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Abstract

Multimodal machine learning is a cutting-edge
field that explores ways to incorporate infor-
mation from multiple sources into models. As
more multimodal data becomes available, this
field has become increasingly relevant. This
work focuses on two key challenges in multi-
modal machine learning. The first is finding
efficient ways to combine information from
different data types. The second is that often,
one modality (e.g., text) is stronger and more
relevant, making it difficult to identify mean-
ingful patterns in the weaker modality (e.g.,
image). Our approach focuses on more ef-
fectively exploiting the weaker modality while
dynamically regularizing the loss function.
First, we introduce a new two-stream model
called Multimodal BERT-ViT, which features
a novel intra-CLS token fusion. Second, we
utilize a dynamic adjustment that maintains
a balance between specialization and general-
ization during the training to avoid overfitting,
which we devised. We add this dynamic ad-
justment to the Unsupervised Data Augmen-
tation (UDA) framework. We evaluate the ef-
fectiveness of these proposals on the task of
multi-label movie genre classification using
the Moviescope and MM-IMDb datasets. The
evaluation revealed that our proposal offers
substantial benefits, while simultaneously en-
abling us to harness the weaker modality with-
out compromising the information provided by
the stronger.

1 Introduction

Multimodal machine learning focuses on meth-
ods for modeling information from more than
one modality, such as text, image, audio, and
video. It is crucial for models to simultane-
ously analyze and organize diverse modalities.
Recent advancements in multimodal applications
have primarily been attributed to the availability
of new large-scale multimodal datasets, increased
computational capacity, and enhanced represen-

tations of individual modalities. This develop-
ment encompasses a broad scope, for example,
multimodal classification (Arevalo et al., 2017;
Cascante-Bonilla et al., 2019), gesture recognition
(Yu et al., 2021), and audio-video clustering (Al-
wassel et al., 2019).

Multimodal machine learning is a great chal-
lenge due to the multiple factors involved. In this
work, we focus on multi-label movie genre classi-
fication utilizing two modalities: text and image.
We focus on addressing four main difficulties:
(i) Models trained on different modalities learn
and generalize at different speeds (Wang et al.,
2020), and the optimization process benefits one
modality more than the other. The consequence
is that during the training phase, the model gives
more weight to the most relevant (stronger) modal-
ity and disregards the less informative (weaker)
one. (ii) There is a lack of effective fusion since
prediction by fusion modalities depends on the
correlation between modalities and their represen-
tation. (iii) Complex deep neural architectures re-
quire a large computing capacity, and most mul-
timodal models use complex modules for fusion
that increment the computational cost. (iv) Mul-
timodal models are prone to overfitting since they
have more parameters (Wang et al., 2020).

To tackle these issues, our proposal focuses
on model regularization and better use of weak
modality information (e.g., image). Specifi-
cally, for (i) and (iii), we design a two-stream
model called Multimodal BERT-VIT (MMBV).
Our proposed MMBV consists of two Trans-
formers (Vaswani et al., 2017), one for text and
one for image, interconnected by the CLS token.
Thereby, MMBV combines the modalities us-
ing self-attention without a complex fusion mod-
ule, unlike most of the previous classification ap-
proaches that are based on large complex neural
modules that increase computational cost and are
prone to overfitting (Wang et al., 2020). MMBV
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is possible due to the recent creation of the Vi-
sion Transformer (ViT) (Dosovitskiy et al., 2021),
a transformer pre-trained in a large image dataset
that incorporates the CLS token for classification
similar to text Transformers.

For (ii) and (iv), we design a ratio for the spe-
cialization and generalization of a model at each
epoch to identify the onset of overfitting and cor-
rect it. We add the ratio to the consistency train-
ing framework Unsupervised Data Augmentation
(UDA) (Xie et al., 2020). The intuitive idea is to
obtain a score that automatically increases or de-
creases the contribution of the consistency loss in
UDA during training. For multimodal classifica-
tion, we can augment only one modality or the two
modalities jointly. To reduce the breach between
the learning speeds of different modalities, we ex-
periment with augmenting only the strong modal-
ity.

We evaluate these ideas in the challenging sce-
nario of multi-label classification of movie genre
using two datasets (Cascante-Bonilla et al., 2019;
Arevalo et al., 2017). Our results show that com-
bining MMBV with dynamic UDA improves the
performance of both image and text modalities by
balancing between the weak and strong modali-
ties. We also find that data augmentation in just
one modality helps the other one. The data aug-
mentation retards the training, which may reduce
the difference between the learning rates of dif-
ferent modalities. Overall, the dynamic UDA
improves the base model performance across all
models tested.

2 Related work

2.1 Multimodal Fusion

Fusing modalities for multimodal prediction is a
crucial challenge since it depends on the task, cor-
relations between the modalities, and the input
representation of the modalities. The study of
merging modalities is an active research field due
to the diverse characteristics of multimodal data
sets. For example, modalities with little discrimi-
native power, those that are contradictory, or those
that are redundant and represent the same seman-
tic concept. Models in the literature have used fea-
ture extractors and encoders for each modality to
transform inputs into continuous numeric vectors
that are ready for fusion. Methods include gated
neural networks (Arevalo et al., 2017) to learn a
linear combination of vector representations, pro-

jecting one modality’s matrix representation onto
another and concatenating (Kiela et al., 2020), and
using self-attention or cross-attention transformer
layers to interact between modalities (Kiela et al.,
2020; Lu et al., 2019).

2.2 Previous Text-Image Classification
Models

We categorize multimodal models into two types:
multimodal pre-training (Lu et al., 2019; Chen
et al., 2020; Gan et al., 2020) and unimodal pre-
training (Tsai et al., 2019; Kiela et al., 2020). The
first type refers to models trained in agnostic mul-
timodal tasks using both modalities to learn a joint
representation of text and image. The second type
defines models where each encoder is indepen-
dently pre-trained in unimodal tasks to learn a rep-
resentation of the individual modality.

Models with unimodal pre-training, such as
(Tsai et al., 2019; Kiela et al., 2020), have the ad-
vantage of being able to easily replace encoders
at no extra cost. However, their performance is
typically lower due to a lack of joint representa-
tion learning. In this paper, we consider, adapt
and study these models to perform fine-tuning and
observe the behavior of learning speeds for each
modality.

Despite the high computational costs, multi-
modal models typically perform better in most
tasks (Lu et al., 2019; Chen et al., 2020; Gan et al.,
2020). One major issue is that these models often
have complex attention modules that require more
memory and time during fine-tuning. Another lim-
itation is that the models have a text-based archi-
tecture. Thus the image could be at a disadvantage
concerning the text, resulting that the performance
of the multimodal models being similar to the text-
only model. Fortunately, recent advancements in
adapting transformers to visual tasks have yielded
important results (Dosovitskiy et al., 2021; Bao
et al., 2021; Touvron et al., 2021). In this paper, we
present a simple but effective adaptation of an im-
age transformer to create a new multimodal model
that achieves a better balance between modalities.

2.3 Regularization for multimodal models
A primary issue with multimodal networks is over-
fitting, as they usually have more parameters than
analogous unimodal models. In a notable work,
Wang et al. (2020) found that overfitting occurs
because different modalities generalize and spe-
cialize at different rates. To address this issue,
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they computed an overfitting-to-generalization ra-
tio (OGR) per modality to measure the quality of
training between two model checkpoints.

The OGR between epochs N and N + n is de-
fined as:

OGR =

∣∣∣∣
ON+n −ON

LV
N − LV

N+n

∣∣∣∣ (1)

where LT
N is the model’s average loss over the

fixed train set, LV
N is the validation loss and ON =

LV
N − LT

N . Finally, they proposed to minimize the
OGR during training by using gradient-blending.

Another approach to reducing overfitting is ad-
versarial training, Gan et al. (2020) propose an
adversarial framework to avoid overfitting during
pre-training and fine-tuning by adding adversar-
ial perturbations to the embedding space of each
modality. This improves the generalization of pre-
trained models but is computationally expensive
and time-consuming.

Model regularization is crucial for multimodal
learning, and inspired by the concept of OGR, we
propose a novel score to quantitatively measure
overfitting. We integrate this overfitting score with
the UDA consistency training framework, which
was previously used only in unimodal contexts.
We will discuss this method further in the next sec-
tion.

3 CLS fusion model: MMBV

We introduce the Multimodal BERT-ViT
(MMBV) model 1, a novel two-stream model
for text-image classification that combines two
transformers through the CLS token. See Figure
1 for an illustration of the architecture. We use as
image encoder the novel pre-trained transformer
for image ViT (Dosovitskiy et al., 2021), and for
the text encoder, we use the transformer BERT
(Devlin et al., 2019). In this way, both modalities
have an encoder with a similar architecture, where
the encoders are pre-trained in large datasets for
each domain. Since both models have a token
(CLS) that resumes the information of the input
sequence, we do the fusion by interconnecting
this token from one modality to the other.

3.1 CLS fusion
BERT and ViT models have a CLS hidden state
at the same dimension, h(i)CLS , that resumes the in-

1
The code is available at https://github.com/IvonneMont/

Dynamic-UDA-for-Transformers-in-Multimodal-Classification.git

formation of the input at the end of the i trans-
former block. We use the CLS hidden states
to connect the two models. At the end of
the first block, we have r hidden states for the
text input H(1)

txt = (h
(1)
CLStxt

, h
(1)
1txt

, . . . , h
(1)
rtxt) and

s hidden states for the image input H
(1)
img =

(h
(1)
CLSimg

, h
(1)
1img

, . . . , h
(1)
simg). H

(1)
txt is the output of

the first self-attention block for the text and H
(1)
img

is the output of the first self-attention block for
the image. These hidden states are the input for
the next block and to add the information from
the other modality at each model, we concatenate
h
(1)
CLSimg

to H
(1)
txt and h

(1)
CLStxt

to H
(1)
img. The input

for the next block of BERT is:

Ĥ
(1)
txt = (h

(1)
CLStxt

, h
(1)
1txt

, . . . , h(1)rtxt , h
(1)
CLSimg

) (2)

and the input for the next block of ViT is:

Ĥ
(1)
img = (h

(1)
CLSimg

, h
(1)
1img

, . . . , h(1)simg
, h

(1)
CLStxt

)

(3)

The input for the second block has an extra hid-
den state. From this point, to build the input for
the next transformer block, instead of concatenat-
ing, the last hidden state is replaced by the CLS
hidden state of the other model. The inputs for the
i+ 1 block of each model are:

Ĥ
(i)
txt = (h

(i)
CLStxt

, h
(i)
1txt

, . . . , h(i)rtxt , h
(i)
CLSimg

) (4)

Ĥ
(i)
img = (h

(i)
CLSimg

, h
(i)
1img

, . . . , h(i)simg
, h

(i)
CLStxt

)

(5)

The cross-modal CLS token concatenation only
happens in the output of the first transformer
block. After that, the last token produced for each
subsequent layer is replaced by the corresponding
CLS token of the other modality built in the corre-
sponding transformer block.

Usually, the fusion between modalities is time-
consuming and computationally expensive, but
with this approach, we have effective fusion at a
low cost. With the CLS fusion, each transformer
has access to the resume of the input from the
other transformer with only a token. Then, this
compressed representation is combined with each
token of the original sequence input by the self-
attention mechanism.

4 Proposed Dynamic Unsupervised Data
Augmentation

To extend data augmentation to the multimodal
domain, we adapt the semi-supervised framework
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BERT ViT

[CLStxt] Token1
. . . T okenr

Position Embeddings

ECLStxt E1txt
. . . Ertxt

hCLStxt h1txt . . . hrtxt hCLSI−T

Adding hCLSimg

hCLStxt h1txt . . . hrtxt hCLSimg

Text pooled out

[CLSimg] Patch1 . . . Patchs

Position Embeddings

ECLSimg E1img
. . . Esimg

hCLSimg h1img
. . . hsimg hCLST−I

Adding hCLStxt

hCLSimg h1img
. . . hsimg hCLStxt

Image pooled out
Concatenation

Linear & Softmax

Nx Nx

Output Probabilities

Figure 1: CLS fusion model: The proposed model MMBV is a model of two streams, the ViT transformer (Doso-
vitskiy et al., 2021) for image, and the BERT transformer (Devlin et al., 2019) for text. The two transformers are
connected by the CLS embedding in each block. The tokens of the text (Tokeni) are the input for BERT, and the
patches of the image (Patchi) are the input for ViT. The hCLSI−T

and hCLST−I
hidden states are not used for

the input of the next self-attention block; instead, they are replaced by the hCLSimg
and hCLStxt

versions from the
transformer of the other modality.

UDA (Xie et al., 2020) to supervised multimodal
classification. UDA has not yet, to the best of our
knowledge, been used for this task. The purpose
of UDA is to force model consistency with real-
istic noise by applying data augmentation tech-
niques. We propose a dynamic regularization of
the loss function that is useful when there is not a
large unsupervised data set and the computational
resources are limited.

4.1 Standard UDA

UDA (Xie et al., 2020) computes a supervised loss
over labeled data and a consistency loss over un-
labeled data to gradually propagate label infor-
mation from labeled examples to the unlabeled.
A regularization parameter λ weights the consis-
tency loss to control how much we want to con-
sider the unlabeled data and allow for model flex-
ibility.

They consider a model M that estimates a con-
ditional distribution Pθ(y|x), for a given input x.
To calculate the consistency loss, the model uses
data augmentation. Given an input x from the un-
labeled dataset, its noised version x̂ is obtained

from x applying a data augmentation transforma-
tion. Then, the consistency loss Lc is defined as:

Lc =
1

|U |
∑

x∈U
D(pθ̂(y|x) ∥ pθ(y|x̂)) (6)

where D(pθ̂(y|x) ∥ pθ(y|x̂)) is a divergence
metric between the two distributions pθ̂(y|x) and
pθ(y|x̂) and U is the unlabeled dataset. The objec-
tive is that the distribution of the augmented data
is similar to the distribution of original data, there-
fore the gradient only propagates through pθ(y|x̂).
The latter is achieved by fixing the θ parameter in
pθ̂(y|x), i.e pθ̂(y|x) is consider a constant.

Finally, the objective function is calculated as
the sum of a supervised loss Ls and λ times the
unsupervised consistency loss

L = Ls + λLc (7)

Experimentally, it has been found that large
amounts of unlabeled data and considerably large
batch sizes are necessary for the regularization to
correctly work, which is computationally expen-
sive and infeasible when only limited computa-
tional resources are available.
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4.2 New Dynamic UDA2

Since we work in the supervised scheme, we use
only labeled data. Then, the consistency loss
is calculated over the supervised dataset as per
Ramesh et al. (2021). However, the model be-
comes susceptible to the choice of λ in Equation 7.
For large values of λ, the model generalizes well
but underfits. This means that the model learns the
most general characteristics of the classes with-
out obtaining discriminative patterns that can help
to get high performance. Therefore, it tends to
obtain a similar performance on the training and
validation data set. On the contrary, for small
values of λ, the model specializes well in the
training dataset but overfits. This means that the
model learns many detailed features of the train-
ing dataset without the appropriate generalization.
It thus tends to misclassify validation instances.

To achieve a balance between generalization
and specialization, we propose computing the co-
efficient λ based on the model’s generalization and
specialization at each epoch. The idea is to dy-
namically adjust λ , decreasing it when the model
is generalizing well, and increasing it when the
model is over-specializing. Therefore, it is essen-
tial to have a quantitative measure of the model’s
generalization and specialization. Inspired by the
integration of the minimization of the overfitting-
to-generalization ratio (OGR) into the objective
function (see Wang et al. (2020)), we exploit the
loss in validation LV as an approximation of the
loss over the target distribution.

First we define the next quotient at the epoch i:

qVi =
1 + LV

i−1

1 + LV
i−2

(8)

qTi =
1 +MT

i−1

1 +MT
i−2

(9)

where LV
i is the loss in the validation set, MT

i is
the metric to improve as calculated for the train-
ing set (F1 score, accuracy, AP). Note that qVi < 1
if the validation loss decrease in the epoch i − 1,
i.e. there was generalization. During training, it
is expected that MT

i will increase, but a rapid in-
crease could result in overfitting, so we consider
that qTi >> 1 could indicate overfitting.

2
The code is available at https://github.com/IvonneMont/

Dynamic-UDA-for-Transformers-in-Multimodal-Classification.git

Case Explanation Result
1. qiV > 1, qTi > 1 No generalization and overfitting λi increase
2. qVi < 1, (qTi )

K > 1
(qVi )N

overfitting >> generalization λi increase

3. qVi < 1, (qTi )
K < 1

(qVi )N
overfitting << generalization λi decrease

Table 1: Behavior of λi in the three main cases.

Finally we defined the weighted factor λi as:

R = (qVi )
N (qTi )

K (10)

λi = λ ·R (11)

where N,K ∈ N and λ ∈ R, and λ is the mag-
nitude of the contribution of the consistency loss,
N controls the flexibility of the model when there
is generalization, and K controls the tolerance to
the over-fitting. Since we are interested in im-
proving the generalization we consider N >> K.
The ratio R controls the magnitude of λ: when R
is greater than one it is because specialization is
greater than generalization and overfitting begins,
therefore the contribution of consistency loss must
be increased.

To analyze the behavior of λi we split it into
three cases as shown in Table 1 . In case one, the
learned weights improve the training metric, but
the learned patterns do not generalize to the tar-
get distribution. Thus, we increase the value of λ
to stop over-specialization in the training dataset.
For case two, the learned patterns generalize the
target distribution but not enough. Patterns in the
training dataset are being learned very quickly,
which could result in overfitting. In case three, the
learned patterns generalize the target distribution
well. The improvement in training and validation
is similar. This is the ideal case during the opti-
mization process: the training direction is correct.
Thus, we reduce the value of λ to continue in that
direction.

Our dynamic regularization approach automat-
ically diagnoses and corrects overfitting. More-
over, it encourages generalization by using a mea-
sure of generalization and specialization to weigh
the loss of consistency.

5 Dataset and Experimental Settings

Datasets: We used two multimodal datasets,
Moviescope (Cascante-Bonilla et al., 2019) and
Multimodal IMDb (MM-IMDb) (Arevalo et al.,
2017). The task is the multi-label classification of
a movie’s genre based on its plot and image poster.
The performance metrics are macro and micro F1
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Figure 2: Augmented examples using word replace-
ment and RandAugment

for Moviescope and macro and micro average pre-
cision for MM-IMDb. Since both datasets have
unbalanced labels, the most important metric is
the micro. MM-IMDb is the largest dataset since
its training partition is almost five times larger
than the one for Moviescope. Moviescope has
13 movie genre categories, and MM-IMDb has 26
categories. These categories include genres such
as action, animation, biography, comedy, crime,
drama, family, fantasy, horror, and others.
Augmentation Strategies: For the text modal-
ity, we replace the 10% of tokens with the closest
word using cosine similarity in W2V embeddings.
For the image modality, we use the RandAugment
technique. Rand Augment (Cubuk et al., 2020) ap-
plies N random transformations sequentially such
as equalize, rotate, solarize, contrast, shear-x-y,
translate-x-y, and others. We generate an aug-
mented example for each instance in the training
dataset as shown in Figure 2.
Implementation Details: We perform five ex-
periments for each model, with the same hyper-
parameters but different seeds. We explore a learn-
ing rate of 1e − 4 and 5e − 5, batch size of 8,16,
and 32, and a max number of epochs of 100 and
150. Also, we implement an early stopping with
a patience number of 2 and 5. Finally, we use the
best model selection on the validation partition to
obtain the results in the test partition. We use two
NVIDIA Tesla V100 32GB SXM2 cards for the
experiments.

6 Results

This section presents the results obtained by
the proposed model MMBV and the proposed
framework dynamic UDA for the task of multi-
label movie genre classification. We compare
MMBV performance against its unimodal parts,

ViT (Dosovitskiy et al., 2021) and BERT (Devlin
et al., 2019). Also, we compare MMBV against
Multimodal Bitransformer (MMBT) (Kiela et al.,
2020), which reportedly holds the best-performing
result in MM-IMDb dataset without a multimodal
pertaining. For the second proposal, since the dy-
namic UDA framework does not depend on the
model, we experiment with three unimodal and
two multimodal models for the same task.

6.1 Evaluation proposed MMBV: CLS fusion

The purpose of the following experiments is to
compare the performance of our MMBV model
with the MMBT model. We also compare the per-
formance of the unimodal models that compose
each model to observe the individual performance
of each modality.

Table 2 summarizes the results of MMBV ap-
plied on the datasets Moviescope and MM-IMDb.
We compare with existing models ViT, ResNet
152, BERT, and MMBT. The evaluation met-
rics are micro/macro F1 for Moviescope and mi-
cro/macro AP for MM-IMDb. We show mean
performance and standard deviation over five runs
with different seeds. For the MM-IMDb dataset,
we replicate the MMBT model used on Kiela et al.
(2020) and obtain similar results.

The MMBV model outperforms MMBT by
only +0.2. A possible cause is that the image
model ViT has a lower performance on MM-
IMDb than the ResNet 152. The convolutional
network overcomes the vision transformer by
2.9%. However, when we fuse the modalities with
MMBV, similar results are obtained for MMBT.
This result indicates that the fusion of MMBV ex-
tracts useful information from the image more ef-
ficiently, without reducing the performance of text
and increasing the global performance.

For the Moviescope dataset, there is no state-
of-the-art method using only text and images.
Since this dataset has more modalities, other au-
thors have used other modalities such as audio and
video, but we focus only on image and text only
for this research. The MMBV model outperforms
MMBT by +1.8. We find that ViT has a higher
performance than ResNet 152. ViT improves over
ResNet 152 by 6.4% on micro-F1. We observe
that text is the dominant modality again, by almost
15% over the image. Another interesting observa-
tion is that MMBT is under its text part BERT by
0.2%. In this case, adding the image hurts global
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Model Modality Moviescope MM-IMDB
mAP /µAP mF1/µF1

ResNet 152 Image 46.5±0.6/54.8±0.5 33.3±0.6/46.6±0.3
ViT Image 52.2±0.3/61.2±0.4 32.2±0.4/43.7±0.3
BERT Text 72.3±0.4/76.3±0.4 59.6±0.2/65.1±0.1
MMBT Image & Text 72.1±0.5/76.1±0.4 61.4±0.3/66.6±0.3
MMBV Image & Text 74.0±0.2/77.9±0.4 61.7±0.5/66.8±0.4

Table 2: Proposed MMBV results. Compared against
ViT (Dosovitskiy et al., 2021), BERT (Devlin et al.,
2019), and MMBT (Kiela et al., 2020). Moviescope is
Macro-AP/Micro-AP; MM-IMDB is Macro-F1/Micro-
F1.

performance.
The computational costs of MMBV and MMBT

are almost the same. Both models have the same
encoder for text but differ in their image encoder
and fusion types. MMBT employs the ResNet
152 (He et al., 2015) encoder for image, which
has fewer parameters than the ViT encoder used
in MMBV. However, during fusion, the MMBV
model requires no additional parameters, whereas
the MMBT model modifies the dimensions and
adds new positional image embeddings to repre-
sent the image.

6.2 Evaluation Dynamic Unsupervised Data
Augmentation

The purpose of the following experiments is to
compare the performance of our Dynamic UDA
with the base model and the fixed (regular) UDA.
Since UDA can be applied to any classification
model, we compare the performance of the uni-
modal models and multimodal models.

Table 3 shows the results of the dynamic reg-
ularization for UDA, compared against the base
model (Base), the original UDA (fixed), and stan-
dard augmentation (Aug). We consider three vari-
ants for the multimodal models, one where the text
and image are augmented simultaneously (UDA
dynamic), a second where only the image is aug-
mented (UDA dynamic Image), and a third where
only the text is augmented (UDA dynamic Text).
The purpose of these variants is to observe how
UDA affects the training speed of each modality.

Our Dynamic UDA obtained the best results
when applied to all models across all the bench-
marks. Specifically, Dynamic UDA outperforms
ResNet 152-base by +0.9/0.1 on Moviescope and
+1.2/2.3 on MM-IMDb; ViT-base by +1.2/1.0 on
Moviescope and +2.1/3.8 on MM-IMDb; BERT
by +0.4/0.3 on Moviescope and +1.0/1.4 on MM-
IMDb; MMBT-base by +2.2/1.8 on Moviescope

Model Moviescope MM-IMDb

ResNet 152

Base 50.1±0.6/58.9±0.5 33.3±0.6/46.6±0.3
Aug 50.2±0.2/58.4±0.5 33.8±0.6/46.4±0.4
UDA (fixed) 50.5±0.8/58.5±1.0 34.6±0.7/48.0±0.4
UDA dynamic Image 51.0±0.5/59.0±0.4 34.5±0.4/48.9±0.4

ViT

Base 52.2±0.3/61.2±0.4 35.9±0.4/47.4±0.3
Aug 47.8±2.6/55.3±0.7 36.3±0.3/48.1±0.3
UDA (fixed) 47.1±1.3/54.5±0.7 37.8±0.5/48.2±0.7
UDA dynamic Image 53.4±0.5/62.2±0.6 38.0±0.7/51.2±0.2

BERT

Base 72.3±0.4/76.3±0.4 59.6±0.2/65.1±0.1
Aug 71.8±0.3/75.8±0.3 59.6±0.2/65.1±0.0
UDA (fixed) 72.1±0.7/74.9±0.6 59.2±0.2/64.5±0.2
UDA dynamic Text 72.7±0.2/76.6±0.4 60.6±0.3/66.5±0.1

MMBT

Base 72.1±0.5/76.1±0.4 61.4±0.3/66.6±0.3
Aug 73.7±0.3/77.2±0.6 61.5±0.2/66.7±0.1
UDA (fixed) 73.6±0.7/76.9±0.5 61.8±0.4/66.9±0.2
UDA dynamic 73.6±0.2/77.4±0.3 62.0±0.2/67.5±0.2
UDA dynamic Image 73.5±0.4/77.7±0.4 62.5±0.2/67.8±0.1
UDA dynamic Text 74.3±0.6/77.9±0.5 62.2±0.2/67.6±0.2

MMBV

Base 74.0±0.2/77.9±0.4 61.7±0.5/66.8±0.4
Aug 74.2±0.4/78.0±0.5 61.0±0.1/66.5±0.2
UDA (fixed) 72.6±1.5/75.0±2.3 61.9±0.6/66.7±0.8
UDA dynamic 75.5±0.1/79.4±0.3 62.7±0.1/68.2±0.2
UDA dynamic Image 75.2±0.4/79.1±0.3 62.8±0.2/68.0±0.2
UDA dynamic Text 75.3±0.8/79.2±0.5 62.7±0.3/67.9±0.3

Table 3: Supervised dynamic UDA results. Com-
pared against the base model (Base), the original UDA
(fixed), and standard augmentation (Aug). Three vari-
ants for the multimodal models: Dynamic UDA with
image and text augmented (Dynamic UDA); with just
the image augmented (UDA Dynamic Image); with just
the text augmented(UDA dynamic text). Moviescope is
Macro-AP/Micro-AP; MM-IMDb is Macro-F1/Micro-
F1.

and +1.1/1.2 on MM-IMDb; MMBV-base by
+1.5/1.5 on Moviescope and +1.0/1.4 on MM-
IMDb. We observe that using the fixed UDA in
some cases had lower performance than the base
model. However, when we use the dynamic UDA,
we obtain the best results. The dynamic frame-
work has better performance than the fixed one.

6.3 Effect of the regularization parameter λ

The regularization parameter λ controls the con-
tribution of the consistency loss to the final loss.
When the contribution of consistency loss is close
to zero, the total loss function is almost equal to
the supervised loss. So the performance is simi-
lar to the base model. The model is specialized in
the training dataset but has low performance in the
validation dataset, as Figure 3a shows. On the con-
trary, if the contribution of the consistency loss is
big, the performance between the training dataset
and validation is similar, but both have a low per-
formance, as Figure 3b shows. Finally, Figure 3c
shows the effect of using the proposed dynamic
parameter. There is a balance between the special-
ization in the training dataset and the generaliza-
tion for the validation dataset. The performance in
the training dataset is high, and the overfitting is
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diminished.
We specifically compare the performance of

multimodal models, MMBT and MMBV, using
the base training and adding the framework dy-
namic UDA. Figure 4 shows the graph of the per-
formance metric Micro AP during training. The
dotted lines correspond to the base model and the
continuous lines to the UDA dynamic framework.
We observe that the gap between training and val-
idation is smaller with Dynamic UDA. At first, the
dynamic UDA keeps the performance of training
and validation closer for more epochs. Dynamic
UDA also takes more epochs to converge to the
solution in comparison with the base model.

To observe how the ratio R from equation 10
controls the overfitting, we graph the cases de-
scribed in Table 1 during training (see Figure 5).
Case one is marked with red, case two with yel-
low, and case three with green. In this example,
we observe that the beginning of the training cor-
responds to case two, where the patterns in the
training dataset are learning very quickly, then the
value of R is greater than one. By increasing the
value of R it is possible to smooth the training
curve for the following epochs (green zone). Later
in epoch 10, there is a large gap between the val-
idation and training curves, corresponding to case
one. Thus in the following epochs, the ratio R is
greater than one to control overfitting.

6.4 Multimodal models with a missing
modality

To understand the behavior of the multimodal
models for each modality, we evaluate the previ-
ously trained models in Moviescope, using only
one modality. This means that for the multimodal
models, the input for validation is only one modal-
ity, either only text or only image, although the
training has been done with the two modalities.
Table 4 shows the results. For the case of the
MMBT model, we observe similar results when
we use only the text as when we use both modal-
ities. When we use only the image, the perfor-
mance is poor. This means that the image in-
formation has a small contribution to the model
MMBT. However, when we add the framework
UDA the performance using only the image in-
creases by 8.8%, and the performance using only
text remains similar. This indicates that the im-
provement in models with both modalities relies
on the better use of the image information.

For the MMBV model, with standard train-
ing, the performance drops when we use only one
modality, either only text or only image. MMBV
uses the joint information to make the prediction.
When we add the Dynamic UDA framework, the
model is more robust to the missing of one modal-
ity, especially when the missing modality is the
image. We conclude that the MMBV model using
Dynamic UDA improves the information learned
from both modalities.

7 Conclusions

We developed two strategies to tackle key issues
in multimodal learning for the text-image classi-
fication task. First, to address the lack of effec-
tive fusion and excessive computational complex-
ity, we designed a text-image model MMBV for
classification. MMBV has shown an effective fu-
sion due to a similar use of the modalities and the
CLS fusion. The second proposal, Dynamic UDA,
focuses on reducing the gap between the learn-
ing rates of the different modalities and having an
effective regularization that automatically identi-
fies the overfitting and corrects it. We success-
fully modified the UDA framework by extending it
to a multimodal supervised domain and overcom-
ing the sensitivity of UDA to the choice of regu-
lation parameter. Future work includes extending
the model to other image-text tasks and more than
two modalities and applying the Dynamic UDA
to other general classification tasks. Since Dy-
namic UDA can be used to extract more informa-
tion from the weaker modality in analogous sce-
narios, our work could have an impact on virtually
any multimodal or multichannel application.

Limitations

The main limitation of the presented work is
the need for significant computing resources to
train multimodal models using Dynamic UDA.
It should be noted that the proposed methods,
MMBV and Dynamic UDA, require fewer com-
putational resources than the original version of
UDA.

Ethics Statement

While predicting film genre may seem similar to
the task of age audience rating recommendation
(e.g. MPAA film rating system), as some genres
such as family, adventure, fantasy, animation, hor-
ror, or crime often have a similar rating, using this
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(a) λ << 1 overfitting (b) λ >> 1 underfitting (c) Dynamic λ balance

Figure 3: Visualization of the effect of λ in UDA

Dataset Model Modality Base Dynamic UDA Dynamic UDA Text Dynamic UDA Image

Moviescope

MMBT
Image 29.2±0.8/29.0±3.7 33.8±2.7/32.9±3.7 35.5±1.7/37.8±2.2 34.7±1.6/37.0±3.9
Text 71.4±0.3/75.6±0.4 72.1±0.4/75.7±0.7 72.1±0.5/75.3±1.4 72.6±0.5/76.4±0.6
Image-Text 72.1±0.5/76.1±0.4 73.6±0.2/77.4±0.3 74.3±0.3/78.1±0.4 73.8±0.1/77.9±0.3

MMBV
Image 43.4±0.9/50.3±2.7 44.3±1.8/52.2±2.0 45.6±2.4/53.4±2.0 43.1±1.5/50.2±2.8
Text 62.3±4.6/54.7±4.4 65.6±1.9/62.5±5.1 68.8±1.2/65.3±3.8 67.4±1.8/65.1±5.3
Image-Text 74.0±0.2/77.9±0.4 75.5±0.3/79.5±0.3 75.3±0.8/79.2±0.5 75.2±0.4/79.1±0.3

MM-IMDb

MMBT
Image 16.5±1.9/29.4±1.0 16.7±1.5/32.9±1.0 22.5±1.9/35.7±1.8 18.6±0.5/33.6±1.59
Text 56.6±0.7/62.8±1.4 59.9±0.3/65.3±0.5 58.0±0.6/64.3±1.5 59.2±0.5/65.2±0.8
Image-Text 61.4±0.3/66.6±0.3 62.0±0.2/67.5±0.2 62.2±0.2/67.6±0.2 62.5±0.2/67.8±0.1

MMBV
Image 22.8±2.6/39.4±1.8 21.9±1.1/39.9±1.4 23.6±2.9/39.9±2.1 22.6±2.5/38.9±1.4
Text 36.2±9.7/45.0±8.2 47.8±3.3/55.5±2.6 42.1±4.1/49.0±3.8 43.8±6.8/52.2±5.3
Image-Text 62.7±0.3/67.9±0.3 62.7±0.1/68.2±0.2 62.7±0.3/67.9±0.3 62.8±0.2/68.0±0.2

Table 4: Multimodal models evaluated over only one modality. Moviescope is Macro-AP/Micro-AP. MM-IMDb
is Macro-F1/Micro-F1

(a) MMBT (b) MMBV

Figure 4: A comparison between the base model and
Dynamic UDA framework during training. The gap be-
tween training and validation is smaller with Dynamic
UDA, as it takes more epochs to converge to the solu-
tion in comparison with the base model.

Figure 5: Effect of the ratio R (equation 10) according
to the cases in Table 1. Case one is marked with red
color, case two with yellow, and case three with green.
The R value is represented in the colored dots.

model to directly guide the rating task may not be
appropriate as genre and rating are not always cor-
related.

Additionally, note that the model has been
trained primarily on the Western film industry
(mainly American), and our data lacks representa-
tion from other significant industries, such as those
in Asia. However, with appropriate training data,
these models could perform well in these cultural
contexts. Additionally, we encourage the ethical
use of these models in other multimodal tasks with
sensitive contexts.
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