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Abstract

Commonsense question answering is important
for making decisions about everyday matters.
Although existing commonsense question an-
swering works based on fully fine-tuned PLMs
have achieved promising results, they suffer
from prohibitive computation costs as well as
poor interpretability. Some works improve the
PLMs by incorporating knowledge to provide
certain evidence, via elaborately designed GNN
modules which require expertise. In this paper,
we propose a simple knowledgeable parameter
efficient tuning network to couple PLMs with
external knowledge for commonsense question
answering. Specifically, we design a train-
able parameter-sharing adapter attached to a
parameter-freezing PLM to incorporate knowl-
edge at a small cost. The adapter is equipped
with both entity- and query-related knowledge
via two auxiliary knowledge-related tasks (i.e.,
span masking and relation discrimination). To
make the adapter focus on the relevant knowl-
edge, we design gating and attention mecha-
nisms to respectively filter and fuse the query
information from the PLM. Extensive exper-
iments on two benchmark datasets show that
KPE is parameter-efficient and can effectively
incorporate knowledge for improving common-
sense question answering.

1 Introduction

Commonsense question answering is the process
of combining observations and the basic knowl-
edge that reflects our natural understanding of the
world and human behaviors, to make presumptions
about ordinary situations in our daily life (Johnson-
Laird, 1980). It has emerged as an important task
in natural language understanding.

Pre-trained language models (PLMs), which
revolutionize many areas with superior perfor-
mance, have been applied for the commonsense
question answering task based on full fine-tuning
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Figure 1: Comparison of existing methods and our pro-
posed method.

as shown in Figure 1(a). For example, Lourie
et al. (2021) fully fine-tuned the PLM Unicorn and
achieved competitive performance on 8 common-
sense benchmarks. However, they inevitably incur
prohibitive computation costs as the scale of param-
eters increases, and are lacking in transparency and
interpretability (Houlsby et al., 2019a; Lin et al.,
2019).

Furthermore, some works couple the PLMs with
knowledge to improve the interpretability of the
reasoning process. As shown in Figure 1(b), they
typically extract the relevant knowledge subgraphs
about entities in the query and then elaborately
design a graph neural network (GNN) module to
perform reasoning (Lin et al., 2019; Feng et al.,
2020; Yasunaga et al., 2021; Sun et al., 2022). De-
spite the fact that they provide certain evidence for
the reasoning process, it requires expertise to de-
sign effective GNN modules. Additionally, they
generally consider only the structured triple knowl-
edge about the entities in the query, while ignoring
the textual knowledge about the query itself.

In this work, we propose a simple
Knowledgeable Parameter Efficient model
(KPE) for commonsense question answering. In
particular, we design a parameter-sharing adapter
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plugin for incorporating knowledge into the
frozen PLM as shown in Figure 1, which largely
reduces the scale of trainable parameters. Our
adapter plugin integrates both the entity- and
query-related knowledge (uniformly grounding to
the unstructured commonsense knowledge base
GenericsKB) through two auxiliary knowledge-
related tasks (i.e., span masking and relation
discrimination). Additionally, to make the adapter
focus on the relevant knowledge for commonsense
question answering, we design gating and attention
mechanisms to respectively filter and fuse the
query information from the PLM. Overall, our
main contributions can be summarized as follows:

• To the best of our knowledge, we are the first
to propose a knowledgeable parameter effi-
cient tuning network for commonsense ques-
tion answering, which adopts a new parameter-
sharing adapter to incorporate knowledge.

• Our designed adapter integrates both the
entity- and query-related knowledge with two
auxiliary knowledge-related tasks. Addition-
ally, the gating and attention mechanisms are
respectively employed to filter and fuse the
query information from the PLM to make the
adapter focus on relevant knowledge for com-
monsense question answering.

• Extensive experiments on two benchmark
datasets have demonstrated that our proposed
KPE can effectively incorporate knowledge
for improving commonsense question answer-
ing, with a tiny computation cost.

2 Related Work

In this section, we review the related works on
commonsense question answering and parameter
efficient tuning.

2.1 Commonsense Question Answering

With the remarkable success of PLMs on various
tasks (Liu et al., 2019; Raffel et al., 2020), some
researchers propose to fully fine-tune PLMs on the
commonsense question answering task. For exam-
ple, Lourie et al. (2021) fully fine-tuned the PLM
Unicorn on 8 commonsense benchmarks respec-
tively, and achieved promising results. Khashabi
et al. (2020) built a universal PLM for the ques-
tion answering task and fully fine-tuned it on 10
factoid and commonsense QA datasets. Despite

the prevalence of PLMs, fine-tuning all the param-
eters brings prohibitive computation costs as the
scale of PLM parameters grows. Moreover, due
to the lack of modules explicitly modeling knowl-
edge, the PLMs suffer from poor transparency and
interpretability. In light of this, some methods im-
prove the PLMs with well-designed GNN modules
to integrate relevant knowledge from knowledge
graphs (Feng et al., 2020; Sun et al., 2022; Wang
et al., 2022). For example, MHGRN (Feng et al.,
2020) combines PLMs with a graph relation net-
work to perform multi-hop reasoning on knowledge
subgraphs and provides certain evidence for the rea-
soning process. GreaseLM (Zhang et al., 2022) and
JointLK (Sun et al., 2022) introduce GNN-based
modules to perform joint reasoning over both the
text and knowledge subgraphs for commonsense
question answering. Nevertheless, they require ex-
pertise to design an effective GNN module for en-
coding the knowledge subgraph. Additionally, they
only consider the entity-related structured knowl-
edge, ignoring the query-related knowledge which
could be in the form of text.

Differently, in this work, we present a simple
knowledgeable parameter efficient tuning network
which utilizes a parameter-sharing adapter to incor-
porate both entity- and query-related knowledge
for improving commonsense question answering.

2.2 Parameter Efficient Tuning

Since fine-tuning all the parameters of PLMs
causes prohibitively expensive costs, researchers
propose to fine-tune a small part of the model pa-
rameters while freezing the rest. Adapter-tuning,
firstly proposed by Houlsby et al. (2019a), is a
prevalent parameter efficient tuning method which
inserts trainable adapter modules between the lay-
ers of frozen PLMs to bootstrap PLMs (Mahabadi
et al., 2021; Pfeiffer et al., 2021). Wang et al.
(2021) adopted adapters to infuse knowledge into
the large pre-trained language model. Inspired
by the prompting methods, some researchers also
exploit the prefix-tuning (Li and Liang, 2021)
and prompt-tuning (Lester et al., 2021; Liu et al.,
2022b). They preset a sequence of trainable prompt
tokens to the input or intermediate layers and only
update these tokens during training. Addition-
ally, some works explore the low-rank adaptation
method which injects and optimizes the low-rank
matrices of attention weight in the frozen PLMs
for parameter efficient tuning (Hu et al., 2022; Ma-

9052



IsA

DerivedFrom

MadeOfIsA

HasARelatedTo

IsA

PartOf

candy

sugarfood

plant

cotton 
candy cotton  

[cotton, IsA, plant]

[cotton candy, DerivedFrom, cotton]

[cotton candy, IsA, food] [cotton candy, MadeOf, sugar]

[cotton candy, IsA, candy]

[candy, HasA, sugar]

[sugar, RelatedTo, food]

[plant, PartOf, food]

PLM
(Freezing)

Shared
Parameter 

sample & mask
Cotton is used for [MASK] [MASK].

Score Prediction Span Masking Relation Discrimination 
UsedFor

RelatedTo HasA

Gating
Knowledgeable

Adapter
(Trainable)

Knowledgeable
Adapter

(Trainable)

Entity-related Knowledge
Query-related Knowledge

Cotton candy is sometimes
made out of cotton. yes

making (0.75)
cooking (0.11)
physical (0.04)
……

clothing (0.46)
food (0.29)
fitness (0.15)
……

Knowledge
Extraction   

预训练
语言模型

(参数冻结)

参数共享

采样&掩码处理

Cotton is used for [MASK] [MASK].

分数预测 跨度掩码 关系判别
UsedFor

RelatedTo HasA

知识感知的适配器
(可训练)

实体相关的知识
问题相关的知识

Cotton candy is sometimes
made out of cotton. yes

making (0.75)
cooking (0.11)
physical (0.04)
……

clothing (0.46)
food (0.29)
fitness (0.15)
……

知识抽取

门控
单元

Figure 2: The architecture of our proposed KPE.

habadi et al., 2021).

In this work, we focus on the commonsense ques-
tion answering task and propose a knowledgeable
parameter efficient tuning network that effectively
couples PLMs with external knowledge.

3 KPE Model

Following previous works (Feng et al., 2020; Ya-
sunaga et al., 2021), we focus on the commonsense
question answering task in the form of multiple-
choice question answering. Formally, given a natu-
ral language query q and a set of candidate answers
A = {a}, we will measure the plausibility score
ρ(q, a) for each answer and choose the most plausi-
ble one a∗. To promote the commonsense question
answering process, we resort to external knowl-
edge bases to extract both entity- and query-related
knowledge pieces K = {k} based on q and A.

As shown in Figure 2, our KPE couples the PLM
with external knowledge via a parameter-sharing
knowledgeable adapter attached to the frozen PLM.
The PLM takes (q, a) as input and outputs the plau-
sibility score ρ(q, a). The knowledgeable adapter
aims to integrate the knowledge pieces k. In the fol-
lowing, we first introduce the knowledge extraction
process. Then we describe the knowledgeable
adapter that effectively integrates the extracted
knowledge based on two auxiliary tasks (i.e., span
masking and relation discrimination tasks), as well
as gating and attention mechanisms for information
interaction with the PLM.

3.1 Knowledge Extraction

A traditional source of commonsense knowledge is
triple-based knowledge graphs such as ConceptNet
(Speer et al., 2017). However, they encode limited
types of the knowledge. Here, we use a corpus of
generic sentences about commonsense facts, i.e.,
GenericsKB (Bhakthavatsalam et al., 2020) as the
final knowledge source. The text can represent
more complex commonsense knowledge, involving
facts that relate three or more concepts. Next, we
introduce how to extract entity- and query-related
knowledge from GenericsKB.

Entity-related Knowledge. For entity-related
knowledge, we first recognize all the entities in
the query and candidate answers, and ground them
to triples in ConceptNet. Then, we serialize the
triples to sentences and use them as the keys to
retrieve knowledge pieces from GenericsKB.

Triple Grounding. Given the query q and candi-
date answers A = {a}, we first extract the entities
e from them. Then, we ground all the triples in
ConceptNet originating from e to obtain the triple
set T = {h, r, t}. To condense and filter the ex-
tracted triples, we follow Xu et al. (2022) to score
each triple:

pi = wi ∗
N

Nri

, (1)

where pi denotes the score of the i-th triple
(hi, ri, ti), wi is the triple weight provided by Con-
ceptNet, N is the size of T and Nri is the number
of triples with relation ri in T . If pi is higher
than the predefined score threshold p∗, the triple
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(hi, ri, ti) will be added to the selected triple set
T ∗ ⊆ T .

Knowledge Retrieval. Now, we convert these
triples in T ∗ into a series of sentences for knowl-
edge retrieval from the unstructured commonsense
knowledge base GenericsKB. Specifically, for each
triple (hi, ri, ti), we employ a set of pre-defined
relation templates (Ma et al., 2021) to generate a
sentence si at first. For example, the triple (swel-
tering, RelatedTo, hot) can be serialized to the sen-
tence "sweltering is related to hot". Then, we take
si as a key to retrieve the related knowledge pieces
(in the form of sentences) from GenericsKB. The
knowledge pieces without the entity pair (hi, ti)
are directly disregarded. Afterwards, we select
the knowledge piece which is most relevant to the
query to enhance the commonsense question an-
swering. Particularly, we use the pre-trained Sim-
CSE (Gao et al., 2021) to obtain sentence embed-
dings, based on which, we compute the cosine sim-
ilarity between each retrieved knowledge piece ki
and the query q as the knowledge relevance score.
Finally, after processing all the triples, we choose
top K (K = 5 in this work) retrieved knowledge
pieces as entity-related knowledge KE = {kE

i }
according to the computed knowledge relevance
scores.

Query-related Knowledge. Considering the rich
semantic information contained in the query q, we
also explore the query-related knowledge for im-
proving the commonsense question answering task.
Specifically, similar to the entity-related knowl-
edge retrieval, we retrieve query-relevant knowl-
edge pieces from GenericsKB by concatenating the
query with all the candidate answers as the key
for retrieval. We also compute the knowledge rele-
vance scores and choose top K knowledge pieces
with the highest scores as the query-related knowl-
edge KQ = {kQ

i }.

3.2 Knowledgeable Adapter
In this subsection, we detail our knowledgeable
adapter that effectively incorporates the above ex-
tracted knowledge for commonsense question an-
swering.

Knowledgeable Adapter Layer. For parameter-
efficiency, we connect each PLM layer with a
parameter-sharing adapter layer as shown in Fig-
ure 3. For the l-th (l ∈ [1, L]) adapter layer, the
input H l

A ∈ R(m+n)×d is formed by vertically con-
catenating the output features H̃ l−1

A ∈ Rn×d of
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Figure 3: Illustration of our knowledgeable adapter.

the (l-1)-th adapter layer and the output features
H̃ l

P ∈ Rm×d of the l-th PLM layer, where m and
n respectively denote the length of PLM input se-
quence and knowledge piece, and d is the hidden
size. Note that, a learnable gating function is ap-
plied to filter the PLM output features H̃ l

P to obtain
crucial information of the query. Formally,

H l
A = [H̃ l

P ⊙ σ(G); H̃ l−1
A ], (2)

where G ∈ Rm×d is a trainable matrix and is
learned in the training process, ⊙ denotes the
element-wise multiplication.

Now, given the input H l
A, the adapter layer first

projects it down to r dimension with a linear pro-
jection layer. Then we apply a self-attention layer
to better fuse the knowledge and the query infor-
mation from the PLM. After that, another linear
projection layer is applied to project it up to the
original dimension d. Finally, we split the output
features H

′ l
A ∈ R(m+n)×d of the up projection

layer into two parts: H̃ l
R ∈ Rm×d for the residual

connection layer of the PLM and H̃ l
A ∈ Rn×d for

the next adapter layer. To enhance the knowledge
modeling ability of the adapter, we also design the
following two knowledge-related tasks, which take
the final output H̃L

A of the adapter as input.

Span Masking Task. Mask prediction task can
help promote the knowledge memorization of
the adapter (Sun et al., 2021). For the entity-
related knowledge kE

i corresponding to the triple
(hi, ri, ti), we mask out the corresponding tokens
of the tail entity mention and replace them with
the same number of [MASK] to yield the corrupted
sequence. Then, we fed the corrupted sequence
into the adapter for forward reasoning. Based on
the final adapter output H̃L

A , we predict the masked
tokens and calculate cross-entropy loss LMLM over
them. For the query-related knowledge piece kQ

i ,
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we mask 15% tokens in total at the span level and
predict them in the same way as SpanBERT (Joshi
et al., 2020).

Relation Discrimination Task. Relation dis-
crimination task can facilitate the adapter to un-
derstand the intrinsic relational facts in text and im-
prove the robustness of the learned representations
through contrastive learning (Chen et al., 2022).
This task applies only to entity-related knowledge
pieces that include entity pairs. Given the entity-
related knowledge piece kE

i and its corresponding
triple (hi, ri, ti), we conduct mean pooling opera-
tion over the token embeddings (from the adapter
output H̃L

A ) of the entity mentions to obtain entity
representations vH

i and vT
i . Then, we follow Qin

et al. (2021) to concatenate vH
i and vT

i as the rela-
tion representation vR

i = [vH
i ,v

T
i ]. For improving

the understanding of relational facts, we treat the
relation ri as its positive sample and the rest rela-
tions as negative samples. Finally, we adopt the
InfoNCE (van den Oord et al., 2018) loss to make
the positive pair closer and push away the negative
pairs:

LRD = − log
exp (vR

i · f(ri)/τ)∑|E|
j=1 exp (v

R
i · f(rj)/τ)

, (3)

where τ is a temperature hyper-parameter, |E| is
the number of relations ri in ConceptNet, and f(ri)
denotes the lookup operation for the token id of the
relation ri based on the PLM. If there are multiple
tokens in ri, we will apply mean pooling.

3.3 Model Training
Given the query context q and a candidate choice
a ∈ A, we leverage the output H̃L

P of the fi-
nal PLM layer to compute the plausibility score
ρ(q, a)=MLP (H̃L

P ) and maximize the plausibility
score of the correct answer a∗ via a cross-entropy
loss:

LQA = Eq,a∗,A

[
− log

exp (ρ(q, a∗))∑
a∈A exp (ρ(q, a))

]
.

(4)
Overall, the whole training objective of KPE is

formulated as follows:

L = LQA + LMLM + LRD. (5)

During training, we will randomly sample one
piece of knowledge from the entity- and query-
related knowledge (KE and KQ) at each step. Note
that for the query-related knowledge piece which

is not applicable to the relation discrimination task,
we will ignore the corresponding loss LRD .

4 Experiments

In this section, we evaluate the effectiveness of our
proposed KPE.

4.1 Datasets

We evaluate KPE on two benchmark datasets:
OpenbookQA (Mihaylov et al., 2018) and Com-
monsenseQA 2.0 (Talmor et al., 2021).

OpenbookQA is a question answering dataset
about elementary scientific knowledge and each
question has four different options. This dataset
contains 5, 957 questions in total and we utilize the
official data splits from Mihaylov et al. (2018).

CommonsenseQA 2.0 (CSQA2) is a binary
classification dataset including 14, 343 questions.
Note that the test set of CSQA2 is not public, and
we need to submit the model predictions to the
official leaderboard to get the evaluation results.

4.2 Implementation Details

For knowledge retrieval, we first store GenericsKB
via Elasticsearch1 and use the retrieval function
of Elasticsearch based on BM25 for retrieval. We
choose the parameter values that achieve the best
results on the development set. Experimentally,
we set the temperature hyper-parameter τ in the
relation discrimination task to 0.1 and set the score
threshold p∗ in triple grounding to 3.5. The down
size in the adapter r is set to 256. Following pre-
vious works, the hidden dimension of the model
d=1024, and the number of layers L=24. We use
AdamW (Loshchilov and Hutter, 2018) optimizer
in our experiments. For model training, we set
the batch size to 32 and the learning rate to 2e-5.
We implement the parameter efficient tuning base-
lines for commonsense question answering based
on AdapterHub (Pfeiffer et al., 2020).

4.3 Baselines

We compare our proposed KPE with the follow-
ing parameter efficient tuning based methods and
existing strong commonsense question answering
methods.

Parameter Efficient Tuning based Methods.
We compare KPE with the following parameter
efficient tuning based methods.

1https://github.com/elastic/elasticsearch
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Methods
OpenbookQA

(RoBERTa-large)
CSQA2

(Unicorn-11B)
Dev

Accuracy
Test

Accuracy
Trainable

parameters
Dev

Accuracy
Trainable

parameters
Bottleneck Adapter (Houlsby et al., 2019b) 62.100 (±0.7) 63.400 (±0.6) 6.345M 55.726 (±0.52) 6.345M
Prefix Tuning (Li and Liang, 2021) 63.000 (±1.2) 66.700 (±0.7) 25.772M 55.529 (±0.75) 77.313M
Compacter (Mahabadi et al., 2021) 59.800 (±1.0) 59.800 (±0.8) 0.153M 55.844 (±0.60) 0.153M
LoRA (Hu et al., 2022) 62.100 (±0.5) 64.400 (±0.8) 0.787M 55.726 (±0.76) 6.686M
MAM Adapter (He et al., 2022) 67.400 (±0.6) 70.000 (±0.2) 65.425M 55.765 (±1.31) 145.868M
KPE (ours) 67.800 (±0.4) 71.300 (±0.3) 2.369M 68.373 (±0.58) 2.106M

Table 1: Performance comparison with parameter efficient tuning based methods on two datasets. We use RoBERTa-
large with 355.36M parameters as the PLM on OpenbookQA dataset, while taking Unicorn-11B with 11.31B
parameters as the PLM on CSQA2 dataset since CSQA2 is much more difficult. The trainable parameters could
differ between the two datasets due to the use of different base PLMs.

• Bottleneck Adapter (Houlsby et al., 2019b)
is the first method to perform the adapter-
based tuning in NLP.

• Prefix Tuning (Li and Liang, 2021) inserts
a sequence of learnable prompts into the in-
put or intermediate layers to decrease training
costs.

• LoRA (Hu et al., 2022) presets trainable rank
decomposition matrices in each layer of PLM
for less trainable parameters.

• MAM Adapter (He et al., 2022) builds an
effective adapter module that combines the
advantages of adapter, prefix tuning and low-
rank methods.

• Compacter (Mahabadi et al., 2021) is built
on top of ideas from adapters, low-rank op-
timization, and parameterized hypercomplex
multiplication layers, achieving a better trade-
off between task performance and the number
of trainable parameters.

For fair comparison, we improve these baseline
methods with our extracted knowledge by concate-
nating the extracted knowledge with the original
inputs of these baselines.

Existing Commonsense Question Answering
Methods. We also compare KPE with the exist-
ing strong commonsense question answering meth-
ods. For OpenbookQA dataset, we compare our
model with the following baselines that enhance
PLMs with knowledge via GNN modules: (1) RN
(Santoro et al., 2017), (2) RGCN (Schlichtkrull
et al., 2018), (3) GconAttn (Wang et al., 2019), (4)
MHGRN (Feng et al., 2020), (5) QA-GNN (Ya-
sunaga et al., 2021), (6) GSC (Wang et al., 2022),
(7) JointLK (Sun et al., 2022). For fair comparison,
we use the same PLM (i.e., RoBERTa-large (Liu
et al., 2019)) in all the above baselines and our KPE

on OpenbookQA.
For CSQA2 dataset, we employ the vanilla

Unicorn-11B (Lourie et al., 2021) as the PLM
model for KPE, and compare KPE with the fol-
lowing fully fine-tuned model from the official
leaderboard2: (1) T5-large (Raffel et al., 2020),
(2) Unicorn-large (Lourie et al., 2021), (3) T5-
11B (Raffel et al., 2020), (4) Unicorn-11B (Lourie
et al., 2021), (5) GKP+Unicorn-11B-ft (Liu et al.,
2022a). Among these baselines, GKP+Unicorn-
11B-ft performs best. It handcrafts demonstration
examples to guide GPT3 (Brown et al., 2020) to
generate knowledge and integrates the knowledge
via prompting for commonsense question answer-
ing.

4.4 Results and Analysis

Table 1 reports the results of our proposed KPE
in comparison with the prevalent parameter effi-
cient tuning based methods on both OpenbookQA
and CSQA2 datasets. Note that, for a fair com-
parison, we concatenate our extracted common-
sense knowledge with the original inputs of these
baselines. Since the annotation of the CSQA2 test
set is not released, we only report the compari-
son results on the dev set. From table 1, we can
observe that: (1) KPE consistently outperforms
all the baselines on both datasets. Compared to
the best baseline method, KPE achieves around
12.5% and 1.3% improvements on CSQA2 dev
set and OpenbookQA test set, respectively. We
believe that KPE benefits from the designed knowl-
edgeable adapter which is parameter-efficient and
effectively incorporates the commonsense knowl-
edge. Moreover, KPE achieves a much larger im-
provement on CSQA2 dataset (+12.5%) than Open-
bookQA dataset (+1.3%). The reason could be that

2https://leaderboard.allenai.org/csqa2/submissions/public
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Models RoBERTa-large
Fine-tuned LMs (w/o KG) 64.80 (±2.37)†

+ RN (Santoro et al., 2017) 65.20 (±1.57)†

+ RGCN (Schlichtkrull et al., 2018) 62.45 (±1.48)†

+ GconAtten (Wang et al., 2019) 64.75 (±1.18)†

+ MHGRN (Feng et al., 2020) 66.85 (±1.19)†

+ QA-GNN (Yasunaga et al., 2021) 67.80 (±2.75)†

+ GSC (Wang et al., 2022) 70.33 (±0.81)†

+ JointLK (Sun et al., 2022) 70.34 (±0.75)
+ KPE (ours) 71.30 (±0.30)

Table 2: Test accuracy comparison on OpenbookQA. †
denotes the reported results in GSC (Wang et al., 2022).

the CSQA2 dataset is much more difficult, in which
the knowledge is more needed. Thus, KPE achieves
a greater improvement on CSQA2 dataset by ef-
fectively incorporating the external knowledge. (2)
Compared to Bottleneck Adapter, Prefix Tuning
and MAM Adapter, KPE introduces fewer param-
eters while achieving conspicuous improvements
on both datasets. The reason is that our knowledge-
able adapter employs an efficient parameter-sharing
strategy and better integrates the knowledge via
two auxiliary knowledge-related tasks. The gating
and attention mechanisms also help the adapter to
focus on useful knowledge for improving common-
sense question answering. (3) The baseline meth-
ods Compacter and LoRA, although introducing
fewer parameters, achieve much lower performance
than KPE. Our method achieves a better trade-off
between the number of trainable parameters and
task performance.

Table 2 and 3 show the results of our model in
comparison with the existing strong commonsense
question answering methods on OpenbookQA
dataset and CSQA2 dataset, respectively. As we
can see from Table 2, our KPE outperforms all the
GNN based methods and achieves the best perfor-
mance. It demonstrates the effectiveness of our
KPE with the knowledgeable adapter for incorpo-
rating knowledge to improve commonsense ques-
tion answering. We believe that KPE could further
benefit from the advancement of large language
models and is of much value to the parameter effi-
cient tuning research.

From Table 3, we can observe that our model
KPE based on the PLM Unicorn-11B achieves com-
parable performance to the best fully fine-tuned
models Unicorn-11B and GKP+Unicorn-11B-ft,
through updating a much smaller amount of param-
eters (around 0.019% compared to their parameter

Models Dev Test Trainable
parameters

T5-large (Raffel et al., 2020) 53.8 54.6† 737.67M
Unicorn-large (Lourie et al., 2021) 56.4 54.9† 737.67M
T5-11B (Raffel et al., 2020) 68.5 67.8† 11307M
Unicorn-11B (Lourie et al., 2021) 69.9 70.2† 11307M
GKP+Unicorn-11B-ft (Liu et al., 2022a) 72.37 73.03† 11307M
KPE+Unicorn-11B 68.95 70.16‡ 2.106M

Table 3: Performance comparison with fully fine-tuned
methods on CSQA2. † denotes the reported results from
papers (Talmor et al., 2021; Liu et al., 2022a) and ‡
denotes the reported result on official leaderboard.

Models OpenbookQA CSQA2
Dev Test Dev

KPE-w/o-E 66.00 (±0.6) 69.40 (±0.4) 66.59 (±0.41)
KPE-w/o-Q 67.00 (±0.4) 68.80 (±0.4) 63.60 (±0.31)
KPE-w/o-E&Q 66.00 (±0.4) 68.50 (±0.7) 63.32 (±0.61)
KPE-w/o-S 66.40 (±0.8) 70.10 (±0.5) 64.93 (±1.04)
KPE-w/o-R 66.40 (±1.0) 70.70 (±0.3) 65.41 (±0.77)
KPE-w/o-S&R 67.60 (±0.2) 69.80 (±0.6) 63.75 (±0.56)
KPE-w/o-A 67.40 (±0.4) 70.40 (±0.2) 64.82 (±1.62)
KPE-w/o-G 66.90 (±0.5) 70.10 (±0.3) 66.57 (±0.51)
KPE 67.80 (±0.4) 71.30 (±0.3) 68.37 (±0.58)

Table 4: Ablation study on OpenbookQA and CSQA2.

scale).

4.5 Ablation Study

To verify the importance of each module in our
KPE, we compared it with the following variants:
(1) KPE-w/o-E: A variant of KPE that removes the
entity-related knowledge. (2) KPE-w/o-Q: A vari-
ant of KPE that removes the query-related knowl-
edge. (3) KPE-w/o-E&Q: A variant of KPE that
removes both entity- and query-related knowledge.
Accordingly, the span masking and relation dis-
crimination tasks are removed. (4) KPE-w/o-S:
A variant of KPE that removes the span masking
task. (5) KPE-w/o-R: A variant of KPE that re-
moves the relation discrimination task. (6) KPE-
w/o-S&R: A variant of KPE that removes both
span masking and relation discrimination tasks.
(7) KPE-w/o-A: A variant of KPE that replaces
the self-attention mechanism in the knowledgeable
adapter with a conventional nonlinearity function.
(8) KPE-w/o-G: A variant of KPE that replaces
the learnable gating function in the knowledgeable
adapter with direct concatenation.

Table 4 shows the results of the ablation study.
We can obtain the following observations: (1) On
both datasets, removing query-related knowledge
results in a larger performance drop than removing
entity-related knowledge. It demonstrates the im-
portance of the query-related knowledge for com-
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Figure 4: Impact of different down size r on two datasets.

KPE KPE-w/o-E&Q

(a) Example from OpenbookQA

(b) Example from CSQA2

Choices Choices

Choices Choices

"#$: Some plants grow in the hot, dry desert.

"%$: Desert plants survive dry conditions.
"#&: Sweltering is related to hot.

Knowledge

"#$: Deep sleep is followed by REM sleep.
"%$: Nightmares occur during the dream 

phase of sleep known as REM sleep.
"#&: Sleep apnea is detected in rem sleep.

Knowledge

Query
Desert environments are generally_

Query
Our sleep cycle at night is ordered
like this: Drowsy, REM, Light Sleep,
Deep Sleep and Moderate Sleep.

Query
Our sleep cycle at night is ordered like
this: Drowsy, REM, Light Sleep, Deep
Sleep and Moderate Sleep.

Query
Desert environments are generally_

B. arctic like (0.023)

C. lush (0.038)

D. frigid (0.105)

A. sweltering* (0.834)

C. lush (0.275)

D. frigid (0.004)

A. sweltering* (0.145)

B. arctic like (0.576)

B. no* (0.967)

A. yes (0.033)

B. no* (0.856)

A. yes (0.144)

Figure 5: Illustration of KPE results.

monsense question answering. When removing
both entity- and query-related knowledge, the per-
formance largely decreases (-2.8% and -5.05% on
OpenbookQA and CSQA2, respectively). (2) Dis-
abling any auxiliary knowledge-related task will
result in performance degradation, which shows
that both tasks enable the adapter to better cap-
ture the knowledge, thus improving the common-
sense question answering. (3) KPE consistently
outperforms KPE-w/o-G and KPE-w/o-A on both
datasets, which verifies that both the gating and
self-attention mechanisms promote the knowledge
integration for improving commonsense question
answering.

4.6 Impact of Down Size r in Adapter

To explore the impact of the down size r on model
performance, we vary r from 16 to 1024, and report
the results on two datasets in Figure 4. We can
observe that the accuracy on both datasets generally
first grows and reaches the highest value from 16
to 256, while it begins to drop when r is larger than
256. Overall, KPE achieves the best performance at

r=256 on both OpenbookQA and CSQA2 datasets.

4.7 Case Study

In order to intuitively understand how the exter-
nal knowledge in KPE helps improve the com-
monsense question answering, we compare KPE
with the variant KPE-w/o-E&Q. We visualize the
predicted score distributions over the candidate
choices using two examples from OpenbookQA
and CSQA2 datasets. As can be seen from Figure
5(a), given the query “Desert environments are gen-
erally _”, KPE makes the right choice “sweltering”
while KPE-w/o-E&Q assigns a higher score to the
incorrect choice “arctic like”. We believe that the
extracted knowledge (e.g., “some plants grow in
the hot, dry desert”, “sweltering is related to hot.”)
facilitates the commonsense question answering.
In addition, we can observe from Figure 5(b) that
although both KPE and KPE-w/o-E&Q correctly
predict the answer, KPE is more confident with the
prediction results by benefiting from the extracted
knowledge.
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5 Conclusion

In this work, we present a knowledgeable param-
eter efficient tuning network KPE to effectively
incorporate both entity- and query-related knowl-
edge for improving commonsense question answer-
ing. Particularly, we design a parameter-sharing
knowledgeable adapter as the plugin attached to
the frozen PLM to incorporate knowledge. Two
auxiliary knowledge-related tasks are specifically
designed for the adapter to better model and cap-
ture the knowledge. Moreover, to make the adapter
integrate relevant knowledge, we introduce gating
and attention mechanisms to respectively filter and
fuse the query information from the PLM. Exper-
iments on two benchmark datasets have demon-
strated the effectiveness and parameter-efficiency
of KPE for commonsense question answering. In
future work, we will explore to integrate other
parameter-efficient tuning tricks in KPE.

Limitations

The performance of KPE is also related to the used
pre-trained language model (PLM), in addition to
the proposed framework. KPE could suffer from
unsatisfactory performance when the base PLM is
not strong enough. Applying our proposed KPE
to stronger PLMs, such as DeBERTa, may lead to
further improvements.
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