automatically discovered mul-
timodal hidden units. It has been demonstrated to
learn discriminative audio-visual speech represen-
tation, and thus we leverage the contextual repre-
sentations to enhance the AV-S2ST performance.

2.3 Transfer Learning

Transferring knowledge across domains is a promis-
ing machine learning methodology for solving the
data shortage problem. Zhang et al. (2021) per-
form transfer learning from a text-to-speech system
to voice conversion with non-parallel training data.
Afouras et al. (2020) apply cross-modal distilla-
tion from ASR for learning audio-visual speech
recognition, where they train strong models for vi-
sual speech recognition without requiring human
annotated ground-truth data. Cai et al. (2020)
enhance the knowledge transfer from the speaker
verification to the speech synthesis by engaging
the speaker verification network. Popuri et al.
(2022) perform transfer learning from a natural lan-
guage expert mBART for faster coverage of train-
ing speech translation models.

Our approach leverages networks trained on one
modality to transfer knowledge to another. In this
way, the dependence on a large number of parallel
audio-visual data can be reduced for constructing
AV-S2ST systems.

3 AV-TranSpeech

In this section, we first overview the encoder-
decoder architecture for AV-TranSpeech, following
which we introduce the cross-modal distillation
procedure for few-shot transfer learning with low-
resource data. The overall architecture has been
illustrated in Figure 1, and we put more details on
the encoder and decoder block in Appendix A.

3.1 Overview

The overall AV-S2ST pipeline has been illus-
trated in Figure 1, where we 1) use the SSL Hu-
BERT (Hsu et al., 2021) to derive discrete units
of target speech; 2) build the audio-visual speech-
to-unit translation (AV-S2UT) and 3) apply a sep-
arately trained unit-based vocoder to convert the
translated units into waveform.

For audio-visual speech-to-unit translation, we
adopt the encoder-decoder sequence-to-sequence
model as the backbone. The audio-visual speech
samples first pass through the multi-layer audio
and video feature extractors, which are then fused
and fed into the backbone conformer encoder. In
the following, the unit decoder autoregressively
predicts unit sequences corresponding to the target
speech.

Training direct textless AV-S2ST models typi-
cally requires a large amount of parallel training
data (Duquenne et al., 2022; Lee et al., 2021b),
while resources providing parallel multimodal data
could be limited due to the heavy workload. To
alleviate the issue of data scarcity, we 1) build upon
the recently introduced Audio-Visual HuBERT
(AV-HuBERT) which learns contextual represen-
tations through self-supervised masked prediction,
and show that large-scale pre-training benefits AV-
S2ST training; 2) introduce the cross-modal distil-
lation with S2ST models trained on the audio-only
corpus, which further reduces the requirements of
visual data and boosts the performance of visual
systems in low-resource scenarios (10h, 30h).

3.2 Pre-Trained Encoder

Audio-Visual Hidden Unit BERT (AV-HuBERT) is
a self-supervised model that learns from unlabeled
audio-visual speech data. AV-HuBERT comprises
four modules: a feed-forward network (FFN) audio
feature extractor, a modified ResNet (Stafylakis
and Tzimiropoulos, 2017; Martinez et al., 2020)
video feature extractor, a fusion module, and a
conformer (Gulati et al., 2020) backend.
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Figure 2: In subfigure (a), we compute the cross-entropy loss (denoted as "CE") during training. In subfigure
(b), we initialize the visual and audio streams from AV-Hubert and S2ST models for cross-modal distillation in a
low-resource setup. The modality dropout denoted with dotted lines is excluded during inference.

Denote the domain of visual and audio samples
by V,A ⊂ R respectively. The source language is
therefore a sequence of visual V = {v1, . . . , vT }
and speech A = {a1, . . . , aT } samples for T time-
steps. The multi-layer audio feature extractor fa
and the video feature extractor fv respectively take
audio A and visual frames V as input, which are
then fused (i.e., element-wise addition) and fed
into the backbone conformer encoder and generates
contextual representations X = {x1, . . . , xT }.

3.3 Unit Decoder

The autoregressive decoder is assisted with an
attention module, which takes the encoder out-
put as the source values for the attention, and
predicts unit sequences corresponding to the tar-
get translated speech. We use a stack of trans-
former layers as the decoder, along with a multi-
head attention (Vaswani et al., 2017). Given the
T -frame contextual representations from source
speech X = {x1, . . . , xT }, autoregressive model
θ factors the distribution over possible outputs
Y = {y1, . . . , yN} by:

p(Y | X; θ) =
N+1∏

i=1

p(yi | y0:i−1, x1:T ; θ), (1)

where the special tokens y0(⟨bos⟩) and
yN+1(⟨eos⟩) are used to represent the begin-
ning and end of all target units.

3.4 Cross-Modal Distillation

In this part, we investigate the transfer learning
from orders of magnitude audio data to boost the
performance of visual systems. Specifically, we
leverage the S2ST model trained on a large-scale
audio-only corpus and perform cross-modal distil-
lation with low-resource audio-visual data.

S2ST Model. We adopt the current state-of-
the-art S2ST model (Popuri et al., 2022) with pre-
trained wav2vec 2.0 (Baevski et al., 2020) and
mBART (Liu et al., 2020). Wav2vec 2.0 is a self-
supervised framework to learn speech representa-
tions from unlabeled audio data, which is trained
via contrastive loss with masked spans on the input
to the context encoder. mBART has been originally
proposed for denoising autoencoder over text se-
quences, which predicts the original text z given
its noisy version, g(z), created by random mask-
ing. As such, the powerful S2ST model provides
a significant initialization for training audio-visual
systems.

Modality Adaptor. The encoder in S2ST
model fa encodes speech representation with A =
{a1, . . . , aT ′} with a stride of about 20ms, while
the video stream fv generates visual feature se-
quence V = {v1, . . . , vT } at a stride of 10 ms
from the raw waveform. To alleviate this length
mismatch between the audio and visual represen-
tations, we add a randomly initialized modality
adaptor layer consisting of a single 1-D convolu-
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tional layer with stride 2 between the audio and
video streams.

Modality Dropout. Since S2ST models provide
a strong initialization for our AV-S2ST, and thus it
can relate audio input to lexical output more effort-
lessly than the visual input stream, leading to the
domination of audio modality in model decisions.
To prevent the model’s over-reliance on the audio
stream in our joint model, we include a modality
dropout with p = 50% probabilities to mask the
full features of one modality before fusing audio
and visual inputs, forcing the visual encoder to
learn contextual representations. We show feature
fusion in our cross-modal distillation with modality
dropout:

fav =





fa + fv with p = 0.5

fa + 0 with p = 0.25

0+ fv with p = 0.25

As such, modality dropout (Chern et al., 2022;
Zhang et al., 2019) prevents the model from ig-
noring video input and encourages the model to
produce the prediction regardless of what modali-
ties are used as input.

3.5 Model Training

In training AV-TranSpeech, we compute the cross-
entropy loss (denoted as "CE") between generated
and reference units. For low-resource scenarios, we
group our distillation strategies into two categories:
1) for AV-S2ST, we adapt the speech encoder and
the unit decoder in S2ST to the visual system; 2)
for V2ST with visual-only input, we only transfer
the knowledge from unit decoder in S2ST to avoid
noisy and incomplete decoding. In this way, the
dependence on a large number of parallel audio-
visual data can be reduced for constructing visual
systems.

4 Experiments

4.1 Experimental Setup

Following the common practice in the direct unit
S2ST pipeline, we apply the publicly-available pre-
trained multilingual HuBERT (mHuBERT) model
and unit-based HiFi-GAN vocoder (Polyak et al.,
2021; Kong et al., 2020), leaving them unchanged.

4.1.1 Dataset
To evaluate the performance of the proposed model,
we conduct experiments on two language pairs,

including English-Spanish (En-Es), and English-
French (En-Fr).

LRS3-T. We construct our translation dataset
by converting the transcribed English text from
LRS3 (Afouras et al., 2018b) into target language
using cascaded neural machine translation (NMT)
and text-to-speech (TTS) systems. We remove
short clips (less than 2 seconds) and discard the
non-vocal segments with voice activation detection
(VAD). To this end, we collect 200-hour parallel
audio-visual translation data (with source videos
and target speech), namely LRS3-T which we plan
to release.

CVSS-C. For training S2ST models, we use
the benchmark dataset CVSS-C (Jia et al., 2022b),
which is derived from the CoVoST 2 (Wang et al.,
2020) speech-to-text translation corpus by synthe-
sizing the translation text into speech using a single-
speaker TTS system.

Noise. For evaluating our AV-S2ST models un-
der different noise categories, we prepare noise
audio clips in the categories of “music” and “bab-
ble” sampled from MUSAN dataset (Snyder et al.,
2015), and create “speech” noise samples follow-
ing Popuri et al. (2022).

The total duration of each dataset is shown in
Table 1.

Dataset Subset Modality En-Es En-Fr

LRS3-T
Normal

AV
200

Small 30
Tiny 10

CVSS-C / A 69.5 170

Noise
Music

A
35

Babble 20
Speech 50

Table 1: Total duration in hours of samples in different
datasets.

4.1.2 Model Configurations and Training
For training S2ST models, we adopt Wav2vec 2.0
LARGE pre-trained on Libri-light dataset (Kahn
et al., 2020) as audio encoder and unit mBART pre-
trained on VoxPopuli dataset (Wang et al., 2021) as
the decoder. Following the practice in unit-based
S2ST (Lee et al., 2021a), we use the k-means al-
gorithm to cluster the representation given by the
normalized mHuBERT (Huang et al., 2022d) into a
vocabulary of 1000 units as training targets. The in-
puts to AV-TranSpeech are lip Regions-Of-Interest
(ROIs) for the visual stream and 80-dimensional

8594



ID Pre-Training Modality En-Es En-Fr
BLEU MOS BLEU MOS

1 / AV 0.67 / 1.01 /
2 AVHubert AV 45.2 3.82±0.09 33.6 3.98±0.08

3 / A 0.51 / 0.90 /
4 AVHubert A 43.1 3.80±0.09 31.6 3.90±0.07

5 / V 0.18 / 0.32 /
6 AVHubert V 25.0 3.94±0.11 19.9 3.95±0.10

7 Enhanced S2ST A 42.5 3.88±0.10 32.0 3.91±0.09
8 Unit TTS / 67.7 4.04±0.07 54.1 4.09±0.10
9 NMT+TTS / 76.0 4.15±0.08 63.9 4.20±0.10

Table 2: Translation quality (BLEU (↑)) and speech naturalness (MOS (↑)) comparison with baseline systems. We
set the beam size to 10 in autoregressive decoding.

mel-filterbank features at every 10-ms for the au-
dio stream. As the image frames are sampled at
25Hz, we stack the 4 neighboring acoustic frames
to synchronize the two modalities. The encoders in
AV-TranSpeech follow AV-HuBERT LARGE con-
figuration with 24 transformer blocks, each with
16 attention heads and 1024/4096 embedding/feed-
forward dimensions. We remove the auxiliary tasks
for simplification and follow the unwritten lan-
guage scenario (Lee et al., 2021b). AV-TranSpeech
is trained until convergence for 20k steps using the
Adam optimizer (β1 = 0.9, β2 = 0.98, ϵ = 10−8)
with 6 Tesla V100 GPU. A comprehensive table of
hyperparameters is available in Appendix A.

4.1.3 Evaluation

We compare AV-TranSpeech with other systems us-
ing the publicly-available fairseq framework (Ott
et al., 2019), including, 1) NMT+TTS cascaded
system to simulate the construction of LRS3-T,
where we adopt MMT to convert transcribed En-
glish text to target languages (regarded as reference
text) and then apply TTS model for speech gen-
eration, following we transcribe the speech and
compute the BLEU; 2) Unit TTS, where we first
synthesize speech samples with target units, and
then transcribe the speech and compute BLEU;
3) Moreover, we compare the performance of AV-
TranSpeech in S2ST with baseline model (Popuri
et al., 2022) (denoted as Enhanced S2ST).

For translation accuracy, we use open-sourced
ASR models in fairseq framework to transcribe the
audios and then calculate the BLEU score (Pap-
ineni et al., 2002) between the generated and the
reference text. To evaluate the naturalness of the
speech output, we conduct crowd-sourced human
evaluations with MOS, rated from 1 to 5 and re-

ported with 95% confidence intervals (CI) via Ama-
zon Mechanical Turk. More details on evaluation
have been attached in Appendix B.

4.2 Translation Accuracy and Speech
Naturalness

Table 2 summarizes the translation accuracy and
speech naturalness among all systems, and we
have the following observations: 1) Large-scale
multimodal pre-training (1 vs. 2) improves
performance by a large margin, while the naive
model fails to work without the self-supervised pre-
training strategy. It is mainly because LRS3-T is a
challenging unconstrained dataset with a large pro-
portion of videos collected from TED talks, show-
ing the difficulty (Zhang et al., 2020; Jia et al.,
2019) of direct speech-to-speech translation with-
out relying on intermediate texts or auxiliary multi-
task training. In contrast, with a pre-trained AVHu-
bert encoder and a randomly initialized decoder,
AV-TranSpeech is efficient in learning contextual
representations from audio-visual signals. 2) Vi-
sual modality (2 vs. 4) has brought a gain of 2.0
BLEU points on average. It complements the au-
dio stream with visual information, opening up a
host of practical applications: enabling silent dicta-
tion or dubbing archival silent films. 3) We further
compare AV-TranSpeech in S2ST with the base-
line model (4 vs. 7), showing that AV-TranSpeech
with audio-only input is on-par with the current
state-of-the-art speech model in terms of translation
accuracy. 4) For speech quality, AV-TranSpeech
produces natural speech regardless of modalities
input competitive with the baseline S2ST system.
Since we apply the publicly-available pre-trained
unit vocoder which mainly controls the naturalness
of output speech and leave it unchanged, we ex-
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Figure 3: Illustration of model performance with different noise configurations and input modalities.

Modality Babble (SNR) Music (SNR) Speech (SNR)
-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10

En-Es Translation

AV 23.9 33.1 38.7 40.0 40.8 35.7 38.4 40.4 40.8 41.0 37.1 40.1 40.4 41.0 41.2
A 0.1 5.5 29.6 38.7 40.7 20.3 31.5 39.3 39.9 40.6 17.4 25.9 30.7 35.0 38.5

En-Fr Translation

AV 19.8 28.0 32.1 32.7 32.8 29.7 32.1 32.5 33.4 33.5 29.8 32.2 32.7 32.8 33.4
A 0.1 4.6 24.3 31.0 31.2 17.6 26.5 30.8 31.0 31.2 14.5 21.0 24.8 27.1 30.1

Table 3: Translation accuracy (BLEU scores (↑)) comparison among models with different noise configurations and
input modalities.

pect AV-TranSpeech exhibits high-quality speech
generation as baselines.

ID Audio Modality En-Es En-Fr

Finetune with 10 hours data

1 / AV 7.2 6.0
2 V 3.7 4.6

3 Covost AV 21.5 24.4
4 V 5.8 6.4

Finetune with 30 hours data

5 / AV 13.0 11.5
6 V 8.9 7.5

7 Covost AV 22.2 28.3
8 V 10.4 9.6

Table 4: Leveraging audio-only data for boosting the per-
formance of visual systems (AV or V) in low-resource
scenarios. Audio: S2ST model trained on audio-only
data.

4.3 Visual Modality Evaluation
The benefit of incorporating the visual stream is
more apparent in challenging scenarios (Afouras
et al., 2018a; Popuri et al., 2022), and thus we eval-
uate our models in the noisy setting to examine the
impact of input modality (audio or audio-visual).
A noise category with an audio clip has been sam-

pled each time, following which we randomly mix
the sampled noise with varied probabilities at five
SNR levels: {−10,−5, 0, 5, 10} dB. For easy com-
parison, the results are presented in Table 3 and
visualized in Figure 3, and we have the following
observations:

1) AV-S2ST consistently outperforms audio-only
S2ST under all settings regardless of the SNR and
the type of noise. AV-TranSpeech complements
the audio stream with visual information, which is
invariant to speaking environments and promotes
robustness. 2) As the volume of the noise increase
with lower SNR, both languages have presented
a degradation in translation accuracy. Informally,
AV-S2ST models show a relatively slower BLEU
drop (42% drop in SNR-10 babble noise), while
a distinct decrease could be witnessed in audio-
only S2ST models (99.9% drop in SNR-10 babble
noise).

4.4 Low Resource Evaluation

Training direct AV-S2ST models without relying on
intermediate text typically requires a large amount
of parallel visual speech (i.e., lip) training data,
while there may be very few resources due to the
heavy workload. In this section, we prepare low-
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Source: and the soldier on the front tank said we have unconditional orders to destroy this.
Target: le soldat sur le char de front a dit que nous avions des ordres inconditionnels pour détruire cela.
V2ST: le soldat a dit que nous avons des ordres conditionnels à détruit pour détruire ce.
S2ST: le soldat sur le premier ban a dit que nous avons des ordres non conditionnels pour détruire cela.
Noisy S2ST: nous avons également des ordres constamment pour détruire cela.
AV-S2ST: le soldat sur le premier réservant a dit que nous avons des ordres inconditionnels pour détruire cela.
Noisy AV-S2ST: le soldat sur ledexpert a dit que nous avons des ordres nom policières pour détruire cela.

Source: we met men where they were at and we built a program.
Target: nous avons rencontré des hommes là où ils étaient et nous avons construit un programme.
V2ST: nous avons rencontré des hommes lorsquils sétaient agis et que nous avons construit un programme.
S2ST: nous avons rencontré des hommes quand ils étaient atteurs et nous avons construit un programme.
Noisy S2ST: intéressante de la classe de mathématiques et de leur données de maternelle.
AV-S2ST: nous avons rencontré des hommes où ils étaient atés et nous avons construit un programme.
Noisy AV-S2ST: nous avons rencontré des hommes quand ils étaient atteurs et nous avons construit un programme.

Table 5: Two examples comparing translations produced by AV-TranSpeech with different modalities. The left
video frames refer to the first example. We use the bond fonts to indicate the the issue of noisy and incomplete
translation. We use SNR=0 with babble noise for both noisy scenarios.

resource audio-visual data (LRS3-T 10h, 30h) and
leverage large-scale audio-only data (Covost) to
boost the performance of visual systems (AV-S2ST,
V2ST), to investigate the effectiveness of our cross-
modal distillation. The results are compiled and
presented in Table 4, and we have the following
observations:

1) In consistent with previous prac-
tice (Duquenne et al., 2022; Tjandra et al.,
2019), training speech models are faced with the
significant issue of data scarcity. As training data
is reduced in the low-resource scenario, a distinct
degradation in translation accuracy could be
witnessed in both modalities (AV-S2ST or V2ST).
2) Leveraging orders of magnitude audio-only
data with cross-modal distillation, the visual
systems achieve BLEU scores of 21.5 and 22.2
respectively in En-Es and En-Fr AV-S2ST, showing
a significant promotion regardless of the modalities
and languages. In this way, the dependence on a
large number of parallel audio-visual data can be
reduced for constructing visual systems.

4.5 Case Study

We present several translation examples sampled
from the En-Fr language pair in Table 5, and have
the following findings: 1) With the complemental
visual information brought in, the results produced
by AV-TranSpeech are noticeably more literal. 2)
Moreover in challenging noisy scenarios, S2ST
models suffer severely from the issue of noisy and
incomplete translation, which is largely alleviated

in AV-S2ST. AV-S2ST consistently outperforms
audio-only S2ST in a noisy environment.

5 Conclusion

In this work, we proposed AV-TranSpeech, the
first audio-visual speech-to-speech translation (AV-
S2ST) model without relying on intermediate text.
AV-TranSpeech complemented the audio stream
with the visual information to promote robust-
ness in noisy environments, opening up a host
of practical applications: silent dictation or dub-
bing archival films. To mitigate the data scarcity
for training AV-S2ST models, we 1) built upon
the AV-HuBERT with a self-supervised learning
framework fir contextual representations, showing
that large-scale pre-training benefited the AV-S2ST
training; 2) leveraged cross-modal distillation with
S2ST models trained on the audio-only corpus,
which further reduced the visual data requirements
and boosted performance in low-resource scenar-
ios. Experimental results on two language pairs
demonstrated that AV-TranSpeech achieved signifi-
cant robustness in noisy environments, outperform-
ing audio-only S2ST models under all settings re-
gardless of the type of noise. With low-resource
audio-visual data (10h, 30h), cross-modal distil-
lation yielded an improvement of 7.6 BLEU on
average compared with baselines. We envisage
that our work will serve as a basis for future audio-
visual speech-to-speech translation studies, unlock-
ing the ability for high-quality translation given a
user-defined modality input.
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6 Limitation and Potential Risks

As mentioned in our experimental setup, we pro-
vide results of AV-S2ST in LRS3-T with synthe-
sized target speech, similar to the pioneer litera-
ture (Jia et al., 2022b) in S2ST. One of our future
directions is to develop a better benchmark dataset
(e.g., mined or human-annotated data) to improve
translation performance.

As mentioned in our results analysis, the BLEU
scores heavily depend on the ASR quality, which
may not accurately reflect the speech translation
performance. Future directions could be improving
ASR quality or exploring other evaluation metrics
without reliance on ASR models.

AV-TranSpeech lowers the requirements for
audio-visual speech-to-speech translation, which
may cause unemployment for people with related
occupations such as interpreter and translator. In
addition, there is the potential for harm from non-
consensual voice generation or fake media. The
voices of the speakers in the recordings might be
overused than they expect.
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A Model Architectures

In this section, we list the model hyper-parameters
of AV-TranSpeech in Table 6.

B Subjective Evaluation

Following (Huang et al., 2021, 2022a), all our
Mean Opinion Score (MOS) tests are crowd-
sourced and conducted by native speakers. The
scoring criteria have been included in Table 7 for
completeness. The samples are presented and rated
one at a time by the testers, each tester is asked to
evaluate the subjective naturalness of a sentence on
a 1-5 Likert scale. The screenshots of instructions
for testers are shown in Figure 4. We paid $8 to
participants hourly and totally spent about $500 on
participant compensation.

Table 7: Ratings that have been used in the evaluation
of speech naturalness of synthetic and ground truth sam-
ples.

Rating Naturalness Definition

1 Bad Very annoying and objectionable dist.
2 Poor Annoying but not objectionable dist.
3 Fair Perceptible and slightly annoying dist
4 Good Just perceptible but not annoying dist.
5 Excellent Imperceptible distortions
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Hyperparameter AV-TranSpeech

Conformer Encoder

Encoder Layer 24
Encoder Input/Output Dim 1024
Encoder FFN Embed Dim 4096
Encoder Attention Heads 16

Encoder Dropout 0.1

Length Adaptor
Conv1d Layer 1
Conv1d Kernel 3
Conv1d Stride 3

Unit Decoder

Decoder Layer 12
Decoder Input/Output Dim 1024
Decoder FFN Embed Dim 4096
Decoder Attention Headers 16

Decoder Dropout 0.1

Total Number of Parameters 827 M

Table 6: Hyperparameters of AV-TranSpeech.

Figure 4: Screenshot of MOS testing.
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