
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 9141–9154

July 9-14, 2023 ©2023 Association for Computational Linguistics

Grounded Multimodal Named Entity Recognition on Social Media

Jianfei Yu∗, Ziyan Li∗, Jieming Wang and Rui Xia†

School of Computer Science and Engineering,
Nanjing University of Science and Technology, China

{jfyu, zyanli, wjm, rxia}@njust.edu.cn

Abstract

In recent years, Multimodal Named Entity
Recognition (MNER) on social media has at-
tracted considerable attention. However, ex-
isting MNER studies only extract entity-type
pairs in text, which is useless for multimodal
knowledge graph construction and insufficient
for entity disambiguation. To solve these is-
sues, in this work, we introduce a Grounded
Multimodal Named Entity Recognition (GM-
NER) task. Given a text-image social post,
GMNER aims to identify the named entities
in text, their entity types, and their bounding
box groundings in image (i.e., visual regions).
To tackle the GMNER task, we construct a
Twitter dataset based on two existing MNER
datasets. Moreover, we extend four well-known
MNER methods to establish a number of base-
line systems and further propose a Hierarchical
Index generation framework named H-Index,
which generates the entity-type-region triples
in a hierarchical manner with a sequence-to-
sequence model. Experiment results on our
annotated dataset demonstrate the superiority
of our H-Index framework over baseline sys-
tems on the GMNER task. Our dataset anno-
tation and source code are publicly released at
https://github.com/NUSTM/GMNER.

1 Introduction

Fueled by the rise of phones and tablets with cam-
era functions, user posts on social media platforms
such as Twitter are increasingly multimodal, e.g.,
containing images in addition to text. The explo-
sive growth of multimodal posts is far beyond hu-
mans’ capability to digest them. Hence, it presents
a pressing need for automatically extracting im-
portant information such as entities and relations
from the large amount of multimodal posts, which
is crucial for structured knowledge graph construc-
tion to help people efficiently understand massive
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Figure 1: Comparison between Multimodal NER (MNER)
and our Grounded Multimodal NER (GMNER) task. GMNER
is a task to identify the named entities in text, their entity types,
and their bounding box groundings in image. None denotes
there is no grounded bounding box for the entity Toronto.

content. As an emerging subtask for multimodal
knowledge graph construction (Liu et al., 2019),
Multimodal Named Entity Recognition (MNER)
on social media has recently attracted increasing
attention (Zhang et al., 2018; Moon et al., 2018).
Given a text-image social post, MNER aims to rec-
ognize named entities in text and classify them into
pre-defined types such as person (PER), location
(LOC), and organization (ORG).

Most previous studies formulate the MNER task
as a sequence labeling problem, which focus on
(1) designing effective attention mechanisms to
model the vision-language interaction to obtain
vision-aware word representations (Lu et al., 2018;
Yu et al., 2020; Zhang et al., 2021a; Chen et al.,
2022b) or (2) converting the images into the tex-
tual space by generating image captions and object
tags (Chen et al., 2021b; Wang et al., 2022a). In-
spired by the success of applying the machine read-
ing comprehension (MRC) framework in NER (Li
et al., 2020b), several recent works formalize the
MNER task as a MRC problem, which extract en-
tities by answering queries about entity types (Jia
et al., 2022, 2023).

However, existing MNER studies mainly regard
the visual features as additional clues to help en-
hance the performance of the text-only NER task,
which suffer from several limitations. First, as
shown in Fig. 1, previous MNER works only ex-
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tract entity-type pairs in text, but failing to link the
entities to their corresponding bounding boxes in
image. The extracted entity-type pairs are solely
useful for constructing text-only knowledge graph
rather than multimodal knowledge graph. More-
over, only identifying entity-type pairs in text is
often insufficient for entity disambiguation. For
example, in Fig. 1, without the grounded yellow
bounding box, it is hard to infer the (Michael Jor-
dan, PER) pair refers to the professor in UC Berke-
ley rather than the famous basketball player.

To address these issues, in this paper, we propose
a new task named Grounded Multimodal Named
Entity Recognition (GMNER), aiming to extract
the named entities in text, their entity types, and
their bounding box groundings in image. Given the
example in Fig. 1, the goal is to extract three entity-
type-region multimodal triples, i.e., (Michael Jor-
dan, PER, yellow box), (the Fields Institute, ORG,
blue box) and (Toronto, LOC, None). GMNER
presents the following challenges: (1) apart from
extracting entity-type pairs, it requires predicting
whether each entity has a grounded region in im-
age; (2) for entities with visually grounded regions,
it needs to locate its corresponding bounding box
groundings (i.e., visual regions).

To tackle the GMNER task, we first construct
a Twitter dataset based on two benchmark MNER
datasets, in which we manually annotate the bound-
ing box groundings for each entity-type pair la-
beled by the two datasets. With the new dataset,
we benchmark the GMNER task by establishing
a number of baseline systems based on four well-
known MNER methods. Furthermore, inspired by
the success of the index generation framework in
the NER task (Yan et al., 2021), we formulate the
GMNER task as a multimodal index generation
problem by linearizing all the entity-type-region
triples into a position index sequence. We then pro-
pose a Hierarchical Index generation framework
named H-Index, aiming to address the aforemen-
tioned two challenges of GMNER in a hierarchical
manner. Specifically, a pre-trained sequence-to-
sequence model BART (Lewis et al., 2020) is first
employed to encode the textual and visual inputs to
generate a set of triples, which contain the indexes
of entity positions, entity types, and groundable
or ungroundable indicators. Moreover, for ground-
able entities, we further stack a visual output layer
to predict the distribution over candidate visual
regions for entity grounding.

The main contributions of our work can be sum-
marized as follows:

• We introduce a new task named Grounded Mul-
timodal Named Entity Recognition (GMNER),
which aims to extract all the entity-type-region
triples from a text-image pair. Moreover, we
construct a Twitter dataset for the task based on
two existing MNER datasets.

• We extend four well-known MNER methods to
benchmark the GMNER task and further pro-
pose a Hierarchical Index generation framework
named H-Index, which generates the entity-type-
region triples in a hierarchical manner.

• Experimental results on our annotated dataset
show that the proposed H-Index framework per-
forms significantly better than a number of uni-
modal and multimodal baseline systems on the
GMNER task, and outperforms the second best
system by 3.96% absolute percentage points on
F1 score.

2 Task Formulation

Given a multimodal input containing a piece of text
with n words s = (s1, . . . , sn) and an accompany-
ing image v, the goal of our Grounded Multimodal
Named Entity Recognition (GMNER) task is to
extract a set of multimodal entity triples:

Y = {(e1, t1, r1), . . . , (em, tm, rm)}, (1)

where (ei, ti, ri) denotes the i-th triple, ei is one of
the entities in text, ti refers to the type of ei which
belongs to four pre-defined entity types including
PER, LOC, ORG, and MISC, and ri denotes the
visually grounded region of entity ei. It is worth
noting that if there is no grounded region of en-
tity ei, ri is None; otherwise, ri consists of a 4-D
spatial feature containing the top-left and bottom-
right positions of the grounded bounding box, i.e.,
(rx1

i , ry1i , rx2
i , ry2i ).

3 Dataset

Since there was no available corpus for the GM-
NER task, we construct a Twitter dataset as follows.

Data Collection. Our dataset is built on two
benchmark MNER datasets, i.e., Twitter-15 (Zhang
et al., 2018) and Twitter-17 (Yu et al., 2020), which
have already annotated all the entities and their
types for each multimodal tweet. To alleviate the
annotation difficulty, we filter samples with missing
images or with more than 3 entities belonging to
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Split #Tweet #Entity #Groundable Entity #Box

Train 7,000 11,782 4,694 5,680
Dev 1,500 2,453 986 1,166
Test 1,500 2,543 1,036 1,244

Total 10,000 16,778 6,716 8,090

Table 1: Statistics of our Twitter-GMNER dataset.

the same type, and then merge the remaining 12K+
samples as our raw dataset for annotation.

Bounding Box Annotation. We employ three
graduate students to independently annotate the
grounded regions (i.e., bounding boxes) for each
labeled entity based on a widely-used image anno-
tation tool named LabelImg1. Fleiss Kappa (Fleiss,
1971) is adopted to measure the annotation agree-
ment. Note that if the Intersection over Union (IoU)
score between two annotations is larger than 0.5,
we regard them as consistent annotations. The
Fleiss score between three annotators is K = 0.84,
indicating a substantial annotation agreement. To
ensure the quality of our dataset, we remove sam-
ples in which the IoU score between annotations
is less than 0.5. Finally, we obtain 10,159 samples
and randomly select 10K samples as our Twitter-
GMNER dataset, followed by averaging the three
annotations as the ground-truth bounding box an-
notation for each sample.

Dataset Analysis. Following Moon et al. (2018),
we divide our dataset into train (70%), validation
(15%), and test sets (15%). As shown in Table 1,
our dataset contains 16,778 entities and around
60% entities do not have a grounded bounding box.
For the remaining 6,716 groundable entities, we
manually annotate a total of 8,090 bounding boxes,
which indicates that each entity may correspond to
more than one bounding box.

In Table 2, we compare our dataset with six NER
datasets for social media. WNUT16 (Strauss et al.,
2016) and WNUT17 (Derczynski et al., 2017) are
two text-only NER datasets released at the 2nd
and 3rd Workshop on Noisy User-generated Text.
Twitter-Snap, Twitter-15, and Twitter-17 are three
benchmark MNER datasets released by Lu et al.
(2018), Zhang et al. (2018), and Yu et al. (2020), re-
spectively. WikiDiverse is a new dataset introduced
by Wang et al. (2022b). Compared with existing
datasets, our dataset contains more annotated sam-
ples (i.e., 10K) and is the first dataset containing
both textual and visual annotations.

Fig. 2 (left) shows the distribution of the number
1https://github.com/tzutalin/labelImg

Dataset Modality Source Size

WNUT16 Ti → To Twitter 5.6K
WNUT17 Ti → To Reddit et al. 5.7K
Twitter-SNAP Ti, Vi → To Twitter 7.2K
Twitter-15 Ti, Vi → To Twitter 8.3K
Twitter-17 Ti, Vi → To Twitter 4.8K
WikiDiverse Ti, Vi → To News 7.8K

Twitter-GMNER Ti, Vi → To, Vo Twitter 10K

Table 2: Comparison with other Named Entity Recognition
datasets on social media. Ti and Vi represent textual and visual
inputs, and To and Vo represent textual and visual outputs.
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Figure 2: The distribution of the number of bounding boxes
in each sample (left) and the distribution of groundable and
ungroundable entities for each entity type (right).

of bounding boxes in each sample. We can observe
that the image in 44.2% samples is unrelated to any
entity mentioned in text, whereas 41.8% samples
only contain one bounding box and around 14.0%
samples contain two or more bounding boxes. This
indicates the necessity and challenge of achieving
text-image and entity-image alignments for GM-
NER. In Fig. 2 (right), we show that most enti-
ties with the PER type are grounded in the image,
whereas entities with the other three types (espe-
cially LOC) are usually not grounded in the image.

4 Methodology

In this section, we present the details of our pro-
posed Hierarchical Index generation (H-Index)
framework.

Overview. As illustrated in Fig. 3, H-Index for-
mulates the GMNER task as an index generation
problem, which resorts to a pre-trained sequence-
to-sequence model BART (Lewis et al., 2020) to
encode the textual and visual inputs, followed
by decoding the indexes of entities, types, and
groundable or ungroundable indicators. For en-
tities with groundable indicators, another output
layer is added to predict the distribution over visual
regions for entity grounding.

4.1 Feature Extraction

Text Representation. Given the input text s =
(s1, . . . , sn), we feed it to the embedding matrix

9143

https://github.com/tzutalin/labelImg


KL Loss

Object Detection with VinVL

Human 
Annotation

Michael Jordan is now in Toronto , giving his 
distinguished lecture at the Fields Institute

BART-Encoder

Vocabulary：
1: <groundable>
2: <ungroundable>
3: <person>
4: <location>
5: <organization>
6: <miscellaneous>
7: Michael
8: Jordan
9: is
……
21: Institute

𝑒𝑒<s> 𝑒𝑒Institute
… 𝑣𝑣1 𝑣𝑣2 𝑣𝑣𝐾𝐾𝑒𝑒</s>𝑒𝑒Jordan𝑒𝑒Michael …

Hierarchical Index G
eneration

Region Supervision
Michael Jordan the Fields Institute

Calculate 
IoU Score

Toronto

None

Michael Jordan the Fields InstituteToronto

None

Michael Jordan

PER

the Fields Institute

ORG

Toronto 

None LOC

KL Loss

VinVL

412 20 1187 </s>23 19 21 5

BART-Decoder

Jordan <groundable><s> Michael <person> Toronto < ungroundable ><location> <organization>InstituteFieldsthe <groundable>

Figure 3: The overview of our proposed Hierarchical Index generation framework (H-Index).

of BART to obtain the text representation as T =
{e1, . . . , en}, where ei ∈ Rd.

Visual Representation. Given the input image
v, we employ a widely-adopted object detection
method VinVL (Zhang et al., 2021b) to identify all
the candidate objects (i.e., visual regions). After
ranking these objects based on their detection prob-
abilities, we keep the top-K objects and extract the
mean-pooled convolutional features from VinVL
to obtain fixed-size embeddings for visual regions,
denoted by R = {r1, . . . , rK}, where ri ∈ R2048

is the representation of the i-th region. We then use
a linear layer to transform R into the same dimen-
sion of text, and thus the regional representation is
denoted as V = {v1, . . . ,vK}, where vi ∈ Rd.

4.2 Design of Multimodal Indexes

As mentioned before, the GMNER task requires ex-
tracting three kinds of information, including entity
mentions in text, entity types, and visual regions in
image. To project these different information into
the same output space, we draw inspiration from
the NER task (Yan et al., 2021) and use unified
position indexes to pointing to these information.

Specifically, we can infer from Table 1 that
around 60% entities do not have grounded visual
regions in image, which indicates the correct pre-
diction of the relevance between entities and im-
ages is essential to entity grounding. Thus, we
first transform the entity-image relation into two
indexes (i.e., 1 and 2 in the left of Fig. 3) to indicate

whether each entity is groundable or ungroundable.
Next, we use four indexes (i.e., 3 to 6) to refer to
four entity types. Because the input text s is a se-
quence with n words, we directly use n position
indexes starting from 7 to refer to each word in s.

For example, given the textual and visual inputs
in Fig. 3, its output index sequence contains three
entity-relation-type triples. The first triple [7,8,1,3]
refers to {Michael Jordan, groundable, PER}, the
second triple [12,2,4] denotes {Toronto, unground-
able, LOC}, and the third triple [19,20,21,1,5]
refers to {the Fields Institute, groundable, ORG}.
Formally, let us use y to denote the output index
sequence.

4.3 Index Generation Framework

Given a multimodal input, we employ a sequence-
to-sequence model BART (Lewis et al., 2020) to
generate the output index sequence y.

Encoder. We first feed the concatenation of text
and visual representations to the BART encoder to
obtain the hidden representation as follows:

He = [He
T;H

e
V] = Encoder([T;V]), (2)

where He
T ∈ Rn×d and He

V ∈ RK×d are textual
and visual parts of He ∈ R(n+K)×d, respectively.

Decoder. At the i-th time step, the decoder takes
He and the previous decoder output y<i as inputs
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to predict the output probability distribution p(yi):

hi = Decoder(He;y<i), (3)

H̄e
T =

(
T+ MLP(He

T)
)
/2, (4)

p(yi) = Softmax([C; H̄e
T] · hi), (5)

where MLP refers to a multi-layer perceptron, C
= TokenEmbed(c) refers to the embeddings of two
indicator indexes, four entity type indexes, and
special tokens such as the “end of sentence” token
</s>, and · denotes the dot product.

The cross entropy loss is used to optimize the
parameters of the generative model as follows:

LT = − 1

NM

N∑

j=1

M∑

i=1

log p(yj
i ), (6)

where N and M refer to the number of samples and
the length of output index sequence, respectively.

4.4 Entity Grounding
Lastly, for groundable entities, we further stack
another output layer to perform entity grounding.

Specifically, let us use hk to refer to the time
step whose predicted index is the groundable indi-
cator (i.e., index 1). We then obtain the probability
distribution over all the visual regions from VinVL,
denoted by p(zk) as follows:

H̄e
V =

(
V + MLP(He

V)
)
/2, (7)

p(zk) = Softmax(H̄e
V · hk). (8)

Region Supervision. As shown in the top of
Fig. 3, since the visual regions from VinVL are dif-
ferent from the ground-truth (GT) bounding boxes,
we first compute the overlap between visual regions
and GT bounding boxes based on their Intersection
over Union (IoU) scores. Note that for each visual
region, we compute its IoU scores with respect to
all GT bounding boxes of a given entity and take
the maximum value as its IoU score. Moreover, for
visual regions whose IoU score is less than 0.5, we
follow the practice in visual grounding (Yu et al.,
2018b) by setting its IoU score as 0. Next, we re-
normalize the IoU score distribution as the region
supervision for a given entity, denoted by g(zk).

The objective function of entity grounding is to
minimize the Kullback-Leibler Divergence (KLD)
loss between the predicted region distribution p(zk)
and the region supervision g(zk)：

LV =
1

NE

N∑

j=1

E∑

k=1

g(zj
k) log

g(zj
k)

p(zj
k)
, (9)

Algorithm 1 Our Entity-Groundable/Ungrounable-
Type Triple Recovery Algorithm

Input: Predicted sequence ŷ = [ŷ1, ..., ŷl] and
ŷl ∈ [1, n + |c|], where c is the list of two
indicator indexes, four entity type indexes, and
special tokens.

Output: Triples E
1: E = {}, e = [], i = 1
2: while i <= l do
3: yi = Y [i]
4: if yi < |c| then
5: if len(e) > 0 then
6: if indexes in e is ascending then
7: if yi = 1 or yi = 2 then
8: E.add(e, cyi , cyi+1)
9: end if

10: end if
11: end if
12: e = []
13: i = i+ 2
14: else
15: e.append(yi)
16: end if
17: i = i+ 1
18: end while
19: return E

where E is the number of groundable entities.
In the training stage, we combine LT and LV as

the final loss of our H-Index model:

L = LT + LV . (10)

4.5 Entity-Type-Region Triple Recovery
In the inference stage, given a multimodal input, we
use the trained H-Index model to generate the index
sequence ŷ in an autoregressive manner based on
greedy search, and predict the region distribution
p(ẑk) for the k-th groundable entity.

With the output index sequence, we can first
convert each index to its original meaning and then
recover (entity, groundable/ungroundable, type)
triples based on the index span of each element.
The full algorithm is shown in Algorithm 1.

For the j-th ungroundable entity, the predicted
triple is (ej , tj ,None). For the k-th groundable
entity, we regard the visual region with the highest
probability in p(ẑk) as the predicted bounding box,
and take its 4-D coordinates rk = (x1k, y

1
k, x

2
k, y

2
k)

as the visual output. Thus, the predicted triple of
the k-th groundable entity is (ek, tk, rk).
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5 Experiments

5.1 Experimental Settings

For our proposed framework H-Index, we employ
the pre-trained VinVL model released by (Zhang
et al., 2021b) to detect top-K visual regions, and
use the pre-trained BARTbase model from (Lewis
et al., 2020) to initialize the parameters in the index
generation framework in Section 4.3. Hence, the
hidden dimension d is set to the default setting 768.
The batch size and training epoch are set to 32
and 30, respectively. During training, we use the
AdamW optimizer for parameter tuning. For the
learning rate and the number of candidate visual
regions K, we set their values to 3e-5 and 18 after
a grid search over the combinations of [1e-5, 1e-4]
and [2, 20] on the development set.

Evaluation Metrics. The GMNER task involves
three elements, i.e., entity, type, and visual region.
For entity and type, we follow previous MNER
works to use the exact match for evaluation (Zhang
et al., 2018). For visual region, if it is unground-
able, the prediction is considered as correct only
when it is None; otherwise, the prediction is consid-
ered as correct only when the IoU score between
the predicted visual region and one of the ground-
truth (GT) bounding boxes is large than 0.5 (Mao
et al., 2016). The correctness of each element is
computed as follows:

Ce/Ct =

{
1, pe/pt = ge/gt;
0, otherwise.

(11)

Cr =




1, pr = gr = None;
1, max(IoU1, ..., IoUj) > 0.5;
0, otherwise.

(12)

where Ce, Ct, and Cr denote the correctness of
entity, type, and region predictions, pe, pt, and pr
denote the predicted entity, type, and region, ge, gt,
and gr denote the gold entity, type, and region, and
IoUj denotes the IoU score between the predicted
region pr with the j-th GT bounding box gr,j . We
then calculate precision (Pre.), recall (Rec.), and
F1 score to measure the performance of GMNER:

correct =
{
1, Ce and Ct and Cr;
0, otherwise.

(13)

Pre =
#correct
#predict

, Rec =
#correct

#gold
, (14)

F1 =
2× Pre×Rec

Pre+Rec
, (15)

where #correct denotes the number of predicted
triples that match the gold triples, and #predict and
#gold are the number of predicted and gold triples.

5.2 Baseline Systems

Since GMNER is a new task and there is no existing
method for comparison, we first consider several
text-only methods as follows:

• HBiLSTM-CRF-None, which uses the hierar-
chical BiLSTM-CRF model (Lu et al., 2018)
to extract entity-type pairs, followed by setting
the region prediction to the majority class, i.e.,
None;

• BERT-None, BERT-CRF-None, and BARTNER-
None, which replace the hierarchical BiLSTM-
CRF model in HBiLSTM-CRF-None with
BERT (Devlin et al., 2019), BERT-CRF, and
BARTNER (Yan et al., 2021), respectively.

Moreover, we develop a pipeline approach as
a strong baseline, which first uses any previous
MNER method to extract entity-type pairs and then
predicts the bounding box for each pair with an
Entity-aware Visual Grounding (EVG) model.

Specifically, given the i-th extracted entity-type
pair (ei, ti) from existing MNER methods as well
as the textual input s, we construct the textual input
as follows: [[CLS], s, [SEP], ei, [SEP], ti, [SEP]],
which is fed to a pre-trained BERTbase model (De-
vlin et al., 2019) to obtain the text representation
T. We then use the feature extraction method in
Section 4.1 to obtain the visual representation V.
Next, a Cross-Model Transformer layer (Tsai et al.,
2019) is utilized to model the interaction between
the text and visual representations as follows: H =
CMT(V,T,T), where V and T are regarded as
queries and keys/values, and H = {h1, . . . ,hK}
is the generated hidden representation. For each
visual region hj ∈ Rd, we add an output layer to
predict whether it is the grounded region of (ei, ti):
p(yj) = sigmoid(w⊤hj), where w ∈ Rd is the
weight matrix. During inference, we choose the
visual region with the highest probability. If the
probability is higher than a tuned threshold, it im-
plies the input entity-type pair is groundable and
the predicted region is the top visual region; other-
wise, the prediction region is None.

As shown in Table 3, we stack the EVG model
over four well-known MNER methods as follows:

• GVATT-RCNN-EVG, which uses GVATT (Lu
et al., 2018), a visual attention method based on
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GMNER MNER EEG
Methods Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

Te
xt

HBiLSTM-CRF-None (Lu et al., 2018) 43.56 40.69 42.07 78.80 72.61 75.58 49.17 45.92 47.49
BERT-None (Devlin et al., 2019) 42.18 43.76 42.96 77.26 77.41 77.30 46.76 48.52 47.63
BERT-CRF-None 42.73 44.88 43.78 77.23 78.64 77.93 46.92 49.28 48.07
BARTNER-None (Yan et al., 2021) 44.61 45.04 44.82 79.67 79.98 79.83 48.77 49.23 48.99

Te
xt

+I
m

ag
e

GVATT-RCNN-EVG (Lu et al., 2018) 49.36 47.80 48.57 78.21 74.39 76.26 54.19 52.48 53.32
UMT-RCNN-EVG (Yu et al., 2020) 49.16 51.48 50.29 77.89 79.28 78.58 53.55 56.08 54.78
UMT-VinVL-EVG (Yu et al., 2020) 50.15 52.52 51.31 77.89 79.28 78.58 54.35 56.91 55.60
UMGF-VinVL-EVG (Zhang et al., 2021a) 51.62 51.72 51.67 79.02 78.64 78.83 55.68 55.80 55.74
ITA-VinVL-EVG (Wang et al., 2022a) 52.37 50.77 51.56 80.40 78.37 79.37 56.57 54.84 55.69
BARTMNER-VinVL-EVG 52.47 52.43 52.45 80.65 80.14 80.39 55.68 55.63 55.66
H-Index (Ours) 56.16 56.67 56.41 79.37 80.10 79.73 60.90 61.46 61.18

Table 3: Performance comparison of different methods on tasks of GMNER, MNER, and Entity Extraction & Grounding (EEG).

the BiLSTM-CRF model (Lample et al., 2016),
to extract entity-type pairs, followed by apply-
ing the EVG model based on the objects de-
tected by Faster R-CNN (Anderson et al., 2018);

• UMT-RCNN-EVG, which replaces the MNER
method in GVATT-RCNN-EVG with UMT (Yu
et al., 2020), a Multimodal Transformer ap-
proach with an auxiliary entity span detection
task. UMT-VinVL-EVG is a variant of UMT-
RCNN-EVG, which replaces Faster R-CNN with
VinVL;

• UMGF-VinVL-EVG is a variant of UMT-VinVL-
EVG using UMGF (Zhang et al., 2021a) for
MNER, which models text-image interactions
with a multimodal graph fusion network;

• ITA-VinVL-EVG is another variant of UMT-
VinVL-EVG using ITA (Wang et al., 2022a) for
MNER, which translates images to captions and
object tags, followed by sequence labeling.

• BARTMNER-VinVL-EVG is a variant of our H-
Index approach, which first uses the index gener-
ation framework in Section 4.3 to identify entity-
type pairs, and then uses the EVG model to pre-
dict the grounded bounding box for each pair.

5.3 Main Results

In Table 3, we show the results of different methods
on the GMNER task. To better compare these meth-
ods, we also report the F1 score of two subtasks
of GMNER, including MNER and Entity Extrac-
tion & Grounding (EEG). Note that MNER aims
to identify the entity-type pairs whereas EEG aims
to extract the entity-region pairs.

Results on GMNER. First, for text-based meth-
ods, it is clear that BARTNER-None significantly
outperforms the other methods, which shows the
effectiveness of the index generation framework

and agrees with the observation in existing NER
works (Yan et al., 2021). Second, all the multi-
modal approaches consistently perform much bet-
ter than text-based methods. This indicates the
usefulness of our proposed Entity-aware Visual
Grounding (EVG) baseline. Third, comparing
all the multimodal baseline systems, BARTMNER-
VinVL-EVG obtains the best result, primarily due to
its outstanding performance on the MNER subtask.
Finally, we can clearly observe that our proposed
H-Index framework outperforms the best baseline
BARTMNER-VinVL-EVG by 3.96 absolute percent-
age points based on F1 score. The main reason for
the performance gain is that all the baseline sys-
tems extract entity-types pairs followed by visual
grounding, which suffer from the common error
propagation issue of pipeline methods. In contrast,
H-Index uses the unified index generation frame-
work to directly generate the entity-type-region
triples with a sequence-to-sequence model.

Results on MNER and EEG. First, for the
MNER subtask, we can see that our H-Index frame-
work performs generally better than most base-
lines but worse than BARTMNER-VinVL-EVG. We
conjecture the reason is that all the baselines are
pipeline methods and should achieve the best per-
formance on each stage, whereas our H-Index
model is an end-to-end approach for entity-type-
region triple extraction, which may only obtain the
sub-optimal model on the MNER task. In addition,
for the EEG subtask, H-Index significantly outper-
forms the best baseline by 5.44 absolute percentage
points. These observations verify the effectiveness
of our H-Index framework.

5.4 In-Depth Analysis

Ablation Study. In Table 5, we conduct ablation
study of our H-Index framework. First, we replace
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(a). Rose Byrne PER, Orange Shadow , Seth Rogen PER, Blue Shadow Celebrity Sightings
in New York City LOC, N/A May 18 , 2016

(b). Loki MISC, Orange Shadow is happy @ primantibros ships to Baltimore LOC, N/A
now . He just wishes he could eat it . @ goldbely # ShipThatMeat

UMT-RCNN-EVG BARTMNER-VinVL-EVG H-Index UMT-RCNN-EVG BARTMNER-VinVL-EVG H-Index

(Rose Byrne, PER, Box-1) ×
(Seth Rogen, PER, N/A) ×

(New York City, LOC, N/A) ✓

(Rose Byrne, PER, N/A) ×
(Seth Rogen, PER, Box-1) ✓

(New York City, LOC, N/A) ✓

(Rose Byrne, PER, Box-2) ✓
(Seth Rogen, PER, Box-1) ✓

(New York City, LOC, N/A) ✓
(Loki, PER, Box-1) ×

(Baltimore, LOC, N/A) ✓
(Loki, MISC, N/A) ×

(Baltimore, LOC, N/A) ✓
(Loki, MISC, Box-1) ✓

(Baltimore, LOC, N/A) ✓

Table 4: Prediction comparison on two test samples. ✓ and × denote correct and incorrect predictions. N/A refers to None.

Methods Pre. Rec. F1

H-Index 56.16 56.67 56.41
- rep. KLD Loss with CE Loss 55.88 53.72 54.78
- w/o Hierarchical Prediction 55.83 52.89 54.32

Table 5: Comparison results of ablated H-Index models.

the KLD loss in Equation (9) with the cross-entropy
loss. We find that the performance slightly drops,
indicating that the KLD loss can better capture
the relations between different visual regions for
region detection. Moreover, we remove the hierar-
chical prediction of the groundable/ungroundable
indicator in Section 4.3 and entity grounding in
Section 4.4. Specifically, we use a special token
to indicate whether the current time step in the de-
coder is for visual grounding, and then add a binary
classification layer for each visual region, which
is the same as the EVG baseline. As shown in Ta-
ble 5, removing the hierarchical prediction leads to
a performance drop of 2.09 percentage points.

Sensitivity Analysis of K. We use our H-Index
model and BARTMNER-VinVL-EVG to analyze the
impact of the number of object regions from VinVL
on GMNER and EEG tasks. In Fig. 4, we can find
the two methods gradually perform better as K be-
comes larger. This is because when K is small, the
top-K regions from VinVL may not cover ground-
truth visual regions. When K equals to 18, the two
methods consistently achieve the best performance.

5.5 Case Study

We further conduct case study to compare the pre-
dictions of UMT-RCNN-EVG, BARTMNER-VinVL-
EVG, and H-Index on two test samples in our
dataset. In Table 4.a, we find that all the methods
correctly identify the three entity-type pairs. How-
ever, UMT-RCNN-EVG is confused with the two
PER entities and wrongly predicts their grounded
regions, while BARTMNER-VinVL-EVG fails to
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Figure 4: The impact of the value of K on GMNER and
Entity Extraction & Grounding (EEG) tasks.

identify the grounded region of Rose Byrne. In
contrast, our H-Index model correctly identifies the
bounding box groundings for the two PER entities.
Similarly, in Table 4.b, the two baselines fail to
identify either the correct entity type or the correct
bounding box of Loki, whereas H-Index correctly
grounds Loki onto the visual region with the dog,
and predicts its type as MISC.

6 Related Work

NER on Social Media. Many supervised learn-
ing methods have achieved satisfactory results on
formal text (Li et al., 2020a), including feature en-
gineering methods (Finkel et al., 2005; Ratinov and
Roth, 2009) and deep learning methods (Chiu and
Nichols, 2016; Ma and Hovy, 2016). However,
most of them perform poorly on social media, be-
cause the text on social media is often informal
and short. To handle this problem, many social
text-based features such as hashtags (Gimpel et al.,
2010) and freebase dictionary (Ritter et al., 2011)
are designed to enhance the performance of both
feature-based methods (Baldwin et al., 2015) and
deep learning methods (Limsopatham and Collier,
2016; Gerguis et al., 2016; Lin et al., 2017; Suman
et al., 2021).

Multimodal NER on Social Media. With the
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rapid growth of multimodal posts on social me-
dia, MNER has recently attracted much attention.
Most existing MNER methods focus on modeling
the text-image interactions by designing various
kinds of cross-modal attention mechanism (Moon
et al., 2018; Lu et al., 2018; Zheng et al., 2020).
With the recent advancement of deep learning tech-
niques, many studies focus on designing different
neural networks for MNER, including Transformer-
based methods (Sun et al., 2021; Xu et al., 2022;
Chen et al., 2022a; Jia et al., 2023), Graph Neural
Network-based methods (Zhang et al., 2021a; Zhao
et al., 2022), Modality Translation-based meth-
ods (Chen et al., 2021b; Wang et al., 2022a), and
Prompt-based models (Wang et al., 2022c). Despite
obtaining promising results, these methods solely
utilize the visual clues to better extract entity-type
pairs. In contrast, the goal of our work is to extract
entity-type-region triples from each multimodal
post.

Visual Grounding. Given a natural language
query, Visual Grounding (VG) aims to locate the
most relevant object or region in an image. Most ex-
isting works on VG belong to two categories, i.e.,
one-stage methods and two-stage methods. The
former focuses on utilizing recent end-to-end ob-
ject detection models such as YOLO (Redmon and
Farhadi, 2018) and DETR (Carion et al., 2020) to
directly predict the visual region (Yang et al., 2019;
Deng et al., 2021; Ye et al., 2022). The latter aims
to first leverage object detection models (Ren et al.,
2015; Zhang et al., 2021b) to obtain region propos-
als and then rank them based on their relevance to
the text query (Yu et al., 2018a; Yang et al., 2020;
Chen et al., 2021a). Our work follows the latter line
of methods, which detects candidate visual regions
with VinVL, followed by entity grounding.

7 Conclusion

In this paper, we introduced a new task named
Grounded Multimodal Named Entity Recognition
(GMNER), aiming to identify the named entities,
their entity types, and their grounded bounding
boxes in a text-image social post. Moreover, we
constructed a new Twitter dataset for the task, and
then extended four previous MNER methods to
benchmark the task. We further proposed a Hi-
erarchical Index generation framework (H-Index),
which generates the entity-type-region triples in a
hierarchical manner. Experimental results demon-
strate the effectiveness of our H-index framework.

Limitations

Although we introduce a new GMNER task and
propose a number of baseline systems and an H-
Index framework, there are still some limitations
in this work.

First, our GMNER task only requires identifying
the visual regions that are correspondent to named
entities mentioned in text. However, for each im-
age, many visual regions may contain real-world
entities that are not mentioned in text. Therefore, it
would be interesting to further annotate the entities
that only occur in the image and explore a more
complete MNER task in the future.

Second, our work is a preliminary exploration of
the GMNER task, and the proposed approaches are
primarily based on previous representative NER or
MNER methods. We hope this work can encour-
age more research to apply the recent advanced
techniques from both the NLP and computer vision
communities to improve its performance.

Ethics Statement

Our dataset is constructed based on two public
MNER datasets, i.e., Twitter-15 (Zhang et al., 2018)
and Twitter-17 (Yu et al., 2020). Three graduate stu-
dents are employed as our annotators. The average
time to annotate every 1,000 samples for each an-
notator is around 17 hours. Since the two datasets
publicly released the text, images, and named enti-
ties, each annotator is asked to independently an-
notate the bounding box groundings for each entity
without accessing to the user account. To ensure
that the annotators were fairly compensated, we
paid them at an hourly rate of CNY 36 (i.e., USD
5.2 per hour), which is higher than the current av-
erage wage in Jiangsu Province, China. We do not
share personal information and do not release sen-
sitive content that can be harmful to any individual
or community. Because it is easy to retrieve multi-
modal tweets via image IDs from the two MNER
datasets, we will release our annotation based on
the textual modality and unique image IDs.
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