
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 8605–8618

July 9-14, 2023 ©2023 Association for Computational Linguistics

Dual Class Knowledge Propagation Network for Multi-label
Few-shot Intent Detection

Feng Zhang1 Wei Chen1,2,3∗ Fei Ding4,5 Tengjiao Wang1,2,3

1Key Lab of High Confidence Software Technologies (MOE), School of Computer Science,
Peking University, Beijing, China

2Research Center for Computational Social Science, Peking University
3Institute of Computational Social Science, Peking University (Qingdao)

4School of Intelligence Science and Technology, Peking University
5Institute for Artificial Intelligence, Peking University

{zhangfeng,dingfei}@stu.pku.edu.cn, {pekingchenwei,tjwang}@pku.edu.cn

Abstract

Multi-label intent detection aims to assign mul-
tiple labels to utterances and attracts increasing
attention as a practical task in task-oriented di-
alogue systems. As dialogue domains change
rapidly and new intents emerge fast, the lack of
annotated data motivates multi-label few-shot
intent detection. However, previous studies
are confused by the identical representation of
the utterance with multiple labels and overlook
the intrinsic intra-class and inter-class interac-
tions. To address these two limitations, we
propose a novel dual class knowledge propa-
gation network in this paper. In order to learn
well-separated representations for utterances
with multiple intents, we first introduce a label-
semantic augmentation module incorporating
class name information. For better considera-
tion of the inherent intra-class and inter-class
relations, an instance-level and a class-level
graph neural network are constructed, which
not only propagate label information but also
propagate feature structure. And we use a sim-
ple yet effective method to predict the intent
count of each utterance. Extensive experimen-
tal results on two multi-label intent datasets
have demonstrated that our proposed method
outperforms strong baselines by a large margin.

1 Introduction

Multi-label intent detection aims to assign multi-
ple labels to a single utterance rather than only
one label since the user utterance often carries
multiple different intents. As a practical task in
real-world scenarios, multi-label intent detection
attracts more attention with the rapid development
of conversational AI (Louvan and Magnini, 2020).
Previous works have achieved promising perfor-
mance in multi-label intent detection, but they rely
on large amounts of labeled training samples (Xu
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Figure 1: An example of 3-way 1-shot multi-label intent
detection.

and Sarikaya, 2013; Qin et al., 2020a,b, 2021).
However, due to fast-emerging intents and rapidly
changing domains, the lack of adequate labeled
data for each intent is inevitable, thus motivating
the multi-label few-shot intent detection (Hou et al.,
2021). Few-shot learning, a promising way to
tackle data scarcity challenges, can recognize new
classes from only a few labeled samples by exploit-
ing the prior knowledge from source domain.

Recent works for multi-label intent detection
mainly focus on threshold-based strategy which
consists of relevance scoring and threshold estima-
tion (Gangadharaiah and Narayanaswamy, 2019;
Hou et al., 2021) to improve performance. Nev-
ertheless, they suffer from the following two lim-
itations. First, for multi-label utterances, most of
them neglect the semantic connections between la-
bels and input utterances and therefore learn the
identical utterance representations for different la-
bels, which confuses the similarity scoring. As
Figure 1 shows, the embeddings for request_date
and request_time are the same, i.e., the embed-
ding of utterance x1. Furthermore, in few-shot
scenarios, it’s critical to obtain proper intra-class
and inter-class relations from only a few samples,
while previous works overlook the high-order in-
teraction of samples and just usually use a specific
metric to compute the relevance score directly, e.g.,
cosine similarity.
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Figure 2: The architecture of the proposed framework DCKPN.

In this paper, we propose a novel framework for
multi-label few-shot intent detection, as illustrated
in Figure 2. It obtains well-separated class repre-
sentations by fully exploiting the label semantic
information and propagates class knowledge and
feature structure by graph neural network to reduce
intra-class variance and model proper inter-class re-
lations. To deal with the confused embeddings for
multi-label utterances, we introduce label-semantic
augmentation (LA) to obtain well-separated repre-
sentations without any complicated model architec-
ture. Inspired by the effectiveness of label name in-
formation (Luo et al., 2021), LA appends each class
label name after utterances to construct multiple
label-specific utterances, where each label-specific
utterance is corresponding to only one label. In this
way, LA not only eliminates ambiguity but also
generates more labeled training samples.

To better capture more complete and more adap-
tive interactions among samples, we propose a
novel dual class knowledge propagation network,
containing an instance-level graph and a class-level
graph. It not only propagates label information
from labeled support samples to unlabeled queries
but also propagates feature structure in their la-
tent space. The instance-level graph smoothing the
representations among highly related utterances
reduces the intrinsic gap between augmented sup-
port samples and queries. The class-level graph
provides label correlation and generates completed
pseudo class-level representations for queries with
the guidance of the instance-level graph. Also, we
design a calibration strategy to transfer label de-
pendency into instance representations. Then the

two representations are fused to classify queries.
Finally, to select accurately multiple intents for an
utterance, we employ an adaptive and powerful
method to predict the number of intents.

The contributions of this paper are as follows: (1)
We propose a novel dual class knowledge propaga-
tion network (DCKPN). DCKPN incorporates label
semantic connections to guide feature propagation
and label information propagation. (2) We intro-
duce a novel label-semantic augmentation method
for multi-label samples to obtain more discrimi-
native representations. And we employ a simple
inference module to predict the number of intents
in utterances adaptively. (3) To verify the effective-
ness of our proposed model, we conduct a series of
experiments on two datasets. The empirical study
shows that our model can achieve state-of-the-art
performance in comparison with other strong base-
lines.

2 Related Work

Multi-label Classification The existing multi-
label classification (MLC) methods mainly focus
on learning enhanced representations (Liu et al.,
2017) and modeling label dependency (Yang et al.,
2018; Tsai and Lee, 2020). Recently, some works
(You et al., 2019; Xiao et al., 2019) have been
proposed to learn a label-specific representation
by employing attention mechanism or utilize the
label statistical co-occurrences to explore the se-
mantic interactions (Ma et al., 2021), which shows
the importance of exploring semantic interactions
for MLC. However, these methods require large
amounts of labeled samples for training, thus it’s
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hard to be applied to fast-emerging new domains
in few-shot scenarios.

Few-shot Learning Few-shot learning aims to
recognize novel classes from a handful of anno-
tated samples by leveraging the previous knowl-
edge from source domains (Fei-Fei et al., 2006).
Recently, meta-learning has become a successful
paradigm for solving the few-shot problem, which
can be divided into three categories: model-based
methods (Munkhdalai and Yu, 2017), optimization-
based methods (Finn et al., 2017; Yoon et al., 2018)
and metric-based methods (Vinyals et al., 2016;
Snell et al., 2017; Sung et al., 2018). However,
these methods focus on single-label classification
and only a few works investigate multi-label few-
shot classification. Previous studies focus on im-
age domain (Alfassy et al., 2019), audio domain
(Cheng et al., 2019) and sentiment analysis (Hu
et al., 2021). CTLR (Hou et al., 2021) is the first
work to address multi-label few-shot intent detec-
tion tasks which proposes a meta-calibrated thresh-
old mechanism and learns anchored label represen-
tation. However, it relies on a specific metric to
estimate the relevance score, losing the inherent
relations among samples and classes.

Propagation in Graph Model Graph neural net-
works are effective in modeling the relationship
among different nodes and have shown power-
ful performance in many real applications, e.g.,
nodes classification (Kim et al., 2019) and link
prediction (Zhang and Chen, 2018). In few-shot
scenarios, several approaches have been explored.
Specifically, DPGN (Yang et al., 2020) constructs
both the distribution-level and instance-level graph.
Liu et al. (2019) propose a transductive propa-
gation network (TPN) by utilizing label propaga-
tion (Zhou et al., 2003), a classical and effective
method to transfer knowledge from neighbors of
each node. Rodríguez et al. (2020) yield a smoother
embedding space by employing embedding propa-
gation. Inspired by this, our method aims to propa-
gate information both in intra-class and inter-class,
called dual class knowledge propagation network
(DCKPN).

3 Proposed Method

3.1 Problem Definition

Few-shot learning aims to train a model that can
perform well in cases where only a few samples
are given. We follow the episodic paradigm, an
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Figure 3: Illustration of a simple 3-way 1-shot task.

effective solution for few-shot learning, which is
commonly employed in various studies (Snell et al.,
2017; Yang et al., 2021). In general, the model
is first trained on a series of tasks from source
domains with numerous samples ( Dtrain) episode
by episode until convergence, then directly adopted
to another set of unseen novel tasks (Dtest), where
a few labeled samples are available. There is no
overlap between the training classes and testing
classes. Specifically, each episode (task) has a
support set S = {(xi,yi)}N×K

i=1 , which usually
includes N classes with K labeled samples for
each class, i.e., the N -way K-shot setting, and
a query set Q = {(xj ,yj)}qj=1, where q is the
number of query samples.

Multi-label few-shot intent detection enables
each utterance to be assigned with a set of intent la-
bels simultaneously. To be more specific, for each
example (x,y), x is the utterance and the label
vector is denoted as y = {y1, y2, ..., y|C|} ∈ R|C|,
where C is the set of intent labels in the episode and
yi ∈ {0, 1}. In this paper, we focus on multi-label
few-shot intent detection, i.e., selecting multiple as-
sociated intent labels for each utterance in few-shot
scenarios.

3.2 Label-semantic Augmentation

For multi-label few-shot intent detection tasks, one
of the key points is to learn more discriminative
class representations which could capture accurate
class-relevant information while eliminating ambi-
guity via a few examples. To achieve this goal, we
propose to use label name to augment the support
set. Different from Luo et al. (2021), which have ex-
plored integrating label information into sentences,
we propose to append each class label name after
each sentence with multiple possible labels. As
Figure 3 shows, for each utterance in support set,
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we append its labels one by one after it, i.e., "[CLS]
utterance [SEP] label name [SEP]", thus generating
different label-specific utterances corresponding to
single different class labels. For each sample in
query set, due to unknown labels, we take the com-
mon format "[CLS] utterance [SEP]" as input text.

There are two benefits of using the label name
to augment utterances. First, we make use of dif-
ferent appended label name to distinguish the same
utterance with multiple labels, thus obtaining more
discriminative representations for each class. As
illustrated in Figure 3, we can obtain different pro-
totypes for class 1 and class 2, eliminating the prob-
lem that the multi-label utterances share the same
representation essentially without any complex ar-
chitecture or parameters. Second, this enables us
to utilize the label name information as well as in-
crease the number of support samples to eliminate
the ambiguity caused by the scarcity of utterances.
In Section 4.4, we analyze the experimental results
to verify the improvements of augmentation.

3.3 Class Knowledge Propagation Network

Although one can directly calculate class proto-
types via label-semantic augmented support set to
classify the queries, doing so will result in the loss
of intra-class and inter-class information, which is
critical for multi-label classification tasks (Zhang
et al., 2018). To mitigate these issues, we pro-
pose a dual class knowledge propagation network
(DCKPN) to propagate class knowledge from sup-
port samples to queries. As illustrated in Figure 2,
we first utilize the support and query samples to
build the instance-level graph GI = (V I ,W I) and
utilize label name information to build the class-
level graph GC = (V C ,WC). Notably, in the
following section, the support samples are label-
semantic augmented samples described in Section
3.2, which means that each augmented support
sample in instance-level graph has its correspond-
ing single label in the class-level graph. Then,
we modify the instance-level embeddings based
on pairwise node relations. Guided by the class-
level graph, we also calibrate relations of support-
support nodes to integrate label semantic relevance
explicitly. Next, we update class-level representa-
tions based on instance relations to generate pseudo
query class-level representations. Finally, the two
representations are merged to guide the inference
of the queries.

3.3.1 Graph Construction
For each sample (xi,yi,ai) ∈ S in augmented
support set, we employ a pre-trained language
model as the backbone to extract its instance-level
feature vI

i = fϕ(xi) ∈ Rd and its class-level fea-
ture vC

i = fϕ(ai) ∈ Rd, where ϕ is the parameters
of the backbone model and ai is the label name
of utterance xi. Due to unknown query labels, for
each query sample xj ∈ Q in query set, we regard
vI
j = fϕ(xj) ∈ Rd as its instance-level feature and

0 ∈ Rd as its class-level representation. Then, the
adjacency matrix is defined as follows:

Wij = exp(−d(vi,vj)

σ2
),Wii = 0, (1)

where σ2 = V ar(d(vi,vj)) and d(vi,vj) =
∥vi − vj∥22. Thus, we obtain the instance-level
graph GI = (V I ,W I), where V I ∈ R(|S|+|Q|)×d,
and W I ∈ R(|S|+|Q|)×(|S|+|Q|). While for class-
level graph GC = (V C ,WC), V C ∈ R(|S|+|Q|)×d

consists of the feature embeddings of the label
names in the support set V C

s ∈ R|S|×d as well
as a matrix of zeros 0 ∈ R|Q|×d for queries, and
WC ∈ R(|S|+|Q|)×(|S|+|Q|) is as follows:

WC =

(
WC

ss 0
0 0

)
. (2)

3.3.2 Instance-level Propagation
We now perform message passing on the instance-
level graph to conduct higher-order interactions
between augmented support embeddings and query
embeddings. Specifically, we first normalize the
weight matrix W I as,

LI = D−1/2W ID−1/2, Dii =
∑

j

W I
ij . (3)

Then, using the propagation solution described in
(Zhou et al., 2003), we calculate the propagation
matrix and rectify the instance-level embeddings
as,

Ṽ I = (I − αLI)−1V I , (4)

where I is the identity matrix and α ∈ R is a
smoothing factor.

To further capture the inter-class relationships
and reduce the intra-class variance, we utilize the
guidance of relations of support-support pairs in
class-level graph to calibrate the support-support
pairs in instance-level graph, thus further en-
couraging the relation learning of instances with
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semantically related classes. For example, re-
quest_temperature share more semantic informa-
tion with request_low_temperature than with ap-
preciate. We implement the semantic loss by cali-
brating the pair relation in support set:

Lsem =
1

|WC
ss|

|S|∑

i=1

|S|∑

j=1

|wC
ij − wI

ij |. (5)

3.3.3 Class-level Propagation
As illustrated in Figure 2, the instance informa-
tion flows back into the class-level graph to gen-
erate the completed semantic knowledge represen-
tations for both support set and query set. Con-
cretly, we calculate the Laplacian of the updated in-
stance embeddings L̃I = D̃−1/2W̃ ID̃−1/2, where
D̃ii =

∑
j W̃

I
ij , W̃ I

ij = exp(−d(ṽI
i , ṽ

I
j )/σ̃

2),
σ̃2 = V ar(d(ṽI

i , ṽ
I
j )), and ṽI

i is obtained from
Eq. (4). Next, the complete class-level embeddings
are obtained as:

Ṽ C = (I − αL̃I)−1V C , (6)

where V C is the original label name embedding
matrix in class-level graph. Through the guidance
of connectivity strength of instance pairs, we finally
generate pseudo class representations for queries
without labels. Thus, by explicitly establishing
the bidirectional interaction between instance-level
graph and class-level graph, we conduct feature
propagation and derive completed representations
to model intra-class and inter-class relationships.

3.4 Objective
Prototypical Classifier. Due to the two-level
features being complementary, we concatenate the
embeddings to obtain better feature representations.
For each sample xi, the embedding is defined as
follows:

ṽi = ṽI
i ||ṽC

i , (7)

where || denotes the concatenation and ṽI
i , ṽ

C
i are

sample xi’s instance-level and class-level embed-
dings respectively. The prototype p̃c of intent class
c ∈ C can be calculated as p̃c = 1

|Sc|
∑

xi∈Sc
ṽi,

where Sc denotes the set of support samples with in-
tent class c and C is the class set. Given a query data
(xi,yi) ∈ Q, we compute the conditional proba-
bility p(y = c|xi,S) based on negative squared
Euclidean distance:

p(y = c|xi,S) =
exp(−d(ṽi, p̃c))∑

c′∈C exp(−d(ṽi, p̃c′))
. (8)

Finally, we perform cross-entropy loss on all
query samples. Note that in the multi-label setting,
as an utterance may have multiple labels, we need
to consider |C| labels for each query sentence. The
classification loss is calculated as:

Lce = − 1

|Q|
∑

xi∈Q

|C|∑

j=1

yji logp(y = j|xi,S), (9)

where yi = {y1i , ..., y
|C|
i } is the label and yji ∈

{0, 1}.
Label Number Prediction. For multi-label few-
shot intent detection, one of the challenges is to
determine the number of intents in the utterance.
We leverage a simple and effective method to de-
cide the number of labels. Given an utterance x,
we can obtain its fused feature ṽ, and then we use
a multi-layer perceptron to predict the number of
intents in x:

n = softmax(MLP(ṽ)), (10)

where n ∈ RN is the indicator for the number of
intents and N is the maximum count of possible
intents. In meta-training stage, we calculate the
cross entropy loss of intent count as follows:

Lnum = − 1

|Q|
∑

xi∈Q

N∑

j=1

tji log(n
j
i ), (11)

where ti = {t1i , ..., tNi } is the ground-truth intent
count vector of xi and tji ∈ {0, 1}.

By combining Eqs. (5), (9) and (11), the overall
loss of our proposed framework is:

L = Lce + βLsem + γLnum, (12)

where β and γ are adjustable weight parameters.

4 Experiments

4.1 Datasets and Setups
4.1.1 Datasets
We follow (Hou et al., 2021) to conduct experi-
ments on two multi-label intent detection datasets:
TourSG and StanfordLU. TourSG is a dataset of
touristic information in Singapore, which includes
25751 samples annotated with multiple labels from
6 different domains: It (Itinerary), Ac (Accommo-
dation), At (Attraction), Fo (Food), Tr (Transporta-
tion), and Sh (Shopping). StanfordLU is a Stanford
dialogue dataset (Eric et al., 2017) and contains
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Model It Ac At Fo Tr Sh Ave.

TransferM 14.34±0.82 14.75±0.91 16.13±1.35 11.79±1.54 13.64±0.33 14.32±1.17 14.16±1.02

MMN 9.98±1.80 7.81±0.70 8.37±0.86 7.81±0.35 10.65±1.62 11.56±0.79 9.36±1.02

MPN 12.24±0.92 10.38±1.21 10.00±0.54 10.47±0.42 13.61±0.92 11.41±0.31 11.35±0.72

CTLR 39.98±0.56 51.55±1.53 55.16±2.43 52.16±0.98 55.36±0.96 52.20±1.03 51.07±1.24

+E

DCKPN 44.21±0.64 55.91±0.35 59.74±0.89 56.55±0.83 57.48±1.04 55.71±0.82 54.93±0.76

TransferM 16.78±0.05 18.62±0.59 14.92±2.22 16.40±2.58 15.68±0.32 14.50±2.18 16.15±1.32

MMN 10.89±3.35 7.72±1.44 8.92±1.45 9.32±1.40 13.75±0.70 10.87±4.31 10.24±2.11

MPN 13.77±0.38 12.38±0.32 13.46±0.14 10.23±0.30 16.19±0.19 15.79±0.38 13.64±0.28

CTLR 44.58±0.71 57.11±1.22 60.34±0.92 56.49±0.67 60.18±0.85 55.60±0.66 55.72±1.03

+B

DCKPN 48.19±1.01 58.32±0.68 60.93±0.42 58.22±1.36 61.05±0.62 57.62±0.64 57.38±0.79

Table 1: The 1-shot average F1 scores of multi-label intent detection on TourSG dataset.

Model It Ac At Fo Tr Sh Ave.

TransferM 14.72±0.53 19.20±1.59 16.18±1.03 18.86±1.04 17.17±1.19 17.51±1.63 17.27±1.17

MMN 14.11±0.83 10.58±1.35 17.80±1.12 12.74±0.87 18.01±0.90 16.76±0.92 15.00±1.00

MPN 15.18±0.63 15.56±0.54 17.60±1.15 15.01±0.19 17.99±0.36 17.17±1.09 16.42±0.66

CTLR 44.21±0.71 51.37±1.22 55.76±0.92 54.50±0.58 55.37±0.95 54.55±0.86 52.63±0.87

+E

DCKPN 47.76±0.73 55.83±1.08 59.48±0.32 60.06±1.23 60.23±0.63 58.66±0.52 57.00±0.75

TransferM 17.98±1.80 16.51±1.95 19.88±4.17 17.22±3.01 13.84±1.40 15.41±2.81 16.81±2.52

MMN 15.65±1.24 16.42±0.71 19.90±0.51 12.23±0.33 16.81±4.64 17.13±0.20 16.36±1.27

MPN 20.71±0.98 22.39±1.95 26.51±0.72 21.94±1.59 23.41±1.31 24.52±3.31 23.24±1.64

CTLR 46.80±0.83 54.79±0.80 59.95±0.46 59.11±0.39 60.13±0.44 58.56±0.30 56.56±0.54

+B

DCKPN 49.58±0.72 56.93±0.76 60.65±0.48 61.26±0.42 60.89±0.42 59.65±0.50 58.16±0.55

Table 2: The 5-shot average F1 scores of multi-label intent detection on TourSG dataset.

Dataset TourSG StanfordLU

Domain It Ac At Fo Tr Sh Sc Na We

Ns 16 17 18 18 17 16 14 10 8
Prop. ML 23% 18% 16% 17% 18% 16% 21% 25% 4%

Table 3: The statistics of TourSG and StanfordLU
datasets. Ns denotes the number of classes in each
domain and Prop. ML denotes the proportion of multi-
label utterances.

8038 utterances re-annotated by Hou et al. (2021)
from 3 domains: Sc (Schedule), Na (Navigate)
and We (Weather). Different from the standard N-
way K-shot setting, an utterance may have multiple
possible intents in multi-label few-shot intent de-
tection and we refer you to (Hou et al., 2021) for
more episode construction details. Table 3 shows
the detailed dataset statistics.

4.1.2 Experiment Setups
Evaluation Metrics We follow (Hou et al., 2021)
to use micro F1 scores to evaluate the performance.
All reported results are the average results of 5
different runs.

Parameter Settings We conduct experiments on
1-shot and 5-shot settings. For each episode from
different domains, the support set has Ns classes
(Ns-way), where Ns is the label numbers in do-
main s. And the query set size is 16 for TourSG
and 32 for StanfordLU. In terms of feature extrac-
tion, we use the pre-trained Electra-small (Clark
et al., 2020) and Bert-base-uncased (Devlin et al.,
2019) model. For the loss function, we set β as 0.1
and γ as 0.01. The smooth factor α is 0.1. We use
AdamW (Loshchilov and Hutter, 2019) optimizer
with the initial learning rate 2e − 4 for Electra,
1e− 4 for Bert, and the dropout rate is 0.1. All the
hyperparameters are selected based on the perfor-
mance of the development domain.

4.2 Baselines

We compare our proposed method with the follow-
ing strong baselines.

TransferM is a standard fine-tune based trans-
fer learning method, which is composed of a pre-
trained language model as encoder and a multi-
layer perceptron as classifier. It is trained on source
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1-shot 5-shot
Model Sc Na We Ave. Sc Na We Ave.

TransferM 16.96±0.73 22.99±0.51 21.01±0.57 20.32±0.60 16.99±0.94 23.79±0.27 23.92±1.78 21.57±1.00

MMN 31.22±4.96 24.41±3.28 48.01±1.10 34.55±3.11 41.91±4.49 37.94±1.38 60.67±1.23 46.84±2.37

MPN 32.44±3.75 17.83±3.83 38.86±4.18 29.71±3.92 35.92±2.79 27.65±4.58 58.07±1.88 40.55±3.08

CTLR 40.61±1.05 40.76±0.89 46.16±0.96 42.51±0.97 51.83±1.31 46.44±1.60 54.17±1.70 50.82±1.54

+E

DCKPN 52.08±1.36 51.37±0.82 66.29±0.72 56.58±0.97 55.04±1.21 55.64±0.91 75.32±1.24 62.00±1.12

TransferM 18.00±0.62 24.65±0.79 22.26±0.64 21.64±0.68 16.62±0.18 23.69±0.46 26.64±2.04 22.31±0.89

MMN 39.18±0.52 35.35±1.72 45.87±2.81 40.13±1.68 43.65±6.24 51.94±1.03 46.65±0.48 47.41±2.58

MPN 39.34±1.38 36.09±0.77 45.86±2.50 40.43±1.55 41.45±2.83 50.51±2.94 54.96±9.76 48.97±5.18

CTLR 42.55±0.40 56.95±0.77 53.14±1.89 50.88±1.02 52.17±1.29 60.36±1.55 59.63±2.23 57.39±1.69

+B

DCKPN 53.81±0.72 58.48±0.31 74.02±0.74 62.10±0.59 57.81±0.62 63.71±0.35 93.83±0.36 71.78±0.44

Table 4: The 1-shot and 5-shot average F1 scores of multi-label intent detection on StanfordLU dataset.

domains and fine-tuned by using support set from
the target domain.

Multi-label Prototypical Network (MPN) is a
variant of the vanilla prototypical network (Snell
et al., 2017). It utilizes the negative Euclidean dis-
tance between queries and prototypes and selects
a fixed threshold tuned on development domain to
determine multiple labels.

Multi-label Matching Network (MMN) in-
tends to train the model as MPN while leveraging
Matching Network (Vinyals et al., 2016) to obtain
the classification results by calculating the cosine
similarity as distance measure.

CTLR (Hou et al., 2021) leverages meta cali-
brated threshold and anchored label representation
to obtain dynamic threshold and separated label
representations.

4.3 Main Results
Tables 1, 2, and 4 report the experimental results
for 1-shot and 5-shot multi-label intent detection
tasks on TourSG and StanfordLU. We use both
Electra-small (+E) and Bert-base (+B) as feature
encoders. The baseline results are taken from (Hou
et al., 2021) and the top 1 results are highlighted in
bold.

Average Improvements From the results, we
can observe that DCKPN performs much better
than other baselines, which demonstrates the su-
periority of our method. Specifically, in terms of
average F1 scores of the TourSG dataset from Ta-
bles 1 and 2, DCKPN improves upon the most
competitive baseline CTLR by 3.86% and 4.37%
on 1/5-shot settings respectively when using Elec-
tra and by 1.66% and 1.60% when using Bert. In
terms of average F1 scores of StanfordLU from

Table 4, DCKPN improves upon CTLR by 14.07%
and 11.18% on 1/5-shot settings for Electra and
by 11.22% and 14.39% for Bert. The reason is
that DCKPN accurately integrates label name as
auxiliary information to learn more discriminative
class prototypes and constructs the dual graph to
obtain better feature embeddings and propagate
class knowledge.

Parameter Efficiency Bert-base (110M params)
may be too computationally intensive in real indus-
try deployments, thus we additionally test model
performance using Electra-small (14M params)
that is nearly 10 times lighter. Interestingly, from
Tables 1, 2 and 4, we can obtain that in terms
of average F1 scores, our proposed method using
Electra-small outperforms the strongest baseline
CTLR using Bert-base by 0.44%, 5.70% and 4.61%
in the 5-shot of TourSG and 1/5-shot of StanfordLU
settings respectively and achieves competitive re-
sults in 1-shot of TourSG setting. As a result, larger
models achieve better overall performance and our
model reduces computational load while preserv-
ing competitive performance, which reflects the
efficiency of our method.

Label Relationship When comparing to differ-
ent baselines, our improvement on StanfordLU is
much higher than those on TourSG. This large mar-
gin may come from the discrepancy in the label
set of the two datasets. We find that the labels in
StanfordLU are similar and fine-grained, where the
label correlation is more informative while labels
in TourSG are a little separated and the label corre-
lation is less informative. To verify this, we show
the relevance scores among labels using Eq. (1).
We choose Sc domain and Sh domain from two
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(a) Pic.1: CTRL. (b) Pic.2: DCKPN w/o DPN. (c) Pic.3: DCKPN.

Figure 4: Visualization of rectified support embeddings of Schedule in StanfordLU obtained from CTRL, DCKPN
w/o DPN, and DCKPN respectively. Data points with the same color contain the same intent.

Setting TourSG StanfordLU

1-shot 5-shot 1-shot 5-shot

DCKPN 54.93 57.00 56.58 62.00
- LA 40.82 51.96 47.11 60.74
- CPN 53.61 54.86 51.77 59.62
- DPN 51.59 53.64 48.47 57.12

Table 5: Ablations on TourSG and StanfordLU. The
average F1 scores of all domains are reported.

datasets respectively and visualize the relevance
scores of the classes in Figure 5 in Appendix A. As
can be seen, the classes in StanfordLU are more
related than those in TourSG.

4.4 Ablation Studies

We conduct several ablation studies using Electra
embeddings to examine the relative contributions
of different components of our model in Table 5.

Label-semantic Augmentation For our model
without label-semantic augmentation (LA), we di-
rectly use the original utterances as input of the
encoder and concatenate their multiple labels as the
corresponding class-level knowledge. From Table
5, massive F1 score decreases have been seen, par-
ticularly in 1-shot setting. On one hand, the model
without LA is often confused by co-occurring in-
tents in 1-shot setting, e.g., label 1 and 2 share
an identical prototype in Figure 3, which can be
separated by LA. On the other hand, utterances
are ambiguous as described in Section 3.2, while
LA is able to eliminate ambiguity and obtain more
separated prototypes.

Impact of Dual Graph We independently re-
move class-level propagation network (CPN) and
dual propagation network (DPN) including CPN

and IPN. As presented in Table 5, DCKPN w/o
CPN performs worse than DCKPN, especially for
StanfordLU, which demonstrates the effectiveness
of CPN for modeling label correlations in multi-
label few-shot intent detection tasks. Moreover,
when we remove DPN, the F1 scores drop hugely.
The reason is that there exists an intrinsic gap be-
tween augmented support samples and original
query samples while DPN reduces the feature gap
and propagates label information.

4.5 Visualization

To better observe how the embeddings change with
label-semantic augmentation and dual propagation
network, we sample 50 episodes from Schedule
domain in StanfordLU and use t-SNE (Van der
Maaten and Hinton, 2008) to visualize the sup-
port embeddings obtained from CTRL (Hou et al.,
2021), DCKPN w/o DPN and DCKPN. Note that
each support embedding in CTRL is simply the
average of utterance and label name embedding,
that in DCKPN w/o DPN is the embedding of label-
semantic augmented utterance without propagation,
and that in DCKPN is obtained from our method.
From Figure 4, it’s easy to find that the distribution
generated by CTRL has a lot of overlaps. The label
enhancement in DCKPN w/o DPN can help to sepa-
rate the embeddings to some extent. The dual prop-
agation network can further generate more compact
clusters and useful correlations.

5 Conclusion

In this paper, we propose a novel framework
DCKPN for multi-label few-shot intent detection to
capture the semantic interactions. We first exploit
label-semantic augmentation to extract discrimina-
tive representations for user utterances with multi-
ple intents. Then, we introduce an instance-level
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and a class-level propagation network to accom-
plish feature propagation and derive complete class
representations. After that, we use the fused rep-
resentations and an adaptive module to predict the
possible multiple intents. Extensive experiments
verify the effectiveness of our method and iden-
tify the cause of performance improvements our
method brings. For future work, we will explore
joint learning integrated with slot filling in dialogue
systems.
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Limitations

In this paper, we explore label-semantic augmenta-
tion (LA) for multi-label few-shot intent detection
via appending label name after utterances, which is
similar to instruction learning or prompt learning.
However, we don’t further study the relationship
between LA and instruction learning due to space
limitations. We believe that instruction learning
integrated with labels will inspire further investiga-
tion for multi-label few-shot intent detection.
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A Label Similarity

Figure 5(a) and 5(b) describes the label similarity
of schedule (Sc) in StnafordLU and shopping (Sh)
in TourSG using Bert-base embedding, which is
calculated by Eq. (1). We can observe that (1) the
classes in schedule are more similar and the classes
in shopping are more distant. (2) the similarity of
label description reflects co-occurrence between
labels to some extent from the pragmatics view,
e.g., in Sc, the similarity of request date and request
time is high, and in real world scenarios, human
usually asks the two details together, as well as
request date and request location, which is crucial
in multi-label tasks with low resources.
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(a) Schedule (b) Shopping

Figure 5: The label similarity of schedule and shopping domains. Darker colors denote higher similarities.
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