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Abstract

In multilingual pre-training with the objective
of MLM (masked language modeling) on mul-
tiple monolingual corpora, multilingual mod-
els only learn cross-linguality implicitly from
isomorphic spaces formed by overlapping dif-
ferent language spaces due to the lack of ex-
plicit cross-lingual forward pass. In this work,
we present CLPM (Cross-lingual Prototype
Masking), a dynamic and token-wise masking
scheme, for multilingual pre-training, using a
special token [C]x to replace a random token
x in the input sentence. [C]x is a cross-lingual
prototype for x and then forms an explicit cross-
lingual forward pass. We instantiate CLPM for
the multilingual pre-training phase of UNMT
(unsupervised neural machine translation), and
experiments show that CLPM can consistently
improve the performance of UNMT models
on {De,Ro,Ne} ↔ En. Beyond UNMT or
bilingual tasks, we show that CLPM can consis-
tently improve the performance of multilingual
models on cross-lingual classification.

1 Introduction

With tied weights across the languages and the help
of language identifications (Johnson et al., 2017),
multilingual models only have access to monolin-
gual corpora in different languages. Stemming
from BERT/MLM (Devlin et al., 2019) and GPT
(Radford et al., 2018; Alec Radford, 2020), for
cross-lingual knowledge, multilingual pre-training
with the objective of MLM on multiple monolin-
gual corpora is introduced by XLM (Lample and
Conneau, 2019), explored by MASS (Song et al.,
2019) and mBART (Liu et al., 2020; Lewis et al.,
2020), and scaled by XLM-R (Conneau et al., 2020)
and mT5 (Xue et al., 2021).

Essentially, in multilingual MLM pre-training,
models are encouraged to learn implicit cross-
linguality from both linguistic similarities and
shared tokens (Karthikeyan et al., 2020; Wu and
Dredze, 2019; Pires et al., 2019; Dufter and

Schütze, 2020) for translation and cross-lingual
transfer. However, it does not learn any explicit
and principled cross-lingual forward pass from in-
puts to outputs, only relying on the isomorphic
space that emerged from multilingual MLM pre-
training by overlapping language spaces agnosti-
cally. Given the nature of translation and cross-
lingual transfer, models should understand ex-
plicit cross-lingual forward passes initiating cross-
lingual knowledge directly. Considering this aspect,
beyond the implicit and agnostic cross-linguality,
we are interested in the question: can models learn
explicit and principled cross-linguality in multilin-
gual pre-training without any supervision?

Following this idea, for multilingual pre-training,
we present a dynamic and token-wise masking
scheme, CLPM (Cross-lingual Prototype Mask-
ing), to compute a special token [C]x representing
a cross-lingual prototype for a selected token x
and then replace x with [C]x instead of the stan-
dard token [M] in multilingual MLM pre-training.
We present an example in Table 1. Significantly,
when predicting the selected and replaced x, we
model an explicit cross-lingual forward pass from
the cross-lingual prototype [C]x to x.

Source The investment fund that owned the building had to make a choice .

[M] The [M] fund [M] owned [M] building [M] to make a choice .

[C]x The [C]x1 fund [C]x3 owned [C]x5 building [C]x7 to make a choice .

Table 1: Examples of [C]x and [M]. {x1, x3, x5, x7}
at position {1, 3, 5, 7} are randomly selected for
replacing. Then, we compute the [C]x set
{[C]x1

, [C]x3
, [C]x5

, [C]x7
} for replacing and pre-train

MLM without any other change, treating [C]x as [M].

In multilingual pre-training, computing [C]x is a
challenge on multiple monolingual corpora with-
out any supervision from parallel corpora, transla-
tion tables (Dufter and Schütze, 2020; Ren et al.,
2019b; Chaudhary et al., 2020), or data augmenta-
tion processes (Krishnan et al., 2021; Chaudhary
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et al., 2020; Tarunesh et al., 2021). Fortunately, we
find that suitable candidates can be dynamically
obtained in the multilingual embedding space, con-
sidering the relevance between the selected token
and the tokens in the other language. Meanwhile,
naive token-to-token relevance is reported to mis-
represent morphological variations (Artetxe et al.,
2020; Czarnowska et al., 2020; Kementchedjhieva
et al., 2020), which limits the improvements for
translation and cross-lingual transfer tasks. Thus,
we approximate multiple candidates in the other
language for [C]x, expecting to cover morphologi-
cal variations. Unfortunately, the input dependency
is perturbed by [C]x because [C]x is not agnostic
and not static as [M] but dynamically obtained
from the other language. Eventually, it potentially
results in a lack of learning internal structures of
languages. To alleviate this pain but still use [C]x,
we alternate between [M] and [C]x, where [M]
is agnostic and does not perturb input language
domain.

We attempt UNMT and (zero-shot) cross-lingual
transfer tasks. For UNMT, we consider X ↔ En
on a rich-resource language De, a low-resource
language Ro, and a dissimilar language Ne. In-
tuitively, CLPM yields improvements because of
the dynamical approximations of token-level cross-
lingual information. We then justify this on cross-
lingual word similarity tasks from MUSE (Lam-
ple et al., 2018b). Beyond UNMT, we experiment
with the cross-lingual classification task on XNLI
(Conneau et al., 2018) to test general cross-lingual
transfer CLPM improves within a pivoting-based
framework.par We have three contributions. 1) We
present CLPM, a dynamic and token-wise masking
scheme using special tokens [C]x, to form cross-
lingual forward passes in multilingual pre-training.
[C]x is a generalized representation from multiple
cross-lingual candidates. 2) CLPM substantially
improves the performance of X ↔ En baseline
UNMT models by 3% ∼ 8% on rich-resource and
low-resource languages and can facilitate training
on dissimilar languages. 3) Beyond UNMT tasks
or bilingual tasks, CLPM can be used for cross-
lingual classification tasks.

2 Cross-lingual Prototype Masking

Notation Lx is the language ID of language
Langx. Pn stands for positions. ER is the embed-
ding for R. d is the model/embedding dimension.

2.1 Forward Pass in Attention

Given an input sentence X = {x0, x1, ..., xn}
in the language Langx, the self-attention layer
(Vaswani et al., 2017) performs on the sum of
Xinput = {Ex0 + ELx + EP0 , ..., Exn + ELx +
EPn}, which is considered in previous works of
multilingual pre-training (Liu et al., 2020; Song
et al., 2019; Lample and Conneau, 2019). For pre-
dicting xi, the attention score (Bahdanau et al.,
2015; Luong et al., 2015) ei,j = (Exi + ELx +
EPi)

TW T
q Wk(Exj + ELx + EPj ) between query

vector qi and key vector kj within the same sen-
tence can be decomposed:

ei,j = ET
xi
W T

q WkExj︸ ︷︷ ︸
a

+

ELx(·)︸ ︷︷ ︸
b

+EPi(·)︸ ︷︷ ︸
c

+EPj (·)︸ ︷︷ ︸
d

(1)

where Wq and Wk are linear transformation for
the query vector qi and key vector kj respectively,
and i and j stands for position indexes. Terms (b),
(c), and (d) introduce the inductive bias towards
language Langx, position Pi, and position Pj re-
spectively. When predicting xi, we have the for-
ward pass: {xi, xj\i} → xi, where xj\i denotes all
the tokens around position i, and the prediction of
xi is conditioned by {xi, xj\i}. The forward pass
is monolingual because both two sides are in the
same language. In optimization, we can compute
gradients from the backward pass: ∂εxi

∂Exi
and ∂εxi

∂Exj
,

where εxi is the predicting error.

2.2 MLM with [M] and CBOW

Suppose xi is randomly selected to be replaced
by [M]. Term (a) is changed to ET

[M]W
T
q WkExj .

Since [M] does not provide prior information of xi,
Term (a) forms a built-in CBOW 1 model (Continu-
ous Bag-of-Words (Mikolov et al., 2013)) learning
CBOW or bidirectional information. The forward
pass {[M], xj\i} → xi is still monolingual in mul-
tilingual pre-training because [M] is shared and
agnostic for all the languages. However, the model
is significantly encouraged to predict xi by under-
standing neighboring tokens xj\i in the sentence,
i.e., the surrounding context or bidirectional infor-
mation. Moreover, since [M] is overlapping and

1For instance, given X = {x0, [M], x2, x3}, we have
the forward pass: {xi = [M], xj\i = (x0, x1, x3)} → x2

if predicting x2, where {xi = [M], xj\i = (x0, x1, x3)}
models (non-standard) CBOW (4-gram).
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shared, and xj\i are potentially overlapping tokens
in different languages, it refines the morphology of
different languages to overlap each other for form-
ing the isomorphic spaces (Karthikeyan et al., 2020;
Wu and Dredze, 2019; Pires et al., 2019; Dufter and
Schütze, 2020) and leverages domain adaptation
(Ganin et al., 2016) or language adaptation (Ai and
Fang, 2022b).

2.3 MLM with [C]x
Although the forward pass {[M], xj\i} → xi sig-
nificantly enables the model to learn both cross-
lingual and monolingual knowledge from the
shared token [M] (Dufter and Schütze, 2020) and
structural information of the neighboring tokens
xj\i (Karthikeyan et al., 2020; Pires et al., 2019)
in multilingual MLM pre-training, learning cross-
linguality is implicit and limited. Our idea is, we
can replace [M] with xi’s cross-lingual prototype
[C]xi that we explicitly have a principled cross-
lingual forward pass: {[C]xi , xj\i} → xi. In this
way, we inject weak but explicit cross-lingual super-
vision into the model in multilingual pre-training.
Therefore, we replace the selected xi with its [C]xi

instead of [M] as presented in the example (Table
1), and Term (a) is modified to ET

[C]xi
W T

q WkExj

accordingly.

2.4 On-the-fly [C]x
To obtain [C]xi without any cross-lingual supervi-
sion in multilingual pre-training, the starting point
is the output distribution over the vocabulary V
shared by all the languages. Given the multilin-
gual model Net, we set Net to the inference mode,
not the MLM pre-training mode, and the proba-
bility of xi is obtained from the softmax layer

Qxi =
exp(hT

xi&Lx
Oxi )∑V

k=1 exp(h
T
xi&Lx

Oxk
)
, where hxi&Lx ∈

Net(Ex + ELx) is the contextualized representa-
tion of xi, Ex = {Ex0 , Ex1 , . . . , Exn} is the em-
bedding of the input sentence, and Ox is factorized
from the output matrix2 O. Recall that, in Eq. 1, the
language embedding ELx of the language Langx
associated with the token x introduces inductive
bias towards Langx, so that hxi&Lx is biased by
ELx towards Langx and generalized from Exi . In
this way, the output distribution over the vocab-
ulary is biased by ELx towards Langx, and the
dot-products distinguish relevant tokens from irrel-
evant tokens for xi. Intuitively, we can fool the

2Note that, in most of the cases, the output matrix shares
all the parameters with the embedding matrix.

model by inputting Ex + ELy
3. The result is that

hxi&Ly ∈ Net(Ex + ELy) is biased by ELy to-
wards Langy but still generalized from Exi . We
expect hxi&Ly to be an agnostic representation that
is relevant to xi and Langy. Then, we can factorize
Oy from the output matrix and rank the dot prod-
uct hTxi&Ly

Oy to search relevant tokens for xi in
Langy from the output space. We will discuss the
inspiration later, and in our experiment, we show a
case study that some useful candidates in the other
language are obtained.

We approximate a relevant candidate set P Y
xi

in
the other language Langy and compute a weighted
average of candidates’ embeddings, where P Y

xi
con-

tributes to low variance and rich information. For-
mally, we define E[C]xi =

∑
y∈PY

xi
EyW

y
xi , where

P Y
xi

⊂ V ocY , V ocY is the entries of the other lan-
guage in the multilingual vocabulary, 0 ≤ W y

xi ≤
1 is the weight of the candidate y ∈ P Y

xi
and∑

y∈PY
xi
W y

xi = 1. Given the model Net, we have
4 steps to compute [C]xi dynamically:

• Step 1: We set Net to the inference mode
Ñet, input Ex + ELy to Ñet, and obtain the
representation hxi&Ly ∈ Ñet(Ex +ELy) for
the selected token xi.

• Step 2: We factorize Oy from the output
matrix O and calculate a full-sized set Q =
(hTxi&Ly

Oy0 , ..., h
T
xi&Ly

Oyv), where v equals
the size of V ocY .

• Step 3: We select a candidate set P Y
xi

=
(Eyj , ..., Eyk) from the embedding space, ac-
cording to the Top-K dot products in Q.

• Step 4: We compute the weight set W y
xi =

softmax(ET
yj
Ex, ..., E

T
yk
Ex) and the final

output E[C]xi =
∑

y∈PY
xi
EyW

y
xi .

Note that, multilingual models like XLM-R (Con-
neau et al., 2020) do not require language embed-
dings, i.e., eliminating ELx . In this scenario, we
can simply eliminate ELy in Step 1 without other
modifications, and we still obtain cross-lingual can-
didates over V ocY in Step 2 to compute the cross-
lingual prototype for the selected token xi.

To select tokens for V ocY , the minimum fre-
quency is 1e − 5 in the monolingual corpora of
Langy. Meanwhile, some tokens are shared among

3Empirical studies and alternatives of Ex +ELx and Ex’s
nearest neighbors are presented in Appendix C.1.
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different languages. We set the minimum frequency
of shared tokens to 1e− 3 in the monolingual cor-
pora. These settings are used to limit the searching
bound for more meaningful candidates.

Inspiration Our recipe takes inspiration from
early experiments. We pre-train a small multi-
lingual model (12 layers and 256 d) and use our
recipe to search for candidates. As presented in
Table 2, a multilingual model can infer some cross-
lingual candidates with our recipe because of the
cross-lingual transfer phenomenon, and we can
generalize these candidates for cross-lingual pro-
totypes. Meanwhile, we are aware that the mul-
tilingual model has to be pre-trained or properly
initialized in order to infer cross-lingual candidates
by itself. We will discuss initialization later.

2.5 Alternation between [M] and [C]x
In our experiment (see row 12 ∼ 15 of Table
7 in Appendix), we find that we can get bene-
fits from alternating between [M] and [C]x. In-
tuitively, only using [C]x might perturb bidirec-
tional knowledge and result in the lack of lan-
guage knowledge, whereas the model can learn
bidirectional information from using [M] in mul-
tilingual MLM pre-training. We also note sim-
ilar observations in previous works (Chaudhary
et al., 2020; Ren et al., 2019a), which use trans-
lation tables for pre-training. Another side ef-
fect we observe is that the model might pay more
attention to "prototype-word" translation knowl-
edge instead of understanding bidirectional knowl-
edge. Thus, to encourage the model to learn
both strong bidirectional knowledge from [M]
and cross-lingual knowledge from [C]x, in t% of
the time of the MLM pre-training time, we use
[C]x for masking. For the remaining (100 − t)%
of the time, we still use [M]. Hence, we have
dual objectives in multilingual MLM pre-training:
LMLM = L[C]x+L[M]. With these dual objectives
in mind, we can simply extend the MLM’s masking
strategy to: ([SAME], [RAN ], [M], [C]x) with
(10%, 10%, (80− t)%, t%).

2.6 Discussion
We discuss some important components of our
method. For these discussions, we provide em-
pirical studies and show the observation of these
components in §Robustness and Model Variation.

[M] vs. [C]x 1) [M] is static in the embedding
space with an explicit entry, used by running a

lookup operation. Meanwhile, it is used to replace
all randomly selected tokens, which is unified. 2)
In contrast, [C]xi or E[C]xi is dynamically approxi-
mated during training, which is token-wise.

Choice of K The memory usage is proportional
to the size of K. Meanwhile, large K potential
increases noise for unambiguous [C]x. 2) On the
other hand, a small K may reduce the searching
bound that computing proper [C]x is hard. For
instance, K = 1 only yields median improvements
in our experiment. Our empirical study shows that
it is robust to a range of K from 2 to 5, considering
a trade-off between GPU memory problems and
expected performance improvements.

Initialization The random initialization may
raise problems. 1) x may find some geometric
close but irrelevant tokens with large dot products
in V ocY , which results in a trivial candidate set. 2)
The inference mode with random initialization is
trivial. To this end, we only pre-train the multilin-
gual model by MLM with [M] at the first several
iterations for warm-up to form the multilingual em-
bedding space and activate the inference mode, as
discussed in §Inspiration. After the warm-up, the
multilingual embedding space and the inference
mode are initialized in a few-shot style somewhat
to avoid trivial candidates. Then, we run the al-
ternation. In our experiments, we find that this
warm-up can help the model obtain new samples
with cross-lingual prototypes from the other lan-
guage.

Efficiency On-the-fly [C]x will increase the train-
ing time. However, only a subset of tokens (typi-
cally, 15% (Devlin et al., 2019)) of the input text
stream is selected for masking, and we only need
to compute [C]x for a sub-set of all the selected
tokens. In our experiment, we find our method
spends additional ≈ 15% time on training.

Tokenization Tokenizations generating “middle"
tokens, sub-tokens, or non-standard word tokens
might impact [C]x, e.g., BPE. However, the impact
is relatively small given that: 1): the vocabularies
and monolingual corpora are dominant by the stan-
dard words rather than non-standard word token,
e.g., over 50% BPE vocabulary for translation task
De ↔ En) are standard words and they make up
for over the 80% of the total token frequency in the
monolingual corpora; 2): all the representations are
contextualized that sub-tokens and non-standard
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400k step training 50k step training

#1 It was hampered by the need for ranges to be estimated by eye , which introduced significant in@@ accuracy . [EOS]
Reference Erschwert wurde dies durch die Notwendigkeit , Entfernungen mit dem Auge abzuschätzen, was zu erheblichen Ungenauigkeiten führte . [EOS]
Masked It [C]x1

hampered [C]x3
[C]x4

need [C]x6
ranges to [C]x9

estimated by eye , which [C]x15
significant [C]x17

[C]x18
. [EOS]

was = [C]x1
war, wurde, brach ., und, als

by = [C]x3 in, ,, durch in, von, ,
the = [C]x4

den, die, der ., den, einem
for = [C]x6

für, in, dafür in, ., und
be = [C]x9 des, ,, ben stellt, Bau, einem
introduced = [C]x15

lehnte, Schwei@@, löste in, /, von
in@@ = [C]x17

in, Gebäude@@, @-@ in, (, @-@
accuracy =[C]x18 Seh@@, ographie, Bewertung geber, er, studium

#2 Sie befindet sich auf 425 Meter Höhe nahe dem Schlos@@ sberg . [EOS]
Reference It is located at an altitude of 425 meters near the Schlossberg. [EOS]
Masked [C]x0 [C]x1 sich auf 425 [C]x5 [C]x6 [C]x7 dem Schlos@@ sberg . [EOS]
Sie = [C]x0

It, She, He leaves, breaks, Geography
auf = [C]x4

in, at, on the, a, 29@@
Meter = [C]x5 metres, meters, feet @-@, ,, in
Höhe = [C]x6

altitude, height, elevation, ,, in, an
nahe = [C]x7

near, Near, close in, an, ,

Table 2: Inspiration of [C]x from multilingual training. References are obtained from Google Translation. We use
a pre-trained small XLM model on {En,De}. To obtain more examples, we randomly compute [C]x for 40% of
tokens.@@ is the continuing subword prefix. bold denotes a strong candidate that is a parallel, analogical, or
relevant token/word (or its variation) in other languages. Our method can cover multiple morphological or relevant
candidates (e.g., <den, die, der> in #1 [C]x4

) for generalizing information by weighted average.

word tokens still represent semantics and syntactic
meanings related to their original standard words
(refer to the case study in Appendix C.2).

3 Empirical Study and Experiment

All the links of datasets, libraries, scripts, and tools
marked with ⋄ are listed in Appendix F. A preview
version of the code is submitted, and we will open
the source code on GitHub.

Pre-training Setting We use Adam optimizer
(Kingma and Ba, 2015) with β1 = 0.9,β2 = 0.999,
ϵ = 1e− 8, warm_up step (Vaswani et al., 2017)
and lr = 1e − 4. Dropout regularization is set to
rate = 0.1. Readers can refer to Appendix D.1 for
details.

Model Configuration Our Transformer model
(Vaswani et al., 2017) is identical to XLM (Lample
and Conneau, 2019), which consists of a 6-layer en-
coder and 6-layer decoder with 1024 word embed-
ding size and hidden size and 4096 feed-forward
filter size. We add a learnable language embedding
and a learnable position embedding to each token
of the input sentence for the encoder and decoder
(P and L in Eq.1 ). We have some default configu-
rations for our method based on the study of model
robustness (see §Robustness and Model Variation):
1) t% = 40% that we make a balance between
the two objectives: [M] and [C]x; 2) K = 3 that
we consider top-3 candidates for the cross-lingual
prototypes; 3) the warm-up step is 50k that [M] is
only used at the first 50k iterations; 4) we consider
BPE for tokenization in all our experiments.

Multilingual Task We consider three multilin-
gual tasks: 1) UNMT for evaluation on translation
tasks, 2) cross-lingual word similarity for evalua-
tion on cross-lingual embedding tasks, and 3) zero-
shot cross-lingual classification for evaluation on
cross-lingual transfer tasks.

3.1 MLM Instance

We adapt our method to three MLM instances to
pre-train the multilingual model:1) XLM (Lample
and Conneau, 2019), 2) MASS (Song et al., 2019),
and 3) mBART (Liu et al., 2020), which can be
used to pre-train a multilingual model. Readers
can refer to the original report or Appendix D.2 for
more instructions on these MLM instances. Sig-
nificantly, to minimize changes for evaluation and
comparison, we only have two changes. The first
change we make is extending the masking strategy:
([SAME], [RAN ], [M]) with (10%, 10%, 80%)
to ([SAME], [RAN ], [M], [C]x) with
(10%, 10%, (80 − t)%, t%). Secondly, as
presented in Table 1, we only apply CLPM to the
input of the source side or the encoder and do not
change the shifted input of the decoder in these
MLM instances. Any other component is identical
to the reported MLM instances.

We reimplement all the baseline models on our
machine with our configurations, using official
XLM⋄, Tensor2Tensor⋄, and HuggingFace⋄ as ref-
erences. We compare the results of our reimple-
mentation with the reported results on the same
test set to ensure that the difference is less than 2%
in overall performance (see Appendix E for result
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comparison). Then, we can confirm our reimple-
mentation.

3.2 UNMT

Setup We consider similar language pairs
{De,Ro} ↔ En, using the same dataset and test
set as previous works (Lample and Conneau, 2019).
Meanwhile, we share the FLoRes⋄ (Guzmán et al.,
2019) task to evaluate a dissimilar language pair
Ne ↔ English (Nepali). We learn shared BPE
(Sennrich et al., 2016b), selecting the most fre-
quent 60K codes from paired languages with the
same criteria in Lample and Conneau (2019). The
model is pre-trained around 400K iterations on
only monolingual corpora in different languages.
And, after around 400K training iterations for trans-
lation with the standard pipeline⋄ (Artetxe et al.,
2018b; Song et al., 2019), according to baseline
models’ BLEU scripts, we report BLEU computed
by multi-BLEU.perl⋄ or sacreBleu⋄ (Post, 2018)
with default rules. See more details in Appendix
D.3.

Result Table 3 shows the results on the
{De,Ro,Ne} ↔ En test sets. Applying [C]x
consistently improves the performance of base-
line models on all the similar language pairs by
3% ∼ 8% and on the dissimilar pair by 2.5 ∼ 7
BLEU. The performance on the dissimilar pair is
very close to SOTA: mBART25 (Liu et al., 2020),
but they use 25 languages from CC25 (Wenzek
et al., 2020) for pre-training. Our method slightly
outperforms two dictionary-based works (Dufter
and Schütze, 2020; Chaudhary et al., 2020) which
require static translation tables from pre-trained
word models, golden dictionaries, or bilingual lex-
icon induction (e.g., UBWE). Intuitively, as re-
ported in (Artetxe et al., 2020; Kementchedjhieva
et al., 2019; Czarnowska et al., 2019; Vania and
Lopez, 2017), such word translation tables are re-
ported to misrepresent morphological variations
and are not contextualized properly, which limit
the improvements for sentence translation.

For further analyses, we conduct a case study
to observe the attention weights on [C]x after pre-
training, which is visualized in Appendix C.2. We
observe that the model outputs prominent attention
weights on [C]x for predicting replaced tokens, so
that it relies on [C]x. In other words, the model
understands [C]x in the context. We can confirm
the effectiveness. Concretely, CLPM shows sig-
nificant effectiveness on nouns, entities, terminol-

Figure 1: Discriminator performance. The discriminator
is trained to recognize which language an embedding
or a representation belongs to and makes zero-shot clas-
sification for a prototype. We use all the embedding
instances to train the discriminator. This figure indicates
that CLMP introduces unseen cross-lingual prototypes
for the model instead of embedding instances.

ogy words, etc., where the attention weights on
the corresponding [C]x are dominant. Meanwhile,
the model can understand phrases, sub-tokens, and
syntax structures to predict a replaced token of the
phrase because the model pays equal/similar at-
tention to each token of the phrase. We attribute
this phenomenon to both the alternation between
[C]x and [M] and involving neighboring tokens
in {[C]xi , xj\i} → xi that the model captures to-
ken dependencies from the cross-lingual prototype
or a synonym in the other language. Finally, the
employment of multiple candidates is important
because the model could learn morphological or
relevant variations from [C]x in the other language
(refer to Appendix C.1), e.g., understanding rele-
vant variations <welches, welcher, welche> from
[C]x, which is essential for further translation learn-
ing in unsupervised manners.

Dose CLMP introduce new samples with cross-
lingual prototypes from the other language? In
addition to §Case Study, we are still interested in
the representation of E[C]x or whether CLMP intro-
duces new examples with cross-lingual prototypes
from the other language. Intuitively, if the weights
obtained in Step 4 are {c1 = 0.9, c2 = 0.05, c3 =
0.05}, the representation is similar to the candi-
date c1, and then c1 is a soft translation of x. If
the weights are {c1 = 0.4, c2 = 0.3, c3 = 0.3},
the representation could be different from any one
of {c1, c2, c3}. Thus, the representation depends
on the contributions of the candidates. To further
understand E[C]x , we jointly train a discrimina-
tor to distinguish between two languages in the
pre-training phase. The discriminator is trained
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Language pair De ↔ En Ro ↔ En Ne ↔ En

multi-BLEU.perl⋄ with default rules
XLM(Lample et al., 2018c) 34.3 26.4 31.8 33.3 0.5 0.1
+ word translation tables (Chaudhary et al., 2020) ⋆ 35.1 27.4 33.6 34.4 4.1 2.2
+ [C]x 35.9 28.1 34.4 35.3 6.6 2.8
MASS(Song et al., 2019) 35.2 28.3 33.1 35.2
+ nearest neighbor from UBWE (Dufter and Schütze, 2020) ⋆ 36.1 28.8 34.1 36.4 5.1 2.8
+ [C]x 36.7 29.2 34.7 36.9 7.1 3.4

sacreBleu⋄ with standard settings: nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.0.0
mBART(Liu et al., 2020) + CC25 (Wenzek et al., 2020) 34.0 29.8 30.5 35.0 10.0 4.4
+ [C]x (w/o CC25) 35.4 30.1 32.5 36.7 7.0 3.2

Table 3: Performance of UNMT. ⋆ are reimplemented. UBWE stands for unsupervised bilingual word embedding.
Translation tables or UBWE are static. We use the same transformer models, BPE size, corpora, tokenization, and
BLEU as the baseline models (see more details in Appendix D.3).

to recognize which language an embedding or a
representation belongs to. We use all the embed-
ding instances to train the discriminator. Then,
we make zero-shot classification for E[C]x to ob-
serve which language E[C]x belongs to. We re-
port the result in Figure 1. This figure suggests
that CLMP introduces unseen cross-lingual pro-
totypes for the model. We suspect that ECx po-
tentially yields a generalized representation from
multiple relevant candidates in other languages.
This is different from the method family based on
translation tables. Significantly, translation tables
are instances/embeddings in the embedding space,
whereas cross-lingual prototypes do not exist in the
embedding spaces and are new generalized samples
for the model.

3.3 Robustness and Model Variation

We have some default configurations, as presented
in row 2 of Table 4. This combination is obtained
in our experiments. We report the results to observe
the impact of K (the number of cross-lingual can-
didates), the warm-up initialization, the tokeniza-
tion method, and the alternation t% in Appendix B.
Meanwhile, in this experiment, we discuss a mean
average style for cross-lingual candidates instead of
the weighted average used in the default configura-
tion, reporting results in Appendix B. Additionally,
we study alternatives for initialization and training
efficiency. The result is presented in Table 7. For
consistency, the row number is consistent with the
full results in Appendix B.

Row 11 As aforementioned, CLPM requires ad-
ditional time to compute [C]x. To be fair, we reduce
the training steps, so that the training time is almost
similar to the baseline model (row 1). CLPM out-
performs the baseline model but requires fewer
training steps, which indicates that the explicit and
principled cross-lingual forward pass is more ef-

ficient (per step) than implicit isomorphic space
formation for cross-linguality.

Row 17 We use UBWE (unsupervised bilingual
word embedding) to initialize the bilingual em-
bedding space. In the first 50k pre-training steps
(equal to default warm-up steps), since the model
parameters are still randomly initialized, we do
not follow Step 1, 2, and 3 in on-the-fly [C]x and
directly find relevant candidates based on the dot
products ET

yi
Ex, i.e., only need Step 4. Intuitively,

ET
yi
Ex is reliable to rank the candidates and com-

pute the weights for [C]x because UBWE provides
cross-lingual entries. After 50k pre-training steps,
we normally run on-the-fly [C]x. We observe that
adapting UBWE consistently improves the perfor-
mance by 2% on the similar language and 0.5 ∼ 1
BLEU on the dissimilar language because UBWE
provides additional cross-lingual supervision. See
all the results in Table 8.

Row 18 Vulić et al. (2020) suggest seed dictionar-
ies for unsupervised tasks in practice. Following
this idea, we download a 1k seed dictionary from
Panlex⋄. In the first 50k pre-training steps, we
simply replace the selected token with its trans-
lation in the seed dictionary. For the out-of-the-
dictionary but selected token, we replace it with
normal [M]. After 50k pre-training steps, if the
selected token is in the dictionary, the translation
is added to [C]x as a candidate in Step 4 when run-
ning on-the-fly [C]x. We find that compared to the
UBWE scenario, this adaptation achieves similar
results on the rich-resource language De ↔ En
(+ 1.5%) but stronger results on the dissimilar lan-
guage Ne ↔ En (+ 8%). All the results are pre-
sented in Table 8.
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Row Model t Tokenization Warm-up Steps K [C]x type De ↔ En

1 [M] (baseline) - BPE - 400K - - 34.3 26.4
2 [C]x (our baseline, default) 40% BPE 50K 400K 3 weighted 35.9 28.1

11 [C]x + + + 350K (similar training time) + + 35.1 27.2

17 [C]x + + UBWE + + + 36.5 28.8

18 [C]x + + 1k seed dictionary + + + 36.9 29.1

Table 4: Model Variation. For consistency, the row number is consistent with the full results (including evaluation
on K, warm-up, tokenization, and t%) in Appendix B. All the models are based on the XLM instance. Row 2 shows
the default configurations we use in UNMT. + denotes the default configuration. − denotes an inapplicable term.
UBWE denotes that we pre-train the bilingual embeddings unsupervisedly and then pre-train the entire model with
our method. In 1k seed dictionary test, the model employs a candidate from a seed dictionary.

MUSE score

XLM(Lample and Conneau, 2019) 0.55
+[C]x 0.61

MASS(Song et al., 2019)⋆ 0.60
+[C]x 0.64

mBART(Liu et al., 2020)⋆ 0.59
+[C]x 0.64

Table 5: Performance on MUSE task. Baseline models
(⋆) are reimplemented with our configurations.

3.4 Cross-lingual Word Similarity

Setup Given the idea of our method, we consider
cross-lingual mappings of tokens. Therefore, we
are interested in the isomorphism of languages’
embedding spaces. To further investigate, the pre-
trained UNMT model is evaluated on MUSE⋄
(Lample et al., 2018b) with the provided test sets
and tools, which is used to test cross-lingual word
similarities on En ↔ De. This test can gener-
ally evaluate the degree of the isomorphism of
languages’ embedding spaces. We reuse the pre-
trained models in our UNMT experiment. After
restoration, we extract words required by the test
set via shared lookup tables. For words split into
2+ sub-tokens, we average all the sub-tokens.

Result We evaluate the performance by similar-
ities, reporting the result in Table 5. Applying
[C]x can increase the similarities of parallel words
from {En,De}, consistently improving the per-
formance of the models on this task. It indicates
that [C]x helps the models learn token-level cross-
linguality in pre-training.

3.5 Cross-lingual Classification

Setup Beyond UNMT tasks or translation tasks,
CLPM can consistently improve cross-lingual
transfer. Then, we attempt the cross-lingual clas-
sification task on XNLI (Conneau et al., 2018) to
test general cross-linguality [C]x improves. For this

Model Avg (Acc.)

mBERT baseline (Wu and Dredze, 2019) 66.3
XLM (Lample and Conneau, 2019) 71.5
+ word translation tables(Chaudhary et al., 2020) 72.7
+ [C]x 74.0
+ MT (Lample and Conneau, 2019) 75.1

Table 6: Performance of cross-lingual classification on
XNLI. MT stands for additional parallel corpora. We
use the same transformer models, BPE size, corpora,
tokenization, and BLEU as the baseline models ( see
more details in Appendix D.3).

test, we follow the standard and basic experiment
(Lample and Conneau, 2019) to train a 12-layer
Transformer encoder with 80k BPE on Wikipedia
dumps⋄ of 15 XNLI languages. To pre-train the
encoder on En corpora, considering the zero-shot
classification based on finetuning En NLI dataset,
we randomly compute [C]x from other languages
with equal probability to avoid the cross-lingual
bias. For pre-training on corpora of other lan-
guages, we only compute [C]x in the En entries.
Note that, although we have different strategies of
[C]x for the languages, we still concatenated all the
corpora of the languages for joint pre-training. Af-
ter pre-training, we deploy a randomly initialized
linear classifier and finetune the encoder and the
linear classifier on the En NLI dataset with mini-
batch size 16. We make zero-shot classifications
for other languages. See more details in Appendix
D.3.

Result We report the result in Table 6. CLPM
shows effectiveness on this task, outperforming
baseline models. It indicates that [C]x can improve
cross-lingual transfer. Meanwhile, [C]x underper-
forms XLM + MT that uses parallel corpora to
improve cross-linguality. As discussed earlier, [C]x
can provide token-level cross-lingual knowledge
at the very least but is less effective than golden
sentence-level knowledge. Although XLM + MT
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uses additional datasets, it somewhat sets an upper
bound. On the other hand, our method outperforms
dictionary-based methods (+ word translation ta-
bles). Similar to the observation in UNMT, we
attribute to the effectiveness of using multiple can-
didates to capture morphological variations. How-
ever, to avoid cross-lingual bias, we use En as
a pivot or anchor point. This could be a potential
problem for further adaptation to other multilingual
tasks. See limitations in Appendix A.

4 Related Work and Comparison

(Ren et al., 2019a; Chaudhary et al., 2020; Lam-
ple et al., 2018c) leverage translation tables as
entries for the other languages, which are auto-
matically generated from statistical models, e.g.,
n-gram models. The model forms an explicit cross-
lingual forward pass: {[M], xj\i} → ti, where ti
is the entry of the other language for xi. In con-
trast, our method has two significant differences:
1) we focus on the left side, adapting our [C]x to
the inputs of MLM; 2) our method does not rely
on token/phrase-level translation tables. Dufter
and Schütze (2020) present a cross-lingual forward
pass: {nn, xj\i} → xi, where nn is xi’s near-
est neighbor of the other language in the space of
UBWE. However, UBWE is static and fixed with-
out any interaction with the multilingual model.
It might limit what it can be ultimately used for
translation (Sun et al., 2019; Artetxe et al., 2018b;
Lample et al., 2018a). We present a dynamic ap-
proach to obtain candidates of the other language
from the model itself, which is inspired by (Ai and
Fang, 2021b; Sennrich et al., 2016a). The benefit
is that embeddings and representations are contex-
tualized when pre-training MLM on monolingual
corpora in different languages (Lample and Con-
neau, 2019). Although it is not reliable at the very
early pre-training, we provide a compromised ini-
tialization for this problem. We also consider multi-
ple candidates for cross-lingual prototypes instead
of nn, which is softer and can cover morpholog-
ical or relevant variations in the other language.
On the other hand, considering cross-lingual pro-
totypes is not a novel idea for cross-linguality,
(Wang et al., 2019; Huang et al., 2019; Ai and
Fang, 2021a) present methods to leverage cross-
lingual prototypes to guide encoding and decoding,
forming a cross-lingual forward pass by modifying
inner representations of encoding and decoding:
{[M], xj\i} → {[M], hxj , hyi} → xi, where hyi

is an approximation of xi’s inner representation in
encoding and decoding from the other language. It
results in a different direction.

We also employ the alternation strategy that can
be viewed as linguistic code-switching (Scotton
and Ury, 1977) somewhat, where the model is
pre-trained in more linguistic varieties. In learn-
ing models, linguistic code-switching performs
as data augmentation processes (Krishnan et al.,
2021; Chaudhary et al., 2020; Tarunesh et al.,
2021) with the help of static translation tables or
lexicon induction in supervised manners. How-
ever, lexicon induction datasets or translation ta-
bles have been reported to misrepresent morpho-
logical variations and overly focus on named en-
tities and frequent words (Artetxe et al., 2020;
Czarnowska et al., 2020; Kementchedjhieva et al.,
2020). In contrast, CLPM is dynamic and un-
supervised, leveraging contextualized representa-
tions and multiple morphological variations in the
model’s embedding space. Meanwhile, translation
tables are instances/embeddings in the embedding
space, whereas cross-lingual prototypes do not ex-
ist in the embedding spaces and are new gener-
alized samples for the model. This distinction is
observed from the discriminator in Figure 1.

5 Conclusion

In this work, we present CLPM, an alternative
masking scheme, to compute special tokens [C]x for
masking in multilingual MLM pre-training. [C]x is
the cross-lingual prototype for the selected word
x, computed from multiple candidates dynamically
and token-wise. Compared to the standard masking
scheme [M], [C]x automatically forms an explicit
cross-lingual forward pass in attention mechanism,
consistently improving cross-linguality in multilin-
gual MLM pre-training. Experiments show that
CLPM can consistently improve the performance
of translation and cross-lingual transfer.
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A Limitations

In this work, we present a general masking scheme
for multilingual MLM pre-training on multiple
monolingual corpora. Experiments show that our
method can work for similar languages (including
low-resource and high-resource ones) and dissimi-
lar languages. However, we only experiment with
dissimilar language Ne. More experiments are
required for dissimilar and distant languages.

When computing [C]x for more than 3 languages,
to avoid cross-lingual bias, we adapt our method to
a pivoting-based framework, using En as a pivot
or anchor point. Although we show this framework
can work for cross-lingual classification tasks, this
could be a potential problem for further adaptation
to other multilingual tasks, which requires further

experiments. Intuitively, we can compute [C]x in
random languages instead of only in En with a
balanced sample strategy.

Our method provides a general framework to
leverage cross-lingual prototypes for multilingual
MLM pre-training, but the scope of the study is
limited. We believe there are some other solutions.
For instance, we can leverage linguistic varieties
for masking, but the question is how to obtain lin-
guistic varieties without using parallel corpora. Per-
haps, we can consider word frequencies because
Zipf’s law indicates that words appear with dif-
ferent frequencies, and one may suggest similar
meaning words appear with relatively similar fre-
quencies in a pair of languages. Most importantly,
solutions should further consider morphological
variations, since in this paper we prove morpholog-
ical variations are significantly beneficial.

B Robustness and Model Variation

We have some default configurations for our
method, as presented in row 2 of Table 7. In this ex-
periment, we observe the impact of K (the number
of cross-lingual candidates), the warm-up initializa-
tion, the tokenization method, and the alternation
t%. We consider the weighted average of cross-
lingual candidates for [C]x, and additionally we
consider the mean average style in this experiment.
For initialization, we further study alternatives. The
result is presented in Table 7.

Row 3 ∼ 6 Models with a common choice of K
(1 ∼ 5) outperform the baseline model. However,
K = 1 (a single candidate) yields median improve-
ments. Meanwhile, when K = 1, our method is
similar to (Dufter and Schütze, 2020; Chaudhary
et al., 2020) who employ static and word translation
tables (e.g., UBWE and dictionary) for obtaining
a single candidate, and they have similar results.
Intuitively, the model cannot capture morphologi-
cal variations and synonyms in the other language
when only using one candidate, as discussed in
the experiment of UNMT, but they are important
in translation. It proves the significance of using
multiple candidates.

Row 7 ∼ 9 Warm-up is necessary to facilitate
[C]x. Although a small amount of warm-up steps
is enough, it is a disadvantage of [C]x somewhat.
We believe there is a significant potential for devel-
opment of other new alternatives. We present two
options in row 17 and row 18 (see the following
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Row Model t Tokenization Warm-up Steps K [C]x type De ↔ En

1 [M] (baseline) - BPE - 400K - - 34.3 26.4
2 [C]x (our baseline, default) 40% BPE 50K 400K 3 weighted 35.9 28.1

3 [C]x + + + + 1 + 34.9 27.3
4 [C]x + + + + 2 + 35.8 27.9
5 [C]x + + + + 4 + 36.0 28.0
6 [C]x + + + + 5 + 35.9 28.1

7 [C]x + + 20k + + + 35.1 27.1
8 [C]x + + 100K + + + 35.8 28.0
9 [C]x + + 200K + + + 35.3 27.5

10 [C]x + Word-level + + + + 35.8 28.0

11 [C]x + + + 350K (similar training time) + + 35.1 27.2

12 [C]x 10% + + + + + 35.6 28.0
13 [C]x 70% + + + + + 34.8 27.2
14 [C]x from 0 to 70% + + + + + 35.4 27.7

15 [C]x only [C]x (no [M]) + + + + + 30.1 21.5

16 [C]x + + + + + mean 35.3 27.8

17 [C]x + + UBWE + + + 36.5 28.8

18 [C]x + + 1k seed dictionary + + + 36.9 29.1

Table 7: Model Variation. All the models are based on the XLM instance. Row 2 shows the default configurations
we use in UNMT. + denotes the default configuration. − denotes an inapplicable term. For mean, we average the
embeddings of candidates instead of weighted averaging. UBWE denotes we pre-train the bilingual embeddings
unsupervisedly and then pre-train the entire model with our method. In the 1k seed dictionary test, the model
employs a candidate from a seed dictionary.

text).

Row 10 Also, we can see there is no significant
difference between the word-level tokenization and
the BPE tokenization. Although the BPE tokeniza-
tion gains slightly better performance, the improve-
ment we believe is from the effectiveness of the
BPE tokenization itself, not the discrepancy of [C]x.

Row 11 As aforementioned, CLPM requires ad-
ditional time to compute [C]x. To be fair, we re-
duce the training steps, so that the training time
is almost similar to the baseline model (row 1).
In a similar training time, CLPM outperforms the
baseline model but requires fewer training steps,
which indicates that the explicit and principled
cross-lingual forward pass is more efficient (per
step) than implicit isomorphic space formation for
cross-linguality.

Row 12 ∼ 14 We alternate between [C]x and
[M] because we consider learning the morphol-
ogy and internal structure of languages from [M]
like BERT. Note that the baseline model (row 1)
is equivalent to t = 0 (only use [M]). We ob-
serve that t = {10%, 40%, 70%} significantly out-
perform t = {0}. This confirms our intuition
that the UNMT model greedily obtains the ex-
plicit cross-linguality from [C]x and the bidirec-
tional/language knowledge from [M]. We also
consider the scenario that we increase t from 0 to
70% linearly, achieving competitive performance

with t = {10%, 40%, 70%}.

Row 15 We have a question: does [Cx] hurt learn-
ing language knowledge? Although [M] itself can-
not provide any supervision, the model can learn
strong language knowledge by understanding bidi-
rectional information. Therefore, using [Cx] in-
stead of [M] potentially fails in learning language
knowledge, even though the cross-lingual forward
pass:{[C]xi , xj\i} → xi involves neighboring to-
kens. To investigate, we experiment with only us-
ing [C]x. Compared to only using [M], only using
[Cx] does degrade the performance of UNMT. We
suspect that 1) the translation is not fluent due to
the lack of learning bidirectional knowledge with
the help of [M] and 2) the model pays more at-
tention to prototype-word mappings instead of the
context. However, applying the alternation strat-
egy can mitigate the pain, and row 12 ∼ 15 show
the alternation strategy can consistently improve
performance on translation. Our intuition is that
cross-linguality and language knowledge are es-
sential for translation, similar to the observation in
(Zhang et al., 2021; Ai and Fang, 2022a).

Row 16 As we consider the weighted average of
the candidate set, we are aware that the mean aver-
age style is also an alternative. The test shows that
the weighted average style outperforms the mean
average style. We conjecture that the weighted av-
erage style can compute more reliable cross-lingual
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prototypes because, for some unambiguous tokens,
the mean average style may pay more attention to
low-weight candidates. For instance, if the weights
in Step 4 are {0.9, 0.15, 0.05}, computing [C]x is
forced to pay more attention to "0.05" by the mean
average style, which is unnecessary. On the other
hand, the margin is not large. We suspect that the
candidate set covers morphological variations and
synonyms. Therefore, they have similar weights
after the softmax normalization, which results in
a similar output from the weighted average and the
mean average.

Row 17 Inspired by UBWE (unsupervised bilin-
gual word embedding) (Lample et al., 2018a;
Artetxe et al., 2018a, 2016, 2017), we are aware
that we can pre-train cross-lingual embeddings for
the multilingual model before multilingual MLM
pre-training instead of the random initialization
with the warm-up. To this end, we use the MUSE⋄
(Lample et al., 2018a)’s UBWE method to initial-
ize the bilingual embedding space. In the first 50k
pre-training steps (equal to default warm-up steps),
since the model parameters are still randomly ini-
tialized, we do not follow Step 1, 2, and 3 in on-the-
fly [C]x and directly find relevant candidates based
on the dot products ET

yi
Ex, i.e., only need Step

4. Intuitively, ET
yi
Ex is reliable to rank the candi-

dates and compute the weights for [C]x, especially
at the early iterations, because UBWE provides
cross-lingual entries. After 50k pre-training steps,
we normally run on-the-fly [C]x. We observe that
adapting UBWE consistently improves the perfor-
mance by 2% on the similar language and 0.5 ∼ 1
BLEU on the dissimilar language because UBWE
provides additional cross-lingual supervision. All
the results are presented in Table 8.

Row 18 (Vulić et al., 2020) suggest seed dictio-
naries for unsupervised tasks in practice. Following
this idea, we download a 1k seed dictionary from
Panlex⋄. In the first 50k pre-training steps, we
simply replace the selected token with its trans-
lation in the seed dictionary. For the out-of-the-
dictionary but selected token, we replace it with
normal [M]. After 50k pre-training steps, if the
selected token is in the dictionary, the translation
is added to [C]x as a candidate in Step 4 when run-
ning on-the-fly [C]x. We find that compared to the
UBWE scenario, this adaptation achieves similar
results on the rich-resource language De ↔ En
(+ 1.5%) but stronger results on the dissimilar lan-

guage Ne ↔ En (+ 8%). All the results are pre-
sented in Table 8.

C Additional Experiment

C.1 Alternatives

Given an input word and the current model Net,
we compute [C]x by 1) computing the contextual-
ized representation by setting the model to the in-
ference mode with the target language embedding
Ñet(Ex + ELy), 2) computing softmax over the
contextualized representations in the output (em-
bedding) layer, 3) selecting the Top-k embeddings
with the highest softmax score, and (4) comput-
ing a weighted average over the selected embed-
dings. Essentially, we use the target language em-
bedding for biasing the representations towards
the target language. The question remains as to
how well it works. Meanwhile, two alternatives
are interesting: 1) Ñet(Ex + ELx), which uses
the source language embedding to compute repre-
sentations; 2) Top-k Nearest Embedding, which
computes candidates by using Top-k Nearest Em-
beddings in the embedding space without using the
inference mode. In Table 9, we provide an empir-
ical study for Ñet(Ex + ELy), Ñet(Ex + ELx),
and Top-k Nearest Embedding. Our observations
are:

• Top-k Nearest Embedding seems to find over-
shared tokens. For instance, in #3, it finds
[C]x8 = <to, for, by> for <to>, where <to, for,
by> are shared by all the languages. With
cross-lingual transfer in mind, we believe that
a candidate set only covering over-shared to-
kens is not a good one, e.g., <to, for, by> is
not a good candidate set crossing En to De.
Meanwhile, Top-k Nearest Embedding is not
good at finding strong candidates.

• Ñet(Ex + ELx) is better than Top-k Nearest
Embedding because Ñet(Ex + ELx) do not
obtain too much over-shared tokens.

• Compared to Ñet(Ex + ELx),
Ñet(Ex + ELy) (our suggestion) will
change the score of the full-sized set
Q = (hTxi&Ly

Oy0 , ..., h
T
xi&Ly

Oyv) (Step 2).
These scores are very dense, so that small
changes cause significant differences. Then,
Ñet(Ex + ELy) is better to rank candidates
than Ñet(Ex + ELx).
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Language pair De ↔ En Ro ↔ En Ne ↔ En

XLM(Lample et al., 2018c) 34.3 26.4 31.8 33.3 0.5 0.1
+ UBWE ⋆ 34.0 27.0 33.3 34.1 4.9 1.3
+ [C]x 35.9 28.1 34.4 35.3 6.6 2.8
+ [C]x + UBWE (for wam-up with Step 1,2 and 3) 36.5 28.8 35.1 36.0 8.3 3.2
+ [C]x + 1K seed dictionary (Vulić et al., 2020) (for warm-up with Step 1,2 and 3) 36.5 28.9 35.7 36.5 9.1 4.0

Table 8: Incorporation of UBWE and dictionaries. ⋆ models are reimplemented with our configurations. We find
that XLM can employ UBWE to improve the performance of low-resource languages and dissimilar languages.
However, it has a limited impact on rich-resource languages. CLPM obtains more gains from UBWE.

In conclusion, Ñet(Ex +ELy) shows the advance
in: 1) it does not consider too many over-shared
tokens; 2) Ñet(Ex + ELy) with the target lan-
guage embedding is better to rank candidates than
Ñet(Ex + ELx); 3) Ñet(Ex + ELy) can cover
multiple morphological or relevant candidates (e.g.,
[C]x5 = <metres, metre, yards> in #4 ) for gen-
eralizing information by weighted average. In this
way, Ñet(Ex+ELy) finds better cross-lingual pro-
totypes, which results in better generalized infor-
mation by weighted average.

C.2 Case Study

To further probe the results, we use pre-trained
weights from UNMT and compute [C]x for the se-
lected tokens of sentences, obtaining 3 candidates
for each token. We observe attention weights on
[C]x. Our case study of Table 2 shows that for pre-
dicting replaced tokens, the model outputs promi-
nent attention weights on corresponding [C]x, so
that it relies on [C]x to predict the replaced tokens.
Since [C]x is the cross-lingual prototype, the model
can learn cross-linguality from the [C]x. We can
confirm the effectiveness of [C]x.

For example, to predict <Meter> (Figure 2c),
our method finds possible translation for [C]x5 =
<metres, metre, yards>, and the attention weight
on its [C]x5 dominates others. We conjecture
that our method shows significant effectiveness
on nouns, entities, terminology words, etc. be-
cause parallel, analogical, or relevant words of
these words in other languages might be easily
inferred. Meanwhile, it shows the importance of
using multiple candidates because the model might
understand linguistic varieties. Besides, in this way,
the model can yield generalized representations
from [C]x in the other language (Step 4), which
might be useful for translation and cross-lingual
transfer. Furthermore, as discussed in §2.6, the
model can handle sub-word tokens because for pre-
dicting <in@@> (Figure 2a), the model pays simi-
lar attention to its [C]x17 and its neighboring token

<accuracy>, where <in@@> and <accuracy> are
split from <inaccuracy>. It indicates that the model
can consider the sub-token’s cross-lingual proto-
type in the context. We attribute this phenomenon
to both the alternation between [C]x and [M] and
involving neighboring tokens in {[C]xi , xj\i} → xi
that the model captures token dependencies from
the cross-lingual prototype in the other language
with the same semantic. Surprisedly, to predict
<which> (Figure 2a) with its [C]x14 = <welches,
welcher, welche >, the model seems to understand
some syntax structures because the model pays
more attention to <,> than <introduced>, where
[C]x14 and <,> might jointly represent the syntax
structure <, which>.

Recall the discriminator 1, which confirms that
cross-lingual prototypes belong to one language
but do not exist in the embedding space, i.e., not
used in discriminator training. The model cannot
only rely on cross-lingual prototypes to recover
masked tokens because cross-lingual prototypes
are not translations. The model has to consider
both cross-lingual prototypes and the context, un-
derstanding the generalized information of cross-
lingual prototypes in the context. The case study
confirms this as attention weights observed from
neighboring tokens around [C]x.

D Experiment Setting

D.1 Pre-training
Our code is implemented on Tensorflow 2.2 (Abadi
et al., 2016). We use Adam optimizer (Kingma and
Ba, 2015) with β1 = 0.9,β2 = 0.999, ϵ = 1e− 8,
and lr = 1e − 4. Dropout regularization is set to
rate = 0.1. The mini-batch size is set to 8192
tokens for all experiments. We sample sentences
from different languages with the balance strategy
(Lample and Conneau, 2019).

D.2 MLM Instance
We adapt our method to three MLM instances:
XLM (Lample and Conneau, 2019), MASS (Song
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Ñet(Ex + ELy ) ([C]x) Ñet(Ex + ELx ) Top-k Nearest Embedding

#1 The investment fund that owned the building had to make a choice . [EOS]
Reference Der Investmentfonds, dem das Gebäude gehörte , musste sich entscheiden . [EOS]
Masked The [C]1 [C]2 that [C]4 [C]5 [C]6 [C]7 to [C]9 a choice . [EOS]
investment = [C]2 Aufsichts@@, Förder@@, Einnahmen Aufsichts@@, Förder@@, Einnahmen Milliarden, Denkmalschutz, Kritiken
fund = [C]x2 wurf, funde, Förderung funde, Förderung, wurf Nachlass, funde, firma
owned = [C]x4

gehörte, kaufte, Eigentum Eigentum, gehörte, kaufte entstammte, geprägten, erbaute
building = [C]x6

Gebäude, gebäude, Anlage Gebäude, gebäude, Gebäudes gebäude, gebäudes, Gebäude
had = [C]x7 kam, hatte, war kam, hatte, gab entstammte, Seinen, Zur
make = [C]x9

Stand@@, machten, macht machten, Stand@@, macht Ist, bestritt, bestes

#2 He learned his craft from Hans Drei@@ er , with whom he worked on several films . [EOS]
Reference Sein Handwerk lernte er bei Hans Dreier , mit dem er an mehreren Filmen arbeitete . [EOS]
Masked He [C]x1 his craft [C]x4 Hans [C]x6 [C]x7 , [C]x9 whom he [C]x12 on several films .
learned = [C]x1

stammte, stammten, stammt stammte, stammten, stammt entstammte, erlernte, studierte
from = [C]x4

von, Von, vom von, Von, vom Von, Vom, ;
Drei@@ = [C]x6 Drei@@, Zwei@@, Vier@@ Drei@@, Zwei@@, Mehr@@ Drei@@, drei@@, Fünf@@
er = [C]x7

er, es, der er, es, der er, sie, es
with = [C]x9

mit, in, Mit mit, in, Mit Mit, Beim, wobei
worked=[C]x12 arbeitete, wirkte, arbeiteten wirkte, arbeitete, gearbeitet promovierte, kandidierte, studierte

#3 It was hampered by the need for ranges to be estimated by eye , which introduced significant in@@ accuracy . [EOS]
Reference Erschwert wurde dies durch die Notwendigkeit , Entfernungen mit dem Auge abzuschätzen, was zu erheblichen Ungenauigkeiten führte . [EOS]
Masked It [C]x1 hampered by [C]x4 need [C]x6 ranges [C]x8 be estimated by [C]x12 , [C]x14 introduced significant [C]x17 accuracy . [EOS]
was = [C]x1

war, wurde, als war, ,, wurde (, welches, Was
hampered = [C]x2

hauptsächlich, Gesundheit@@, durchgeführt hauptsächlich, Gesundheit@@, durchgeführt angesichts, hinsichtlich, entstammte
the = [C]x4 den, die, [EOS] die, den, [EOS] die, :, den
for = [C]x6

für, dafür, in für, dafür, in für, Für, in
to = [C]x8

to, dem, sich to, dem, erweitert to, for, by(×)
which = [C]x14 welches, welcher, welche welches, welcher, welche welches, welchen, welcher
in@@ = [C]x17

inen, höher, . inen, unge@@, höher inen, unter@@, auf@@

#4 Die Gleis@@ anlage war so ausgestattet , dass dort elektrisch betriebene Wagen eingesetzt werden konnten . [EOS]
Reference The track system was equipped in such a way that electrically operated cars could be used there . [EOS]
Masked [C]x0

Gleis@@ [C]x2
[C]x3

so [C]x5
[C]x6

[C]x7
dort elektrisch [C]x10

[C]x11
eingesetzt werden konnten . [EOS]

Die = [C]x0
The, In, [EOS] The, In, Decline His, Her, The

anlage = [C]x2 facility, facilities, Complex facility, facilities, Complex anime, HMS, {
war = [C]x3

was, crew. remained was, crew. remained was, :, ;
ausgestattet = [C]x5

equipped, fitted, yan equipped, fitted, engines whose, equipped, dae
, = [C]x6 ,, [EOS], ; ,, ;, [EOS] ,, ;, [EOS]
dass = [C]x7

why, how, whether why, whether, resources whether, why, unlike
betriebene = [C]x10

operated, like, isha like, operated, isha Romanized, whose, starring
Wagen = [C]x11 drove, cars, GP drove, cars, GP Stakes, fled, dancer

#5 In den nächsten Tagen soll eine endgültige Entscheidung durch das wissenschaftliche Programm@@ komitee fallen . [EOS]
Reference A final decision is to be made by the scientific program committee in the next few days . [EOS]
Masked In den [C]x2 Tagen soll [C]x5 endgültige [C]x7 durch das [C]x10 Programm@@ [C]x12 fallen . [EOS]
nächsten = [C]x2

next, past, host next, past, Next next, nearest, longest
eine = [C]x5

a, someone, formed a, someone, formed someone, a, Her
Entscheidung = [C]x7 vision, left, Note vision, left, Note Shortly, p.m., {
wissenschaftliche = [C]x11

scientific, research, journal scientific, research, journal peer, doctoral, remembered
komitee = [C]x12

committee, Congress, body committee, Congress, body {, Laboratory, certified

#6 Sie befindet sich auf 425 Meter Höhe nahe dem Schlos@@ sberg . [EOS]
Reference It is located at an altitude of 425 meters near the Schlossberg. [EOS]
Masked [C]x0

[C]x1
sich auf 425 [C]x5

[C]x6
[C]x7

dem Schlos@@ [C]x10
. [EOS]

auf = [C]x3 on, in, below in, on, an an, in, On
Meter = [C]x5

metres, metre, yards metres, metre, yards metres, meters, metre
Höhe = [C]x6

elevation, depth, sales elevation, depth, sales altitude, elevation, excess
nahe = [C]x7 near, inside, security near, inside, security near, Near, nicknamed
sberg = [C]x10

say, sort, sing say, sort, sing p.m., re, Bros.

Table 9: Examples of [C]x and alternatives. Although we compute generalized information from the candidate set
by weighted average, candidates are significant for generalizing information intuitively. The goal of this table is
to show some examples of the candidates for [C]x. References are obtained from Google Translation. We use the
pre-trained weights from UNMT experiments on {En,De}. To obtain more examples, we randomly compute [C]x
for 40% of tokens. @@ is the continuing subword prefix. × denotes the method that only finds over-shared tokens
because of scripts. For instance, 1) En <the> appears in De, but preferably it should be paired with De words such
as <das, die, der, den> instead of itself; 2) De <war> should be aligned to En <was> instead of En <war>. With
cross-lingual transfer in mind, we believe that a candidate set only covering over-shared tokens is not a good one,
e.g., [C]x8=<to, for, by> is not a good candidate set crossing En to De in #3. bold denotes a strong candidate that is
a parallel, analogical, or relevant token/word (or its variation) in other languages. The model can cover multiple
morphological or relevant candidates. For instance , in #3, our method finds [C]x14

= <welches, welcher, welche>
for generalizing information by weighted average.
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(a) Visualization for case study #1. (b) Visualization for case study #2.

(c) Visualization for case study #3. (d) Visualization for case study #4.

Figure 2: Case study of CLPM. These figures show that the model understands [C]x (also see Table 9 ) in the context.

et al., 2019), and mBART (Liu et al., 2020),
which can be used to pre-train the multilingual
model. We follow the instructions of these three
MLM instances that each selected token is replaced
with the probabilities ([SAME], [RAN ], [M]) =
(10%, 10%, 80%).

XLM XLM is similar to BERT (Devlin et al.,
2019) but uses text streams of an arbitrary num-
ber of sentences. Following the instruction, we
randomly select 15% of the tokens from the input
sentence for replacing.

MASS MASS is different from XLM and BERT
but similar to SpanBERT (Joshi et al., 2020), us-
ing spans to replace consecutive tokens. Given an
input sentence with length N , we randomly select
consecutive tokens with length N/2 for replacing.

mBART mBART applies spans to replace con-
secutive tokens for a text instance of two concate-
nated random sentences and perturbs the order of
the two concatenated sentences for prediction. We
randomly select 35% of the tokens in each instance
for replacing by sampling a span length according
to a Poisson distribution λ = 3.5 and swap the two
sentences within each instance.

Significantly, to minimize changes for evalua-

tion, we only have two changes.

• We extend the masking strat-
egy: ([SAME], [RAN ], [M])
with (10%, 10%, 80%) to
([SAME], [RAN ], [M], [C]x) with
(10%, 10%, (80− t)%, t%).

• Secondly, as presented in Table 1, we only ap-
ply CLPM to the input of the source side or the
encoder. Other components of the framework
are identical to the reported MLM instances,
and we do not change the shifted input of the
decoder in seq2seq learning (Sutskever et al.,
2014).

D.3 Setup
UNMT Setup We consider the same dataset

used in previous works. Specifically, we first re-
trieve monolingual corpora {De,En} from WMT
2018⋄ (Bojar et al., 2018) including all available
NewsCrawl datasets from 2007 through 2017
and monolingual corpora Ro from WMT 2016⋄
(Bojar et al., 2016) including NewsCrawl 2016.
We report {De,Ro} ↔ En on newstest2016.
Meanwhile, we share the FLoRes⋄ (Guzmán et al.,
2019) task to evaluate a dissimilar language pair
Ne ↔ English (Nepali). We download the

872



dataset and test set with provided script. Ne is
tokenized by Indic-NLP Library⋄. For others, we
use the Moses tokenizer⋄ developed by (Koehn
et al., 2007). We use fastBPE⋄ to learn shared
BPE (Sennrich et al., 2016b), selecting the most
frequent 60K tokens from concatenated corpora of
paired languages with the same criteria in (Lam-
ple and Conneau, 2019). The model is pre-trained
around 400K iterations on only monolingual cor-
pora of paired languages. Then, we still train MLM
but eventually train the translation task on syn-
thetic parallel sentences by running on-the-fly back-
translation (Sennrich et al., 2016a), which is the
standard pipeline⋄ of UNMT (Artetxe et al., 2018b;
Song et al., 2019). After around 400K iterations,
according to baseline models’ BLEU scripts, we
report BLEU computed by multi-BLEU.perl⋄ or
sacreBleu⋄ (Post, 2018) with default rules. In the
training phase, we use Adam optimizer (Kingma
and Ba, 2015) with parameters β1 = 0.9,β2 =
0.997 and ϵ = 10−9, and a dynamic learning rate
with warm_up = 8000 (Vaswani et al., 2017)
(learning_rate ∈ (0, 7e−4]) is employed. We set
dropout regularization with a drop rate rate = 0.1
and label smoothing with gamma = 0.1 (Mezzini,
2018).

Cross-ling Classification Setup Beyond UNMT
tasks or bilingual tasks, our method can be ap-
plied to multilingual tasks. Then, we attempt the
cross-lingual classification task on XNLI (Con-
neau et al., 2018) to test general cross-linguality
[C]x improves. For this test, we follow the stan-
dard and basic experiment (Lample and Conneau,
2019) to train a 12-layer Transformer encoder with
80k BPE on Wikipedia dumps⋄ of 15 XNLI lan-
guages. To tokenize {Zh, Th}, we use Stanford
Word Segmenter⋄ and PyThaiNLP⋄ respectively.
For the others, we use the Moses tokenizer⋄ with
default rules. Similarly, we use fastBPE⋄ and the
balanced strategy (Lample and Conneau, 2019) to
learn BPE. While there are two settings in this task,
we only report the results of the zero-shot classi-
fication. To pre-train the encoder on En corpora,
considering the zero-shot classification based on
finetuning En NLI dataset, we randomly compute
[C]x from other languages with equal probability
to avoid the cross-lingual bias. For pre-training
on corpora of other languages, we only compute
[C]x in the English entries. Note that, although
we have different strategies of [C]x for different lan-
guages, we still concatenated all the corpora of the

languages for joint pre-training. After pre-training
on the corpora, we deploy a randomly initialized
linear classifier and finetune the encoder and the
linear classifier on the En NLI dataset with mini-
batch size 16. We use Adam optimizer (Kingma
and Ba, 2015) with lr = 5e − 4 and linear decay
of lr. After finetuning, we make zero-shot classifi-
cations for other languages.

E Result

E.1 UNMT
We compare our reimplementation with reported
results in Table 10.

E.2 Cross-lingual Classification
We show the results of XNLI for each language in
Table 11.

F Source

We list all the links of dataset, tools, and other
sources in Table 12.
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Language pair De ↔ En Ro ↔ En Ne ↔ En

multi-BLEU.perl⋄ with default rules
XLM(Lample et al., 2018c) reported 34.3 26.4 31.8 33.3 0.5 0.1
XLM(Lample et al., 2018c) ⋆ 33.9 26.3 0.6 0.2
+ [C]x 35.9 28.1 34.4 35.3 6.6 2.8

MASS(Song et al., 2019) reported 35.2 28.3 33.1 35.2
MASS(Song et al., 2019)⋆ 35.0 28.0 0.9 0.3
+ [C]x 36.7 29.2 34.7 36.9 7.1 3.4

sacreBleu⋄ with standard settings: nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.0.0
mBART(Liu et al., 2020) reported +CC25 34.0 29.8 30.5 35.0 10.0 4.4
mBART(Liu et al., 2020)⋆ 33.7 29.4 2.0 1.1
+ [C]x 35.4 30.1 32.5 36.7 7.0 3.2

Table 10: Performance of UNMT. Baseline models (⋆) are reimplemented with our configurations.

Model en fr es de el bg ru tr ar vi th zh hi sw ur Avg

baseline(Conneau et al., 2018) 73.7 67.7 68.7 67.7 68.9 67.9 65.4 64.2 64.8 66.4 64.1 65.8 64.1 55.7 58.4 65.6
mBERT (Wu and Dredze, 2019) 82.1 73.8 74.3 71.1 66.4 68.9 69 61.6 64.9 69.5 55.8 69.3 60.0 50.4 58.0 66.3
XLM (Lample and Conneau, 2019) 83.2 76.5 76.3 74.2 73.1 74.0 73.1 67.8 68.5 71.2 69.2 71.9 65.7 64.6 63.4 71.5
+ word translation tables(Chaudhary et al., 2020) 72.7
+ [C]x 84.8 78.1 78.0 76.7 75.8 76.6 74.7 71.6 71.9 74.2 71.8 74.9 67.4 67.2 66.5 74.0
+ MT (Lample and Conneau, 2019) 85.0 78.7 78.9 77.8 76.6 77.4 75.3 72.5 73.1 76.1 73.2 76.5 69.6 68.4 67.3 75.1

Table 11: Performance of cross-lingual classification on XNLI. MT stands for additional parallel corpora.

Item Links
WMT 2016 http://www.statmt.org/wmt16/translation-task.html
WMT 2018 http://www.statmt.org/wmt18/translation-task.html
FLoRes https://github.com/facebookresearch/flores
Indic-NLP Library https://github.com/anoopkunchukuttan/indic_nlp_library
XLM https://github.com/facebookresearch/XLM
multi-BLEU.perl https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-BLEU.perl
Moses tokenizer https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
Kytea http://www.phontron.com/kytea/
XTREME https://github.com/google-research/xtreme
fastBPE https://github.com/glample/fastBPE
MUSE https://github.com/facebookresearch/MUSE
Cambridge Dictionary https://dictionary.cambridge.org/
WikiExtractor https://github.com/attardi/wikiextractor
PyThaiNLP https://github.com/PyThaiNLP/pythainlp
Stanford Word Segmenter (Chang et al., 2008) https://nlp.stanford.edu/software/segmenter.html
Tensor2Tensor https://github.com/tensorflow
HuggingFace https://huggingface.co

Table 12: Links of source.
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