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Abstract

Fine-tuning has been proven to be a simple
and effective technique to transfer the learned
knowledge of Pre-trained Language Models
(PLMs) to downstream tasks. However, vanilla
fine-tuning easily overfits the target data and
degrades the generalization ability. Most exist-
ing studies attribute it to catastrophic forgetting,
and they retain the pre-trained knowledge in-
discriminately without identifying what knowl-
edge is transferable. Motivated by this, we
frame fine-tuning into a causal graph and dis-
cover that the crux of catastrophic forgetting
lies in the missing causal effects from the pre-
trained data. Based on the causal view, we
propose a unified objective for fine-tuning to
retrieve the causality back. Intriguingly, the
unified objective can be seen as the sum of the
vanilla fine-tuning objective, which learns new
knowledge from target data, and the causal ob-
jective, which preserves old knowledge from
PLMs. Therefore, our method is flexible and
can mitigate negative transfer while preserving
knowledge. Since endowing models with com-
monsense is a long-standing challenge, we im-
plement our method on commonsense QA with
a proposed heuristic estimation to verify its ef-
fectiveness. In the experiments, our method
outperforms state-of-the-art fine-tuning meth-
ods on all six commonsense QA datasets and
can be implemented as a plug-in module to in-
flate the performance of existing QA models.
1

1 Introduction

Deep Pre-trained Language Models (PLMs) such
as RoBERTa (Liu et al., 2019b) and T5 (Raffel
et al., 2020)) are inherently knowledge bases since
they are exposed to a tremendous amount of data
(e.g., the C4 dataset (Raffel et al., 2020)) in the

∗*Corresponding author
1Our codes are publicly available

at https://github.com/zzz47zzz/CET and
https://github.com/qianlima-lab/CET

pre-training stage (Petroni et al., 2019; AlKhamissi
et al., 2022). Unfortunately, transferring the intrin-
sic knowledge in PLMs to downstream tasks is non-
trivial. In practice, fine-tuning is adopted widely
due to its flexibility (Chen et al., 2020) and numer-
ous improved methods (Lee et al., 2019; Chen et al.,
2020, 2019; Mosbach et al., 2020; Zhang et al.,
2020b; Xu et al., 2021a; Aghajanyan et al., 2020;
Wu et al., 2022) are proposed in recent years. How-
ever, fine-tuning faces two challenges when adapt-
ing models to new domains (Chen et al., 2019),
including catastrophic forgetting (Kirkpatrick et al.,
2017) and negative transfer (Torrey and Shavlik,
2010). More specifically, catastrophic forgetting
refers to models losing previously learned knowl-
edge and overfitting the target domain data. Neg-
ative transfer occurs because not all pre-trained
knowledge is transferable across domains. Obvi-
ously, catastrophic forgetting and negative transfer
constitute a dilemma where the crux lies in identi-
fying and utilizing transferable knowledge.

A large body of previous work has been con-
ducted to solve this problem. Existing fine-tuning
methods for mitigating catastrophic forgetting can
be summarized as preventing the fine-tuned models
from deviating too far from the pre-trained weights.
For example, RecAdam (Chen et al., 2020) and
Child-Tuning (Xu et al., 2021a) utilize the Fisher
Information Matrix estimated by the pre-trained
model to constraint the update in the fine-tuned
model. Mixout (Lee et al., 2019) randomly re-
places the model parameters with their pre-trained
weights. These methods constrain the update of
models’ parameters indiscriminately without iden-
tifying what knowledge is transferable and thus
susceptible to negative transfer. Chen et al. (2019)
proposed BSS, which focuses on mitigating nega-
tive transfer by penalizing the small singular values
of the feature matrix. However, when only negative
transfer is concerned, BSS may not fully utilize the
pre-trained knowledge.
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In this paper, we propose a novel method called
Causal Effect Tuning (CET) for mining the pre-
trained knowledge in PLMs. Unlike the previous
fine-tuning method, our method is rooted in the
theory of causal inference. It delves into the causal-
ities between data, models, and features instead
of merely statistical association. First, we frame
vanilla fine-tuning into a causal graph (Glymour
et al., 2016) and find out that the cause of catas-
trophic forgetting is the vanishing causal effects of
pre-trained data. Therefore, preventing forgetting
is to maximize the causal effect. Then, we ap-
proximate the causal effect with the likelihood of
the joint prediction of K-Nearest-Neighbor (KNN)
samples. Since equipping models with common-
sense knowledge is still challenging, we implement
the proposed causal graph with a heuristic approx-
imation on commonsense QA. We measure the
distance with the similarity between gold answers
(i.e., ground-truth answers) instead of questions for
retrieving KNNs. The rationale is that the ques-
tions with the same gold answer share the same
commonsense knowledge in PLMs. Finally, we
apply our method to RoBERTa (Liu et al., 2019b)
and T5 (Raffel et al., 2020) and conduct extensive
experiments on six commonsense datasets. The
experimental results show that our method outper-
forms state-of-the-art fine-tuning methods and can
be plugged into the state-of-the-art QA models to
improve performance.

More importantly, our method is lightweight and
flexible since it requires no learnable parameter
except PLMs and has fewer hyper-parameters to
tune. It is worth noting that our method readily
controls the strength of knowledge preservation by
a single hyper-parameter, enabling a good balance
between preserving pre-trained knowledge and ab-
sorbing new knowledge from downstream tasks. In
summary, our contributions are three-fold:

• We present a causal graph for fine-tuning with
less forgetting by identifying the root cause of
catastrophic forgetting as the missing causal
effects of pre-trained data.

• Based on the proposed causal graph, we de-
sign a lightweight and flexible fine-tuning
method called Causal Effect Tuning for pre-
serving knowledge in PLMs.

• For commonsense QA, we estimate the causal
effect with a heuristic approximation. And we
verify the effectiveness and versatility of our

method through extensive experiments on six
commonsense QA datasets.

2 Related Work

2.1 Fine-tuning Methods

Apart from the methods mentioned above, some ap-
proaches improve downstream performances from
the perspective of robustness. Aghajanyan et al.
(2020) proposed R3F, which regularizes the sym-
metric KL divergence between the classifications
of the original samples and the perturbed ones. Wu
et al. (2022) proposed Noisytune, which adds uni-
form distribution noise to pre-trained parameters
before fine-tuning to reduce the risk of overfitting
the pre-training tasks and data. Besides, Mosbach
et al. (2020); Zhang et al. (2020b) increased the
stability of fine-tuning BERT (Devlin et al., 2019)
in the low-data regime. Mosbach et al. (2020) ad-
vocated fine-tuning for a long time and choosing
good optimizers and hyper-parameters. Zhang et al.
(2020b) verified that re-initialized the top layers
of BERT helps pre-trained knowledge transfer to
downstream tasks.

2.2 Causal Inference

Causal inference (Glymour et al., 2016; Schölkopf,
2022) has been recently introduced to various com-
puter vision tasks such as image classification (Hu
et al., 2021), semantic segmentation (Zhang et al.,
2020a) and long-tailed classification (Tang et al.,
2020; Nan et al., 2021), and NLP tasks such as dis-
tantly supervised NER (Zhang et al., 2021), neural
dialogue generation (Zhu et al., 2020) and contin-
ual named entity recognition (Zheng et al., 2022).
To our best knowledge, we are the first to apply
causal inference to fine-tuning.

2.3 Continual Learning

Although catastrophic forgetting happens in both
continual learning (Rebuffi et al., 2017; Hu et al.,
2021) and fine-tuning, the targets of these two tasks
are fundamentally different. Continual learning
aims to learn a growing number of tasks sequen-
tially and maximize the performance on all recog-
nized tasks. In contrast, fine-tuning maximize only
the performance of target tasks. The recent advance
in continual learning (Hu et al., 2021; Zheng et al.,
2022) partially inspires this work.
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(a) Vanilla Fine-Tuning (b) Fine-Tuning with Less Forgetting

Figure 1: The causal graphs of vanilla fine-tuning and our method. (a): The knowledge is forgotten during vanilla
fine-tuning since the causal effect of the pre-trained data is missing; (b): When conditioning on HT

0 , the causal
effect of the pre-trained data is retained through the causal path P ↔ XT → H → Ŷ . In addition, the model
absorbs new knowledge from XNT through the causal path XNT → H → Ŷ .

3 Methodology

In this section, we first use causal graphs (Pearl,
2009) to analyze how pre-trained knowledge is for-
gotten in fine-tuning. Then, we present a causal
graph for anti-forgetting based on previous anal-
ysis. Next, we estimate the causal effect through
derivations and propose a unified learning objec-
tive for fine-tuning with less forgetting. At last, we
provide a heuristic approximation for estimating
the causal effect on a challenging downstream task,
commonsense QA. Note that the proposed causal
graph and the fine-tuning method are generic to all
downstream tasks.

3.1 Vanilla Fine-Tuning

In a causal graph, nodes represent variables, and di-
rected edges are causalities between nodes. Fig.(1a)
delineates the process of vanilla fine-tuning. We
denote the pre-trained data (i.e., pre-trained knowl-
edge) as P ; the data in target tasks as X; the fea-
ture of X extracted by the pre-trained model and
fine-tuned model as H0 and H , respectively; the
prediction of the fine-tuned model on target tasks
as Ŷ (i.e., the probability over categories). The
causality between nodes (i.e., directed edges) is as
follows: (1) X → H → Ŷ : X → H represents
that the feature H is extracted by the backbone
model such as RoBERTa, and H → Ŷ represents
a classifier compute the prediction Ŷ according to
the extracted feature H; (2) X → H0 ← P : H0

is determined by both P and X because H0 is ex-
tracted by the pre-trained model, which is trained
on P 2.

2Here, we ignore the effect of initial parameters initial-
ized from the pre-trained model since it will be exponentially
decayed towards zero during fine-tuning (Kirkpatrick et al.,
2017).

Then, the effect of pre-trained data P on predic-
tions Ŷ can be calculated as:

EffectP = P(Ŷ = ŷ|do(P = p))

− P(Ŷ = ŷ|do(P = 0)) (1)

= P(Ŷ = ŷ|P = p)− P(Ŷ = ŷ|P = 0)
(2)

= P(Ŷ = ŷ)− P(Ŷ = ŷ) (3)

= 0, (4)

In Eq.(1), do(P = 0) represents that no pre-trained
data is used for pre-training, and do(P = p)
represents a standard pre-training is performed.
Then, P(Ŷ = ŷ|do(P = p)) is the prediction
given by a pre-trained-then-fine-tuned model
and P(Ŷ = ŷ|do(P = 0)) is the prediction given
by a randomly-initialized-then-fine-tuned model.
Eq.(1) defines EffectP as the difference between
the two predictions. Eq.(2) holds because P has
no parent nodes. Eq.(3) holds because collider H0

blocks all causal paths from P to Y .
Eq.(1)-(4) shows that a vanilla fine-tuned model

will eventually forget all pre-trained knowledge
when no constraints are imposed. In practice, fine-
tuned models will not forget all learned knowl-
edge because the learning rate and training time
are considerably lower and shorter than those in
pre-training. However, fine-tuned models likely
forget partial pre-trained knowledge, overfit the tar-
get data, and fall into sub-optimal states since the
amount of target data is usually considerably less
than that of pre-trained data.

3.2 Fine-Tuning with Less Forgetting

The causal graph in Fig.(1a) necessitates the re-
trieval of the causality between P and Ŷ back. A
straightforward solution is utilizing the pre-trained
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data to constrain model behaviors in new tasks.
However, it is often obstructed by time, space, and
financial constraints.

Thanks to causal inference, we can build a causal
path between P and X without storing P . In the
causal graph Fig.(1a), H0 is the joint outcome of
the independent causes P and X . Intriguingly,
once the common effect H0 is observed, the causes
P and X become dependent. The causal effect is
called colliding effect in Hu et al. (2021); Zheng
et al. (2022)3. We’d like to provide a vivid exam-
ple (Pearl, 2009) for understanding this pattern in
causal inference: If the admission criteria to a cer-
tain school require either high grades or special mu-
sical talents, then these two attributes will be found
to be correlated (negatively) in that school’s student
population, even if these attributes are uncorrelated
in the population at large. By conditioning on H0,
the causal effect of pre-trained data is preserved
during fine-tuning (i.e., EffectP > 0), and thus the
pre-trained knowledge is preserved.

Except for preserving old knowledge, assimilat-
ing new knowledge from target data is critical. In
addition, negative transfer may occur if we pre-
serve pre-trained knowledge overly. Motivated by
this, we split the target data into two nodes XT

and XNT . XT represents the samples where we
calculate colliding effects, and their knowledge
should be transferred from PLMs. XNT is the
samples where we do not calculate colliding ef-
fects, and their knowledge is domain-specific and
should be absorbed into fine-tuned models. Con-
sequently, the causal graph for our method is in
Fig.(1b), and the rationale is as follows: The fine-
tuned model preserves pre-trained knowledge by
utilizing colliding effects (P ↔ XT ) while learn-
ing domain-specific knowledge (XNT ). The final
prediction depends on both pre-trained knowl-
edge and domain-specific knowledge from causal
paths P ↔ XT → H → Ŷ and XNT → H → Ŷ ,
respectively.

3.3 Estimating Colliding Effects

Next, we need to estimate the colliding effect be-
tween P and XT . When conditioning on H0,

3This phenomenon is also known as Berkson’s paradox in
(Berkson, 1946) and as the explaining away effect in (Peari
and Kim, 1983).

EffectP can be calculated as:

EffectP =

N∑

i=1

Effect(i)P (5)

≈
N∑

i=1

K∑

k=0

P(Ŷ (i)|X = x(i,k))WP (x
(i), x(i,k)),

(6)

where
∑K

k=0WP (x
(i), x(i,k)) = 1. N is the num-

ber of samples in the target data and x(i) is the i-th
sample. Effect(i)P is the colliding effect of P on
the prediction Ŷ (i). WP (·, ·) is a function deter-
mined by the pre-trained model and measures the
similarity between two samples in the hidden space
of the pre-trained model. In this case, we denote
WP (x

(i), x(i,k)) as Wi,k for brevity. x(i,k) is the
k-th nearest neighbor of x(i) in the hidden space.
Since x(i) always has the largest similarity with
itself, we let x(i,0) = x(i) and call x(i) the anchor
sample. Besides, we assume that the K Nearest
Neighbours (KNNs) are sorted in descending order
according to the similarity. Therefore, we have
Wi,0 ≥Wi,1 ≥Wi,2 ≥ · · · ≥Wi,K . K is a hyper-
parameter representing the number of neighbors for
estimating Ŷ (i). We provide a detailed derivation
and further explanation in Appendix A.

Eq.(5) re-writes the total causal effect as the sum
of the causal effect on the prediction of each tar-
get sample (i.e.,Effect(i)P ). In Eq.(6), P(Ŷ (i)|X =

x(i,k)) represents the likelihood of Ŷ (i) when x(i,k)

is the model input. Eq.(6) shows that Effect(i)P can
be approximated by the weighted sum of the like-
lihood when the model input is the anchor sample
x(i) and its KNNs. Since we expect to maximize
P(Ŷ (i) = y(i)|X = x(i)), maximizing Effect(i)P

equals to maximizing the likelihood of the joint
prediction on the ground-truth label y(i).

3.4 Overall Objective
In Eq. 6, the total causal effect EffectP is bro-
ken down into the causal effect of each sample
Effect(i)P . In this case, maximizing EffectP is to
preserve the related knowledge of all samples. As
we mentioned before, indiscriminately preserving
knowledge may lead to negative transfer. To ad-
dress this problem, we introduce a similarity thresh-
old θ to select the number of nearest neighbors for
each sample automatically. Specifically, for the
i-th sample, we truncate the ki (K ≥ ki ≥ 0) near-
est neighbors whose similarity is greater or equal
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Figure 2: An illustration of Causal Effect Tuning. x(i) is the anchor sample and h
(i)
0 is the hidden feature extracted

by the pre-trained model. x(i,1), x(i,2), x(i,3) are the KNNs of x(i). We apply colliding effects on x(i) to preserve the
old knowledge. After fine-tuning, the “Red” knowledge is preserved with colliding effects, and “blue” knowledge is
forgotten without colliding effects. A specific instance is as follows: x(i)= “What is a fast but expensive way to send
small cargo? (answer: airplane)”; x(i,1)=“Where could you find a seat that sometimes vibrates?”(answer: airplane);
x(i,2)=“What has metal wings?”(answer: airplane); x(i,3)= "It was important precious cargo, so it was delivered as
quickly as possible by means of what?”(answer: aeroplane). The “red” knowledge represents the commonsense
about “airplane”.

than θ. In this way, we differentiate the strength of
knowledge preservation on each sample by select-
ing the neighbors with small distances to their an-
chor sample. More interestingly, when ki = 0, i.e.,
a sample has no neighbors, the Effect(i)P amounts
to P(Ŷ (i) = y(i)|X = x(i)), which is exactly the
objective of each sample in vanilla fine-tuning. Fig.
2 provides an illustration for our method, where the
samples with no neighbors can be seen as a special
case of our method. Formally, we define the overall
objective as follows:

max EffectP =
N∑

i=1

Effect(i)P (7)

=
∑

i∈ST

Effect(i)P

︸ ︷︷ ︸
Colliding Effects

+
∑

i∈SNT

Effect(i)P

︸ ︷︷ ︸
Vanilla Fine-Tuning

, (8)

=
∑

i∈ST

ki∑

k=0

P(Ŷ (i)|X = x(i,k))Wi,k

︸ ︷︷ ︸
Colliding Effects

(9)

+
∑

i∈SNT

P(Ŷ (i)|X = x(i))

︸ ︷︷ ︸
Vanilla Fine-Tuning

,

where
∑

k Wi,k = 1,ST = {i|ki > 0},SNT =
{i|ki = 0}. Considering the distances between
KNNs and their anchor sample are approximated
and thus inaccurate, we set Wi,0 = W0 and Wi,1 =

Wi,2 = · · · = Wi,ki = 1−W0
ki

when ki > 0 for
implementation. W0 is a hyper-parameter for con-
trolling the strength of colliding effects. When
W0 = 0, the overall target degenerates to the
vanilla fine-tuning target. When W0 = 1, the over-
all target retains knowledge indiscriminately on all
samples. In Eq.(9), the second term amounts to the
vanilla fine-tuning objective since only the anchor
sample’s prediction is computed. In other words,
we preserve knowledge for the samples with KNNs
and learn new knowledge for the samples without
KNNs. The rationale is that the knowledge should
be preserved when more samples require it to an-
swer the question. In the proposed causal graph
in Fig.(1b), the first and the second term of Eq.(9)
correspond to the two causal paths through XT and
XNT respectively. We summarized the proposed
method in Fig. 2 and Alg. 1 in Appendix A.

3.5 An Implementation on Commonsense QA
In this subsection, we provide an implementation
for the causal graph in Fig.(1b) on commonsense
QA. We note that the overall objective in Eq. 9 is
agnostic to specific downstream tasks and model
architectures. The implementation can be different
in various tasks or model architectures, and the key
is to find proper KNNs. This paper provides an
implementation on commonsense QA since PLMs
may be endowed with commonsense knowledge
in pre-training (Petroni et al., 2019; AlKhamissi
et al., 2022), and it is still challenging for models to
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capitalize on commonsense (Talmor et al., 2018).
We first formulate the commonsense QA as

follows: Given a dataset with N samples
{(q(i), a(i), {o(i)j }j)}Ni , we train the best model for

choosing the gold answer a(i) among options {o(i)j }
given a question q(i). More specifically, the input of
the i-th sample can be x(i) = q(i)||o(i)1 || · · · ||o

(i)
j or

{x(i)}j = {q(i)||o(i)j }j 4 where || is the string-level
concatenation.

Then, we define a metric to search KNNs. A sim-
ple solution is to compute the euclidean distance or
cosine similarity between the average last hidden
states of PLMs. However, this method struggles
to capture accurate semantic meanings, and mea-
suring sentence similarity remains challenging. In
this regard, we provide a simple heuristic approxi-
mation. In most cases, the questions with the same
gold answers share the same knowledge. For exam-
ple, “airplane” is the gold answer to the following
questions, and we can use the knowledge about “air-
plane” to answer them: “What is a fast but expen-
sive way to send small cargo?”; “Where could you
find a seat that sometimes vibrates?”; “What has
metal wings?”. Therefore, we estimate the similar-
ity between gold answers to cope with the difficulty
of evaluating sentence similarity. Since options are
usually much shorter than questions, lightweight
tools such as spaCy (Honnibal et al., 2020) can be
used to retrieve gold answers with close semantic
meanings (e.g., “airplane” and “aeroplane”).

At last, we define the input of the i-th sam-
ple’s KNNs as x(i,k) = q(i,k)||o(i)1 || · · · ||o

(i)
j or

{x(i,k)}j = {q(i,k)||o(i)j }j . It alleviates the over-
fitting problem since the model needs to select the
correct answer among the options of anchor sample
when the question is from its KNNs.

4 Experiments

4.1 Settings

Datasets. We conduct experiments on 6 datasets:
CommonsenseQA(CSQA) (Talmor et al., 2018),
OpenBookQA(OBQA) (Mihaylov et al., 2018),
ARC (Clark et al., 2018, 2016), QASC (Khot et al.,
2020), SocialIQA (SIQA) (Sap et al., 2019), PIQA
(Bisk et al., 2020). Since the official test sets of
CSQA, QASC, SIQA, and PIQA are not available,
we follow (Yasunaga et al., 2021) and use the offi-

4Concatenating all options or each option depends on mod-
els.

cial dev sets as test sets and split in-house dev set
from the original training sets. The dataset statistics
are summarized in Table 6 in Appendix B.
Training. Given its popularity, we use RoBERTa-
large (Liu et al., 2019b) as the backbone model in
default. We also explore T5-large (Raffel et al.,
2020) since Khashabi et al. (2020) showed that it
excels at answering questions in different formats.
Other training details are specified in Appendix B.
Competitive Methods. We make comparisons
with nine state-of-the-art fine-tuning methods:
vanilla fine-tuning, BSS (Chen et al., 2019),
ChildTune-F&ChildTune-D (Xu et al., 2021a),
Mixout (Lee et al., 2019), NoisyTune (Wu et al.,
2022), R3F (Aghajanyan et al., 2020), RecAdam
(Chen et al., 2020) and ReInit (Zhang et al., 2020b).
For each method, we use the recommended hyper-
parameters in the paper and source code for a fair
comparison. We discuss the implementation details
of the fine-tuning methods in Appendix C.
Hyper-Parameters. As for the hyperparameters
of our methods, we fix K = 5 and search the best
W0 in {0.5, 0.7, 0.9, 0.95, 0.97} for each dataset.
We use spaCy to estimate the similarity between
gold answers. We set θ = 0.99 for PIQA and
θ = 1.00 for other datasets (i.e., the gold answers
should be matched precisely).

4.2 Results and Analyses

Comparisons with State-Of-The-Art. To
demonstrate the effectiveness of our method,
we re-implement several strong baselines on
commonsense QA datasets using their officially
released codes and hyper-parameters. The results
are summarized in Table 1. Results show that
our method outperforms all fine-tuning methods
consistently. On QASC and OBQA, our method
achieves 57.57% and 70.76% accuracy, obtaining
3.53% and 2.64% improvements on vanilla
fine-tuning.

Why our method better preserves commonsense
knowledge from PLMs? The reasons are two-fold.
The first reason is that our method utilizes the col-
liding effect for transferring the “colliding” com-
monsense knowledge, while other methods do not.
For instance, in Fig.2, our method encourages mod-
els to update x(i) and its KNNs x(i,1), x(i,2), x(i,3)

simultaneously. In this way, the commonsense
knowledge about “airplane” that “airplanes deliver
small and precious cargo”, “airplanes have metal
wings” and “airplanes have seats” can be trans-
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Table 1: Comparison with state-of-the-art methods. The average accuracy (%) and the standard derivation are
reported.

Methods CSQA OBQA ARC-Easy ARC-Challenge QASC PIQA SIQA

Fine-Tuning 75.74 (0.47) 68.12 (0.32) 67.66 (0.45) 45.98 (0.53) 54.04 (1.05) 78.62 (0.53) 77.46 (0.33)
BSS 76.21 (0.63) 68.64 (1.23) 68.24 (0.31) 46.62 (0.80) 53.82 (1.20) 78.20 (0.96) 77.35 (0.18)
ChildTune-F 75.50 (0.44) 69.84 (0.88) 68.17 (0.77) 46.30 (1.67) 54.41 (1.63) 77.61 (1.06) 75.87 (0.64)
ChildTune-D 76.76 (0.81) 69.36 (0.60) 67.86 (0.73) 45.28 (0.67) 55.77 (0.52) 78.32 (0.38) 78.20 (0.35)
Mixout 76.09 (0.56) 69.70 (0.71) 67.85 (0.57) 44.87 (0.72) 57.34 (1.02) 79.22 (0.31) 77.89 (0.37)
NoisyTune 76.01 (0.61) 67.56 (0.52) 67.61 (0.58) 46.05 (0.65) 54.43 (0.60) 78.61 (0.31) 76.59 (0.36)
R3F 76.59 (0.48) 68.47 (0.26) 68.13 (0.68) 47.01 (0.58) 55.69 (0.78) 79.38 (0.60) 77.05 (0.44)
RecAdam 75.43 (0.33) 70.68 (0.89) 68.07 (0.69) 45.90 (0.59) 54.62 (1.22) 78.26 (1.25) 76.71 (0.61)
ReInit 75.51 (0.71) 69.92 (1.14) 67.63 (0.59) 46.68 (0.39) 52.12 (1.66) 78.61 (0.37) 77.79 (0.15)
CET(Ours) 76.82 (0.33) 70.76 (0.33) 68.53 (0.53) 47.52 (0.38) 57.57 (0.44) 79.43 (0.27) 78.76 (0.31)

Table 2: Comparisons with knowledge-graph-based methods on CSQA with different proportions of training data.
We use the train-dev-test split in Jiang et al. (2022) and thus the CSQA results are inconsistent with those in other
experiments. The results of RoBERTa-large, RGCN, KagNet, Relation Network, MHGRN, QAGNN, and SAFE are
reported in Jiang et al. (2022). We report the average accuracy (%).

Methods use GNN? use KG?
Proportion of Training Data

5% 10% 20% 50% 80% 100%

RoBERTa-large % % 29.66 42.84 58.47 66.13 68.47 68.69

+RGCN (Schlichtkrull et al., 2018) ! ! 24.41 43.75 59.44 66.07 68.33 68.41
+KagNet (Lin et al., 2019) ! ! 21.92 49.83 60.09 66.93 69.14 68.59
+Relation Network (Santoro et al., 2017) ! ! 23.77 34.09 59.90 65.62 67.37 69.08
+MHGRN (Feng et al., 2020) ! ! 29.01 32.02 50.23 68.09 70.83 71.11
+QAGNN (Yasunaga et al., 2021) ! ! 32.95 37.77 50.15 69.33 70.99 73.41
+SAFE (Jiang et al., 2022) ! ! 36.45 56.51 65.16 70.72 73.22 74.03

+CET(Ours) % % 56.24 59.55 65.19 67.93 70.02 70.99
+CET+QAGNN ! ! 58.78 60.35 65.59 70.43 72.04 73.81
+CET+SAFE ! ! 59.39 61.02 65.75 70.79 73.31 74.54

Table 3: An CSQA example and its KNNs in our
method.

Gold Answer Question

Anchor pet shops Too many people want exotic snakes. The demand
is driving what to carry them?

KNNs

pet shops Where can a person buy a snake?

pet shop Where might a blowfish be kept?

pet shop Where can you take home a hermit crab?

pet store Where would you get a dog if you do not have one?

pet store
John loves animals and he hates animal abuse. Because
of this, john is very careful about the places he goes. Where
might he avoid going?

ferred jointly, which reduces the risk of over-fitting.
We provide more examples from each dataset in
Table 3 and Table 10,11, in Appendix F. The sec-
ond reason is that our method does not directly
constrain (e.g., ChildTune-D, Mixout, RecAdam)
or modify (e.g., NoisyTune, ReInit) the parame-
ters of fine-tuned models. Empirical results show
that these methods encounter negative transfers on
some of the datasets. Instead, our method builds

upon the causal inference theory and utilizes the
joint prediction as a soft constraint to transfer re-
lated knowledge while mitigating negative transfer.

Compared with Knowledge-Graph-Based Meth-
ods. Utilizing knowledge graphs such as Con-
ceptNet (Speer et al., 2017) is a common prac-
tice for building commonsense QA systems.
We compared our method with six knowledge-
graph-based methods: Relation Network (San-
toro et al., 2017), KagNet (Lin et al., 2019),
RGCN(Schlichtkrull et al., 2018), MHGRN(Feng
et al., 2020), QAGNN(Yasunaga et al., 2021),
SAFE(Jiang et al., 2022). Detailed descriptions and
other related works are given in Appendix D. Note
that these methods utilize knowledge graphs (KGs)
as external knowledge resources, and most of them
train graph neural networks (GNNs) for extracting
features from KGs. In contrast, our method does
not introduce any additional learnable parameters
except PLMs and the final fully-connected layer.
The result in Table 2 shows that our method out-
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performs RGCN, KagNet, and Relation Network
by only mining the internal knowledge of PLMs.
Furthermore, our method significantly outperforms
all the knowledge-graph-based methods under low
resource conditions (≤ 20% training data is used),
which shows that our method helps PLMs adapt to
downstream tasks with less data.

In addition, our method can be easily imple-
mented as a plug-in module by simply substitut-
ing the vanilla fine-tuning objective for the causal
effect in Eq.(9). We combine our method with
QAGNN and SAFE, respectively. Table 2 shows
that our approach consistently improves QAGNN
and SAFE and achieves superior performances.
Therefore, the pre-trained commonsense knowl-
edge benefits downstream tasks even when KGs
are introduced.
Fine-tuning on a Cyclic Chain of Tasks. To
understand how our method preserves knowledge
during fine-tuning, we follow Aghajanyan et al.
(2020) and design a cyclic chain of tasks:

A→ B → C︸ ︷︷ ︸
Cycle1

→ A→ B → C︸ ︷︷ ︸
Cycle2

→ · · ·

In our experiment, we set A=CSQA, B=OBQA,
and C=QASC for a demonstration. Specifically,
we start from a PLM and fine-tune it on CSQA.
Then, we use the model fine-tuned on CSQA to ini-
tialize the backbone model’s parameters and con-
tinue fine-tuning it on OBQA. Table 4 shows that
our method retains knowledge significantly bet-
ter than vanilla fine-tuning. The performances on
OBQA and QASC improve at every cycle, suggest-
ing that our method effectively retains knowledge
from the previous datasets. Unfortunately, both per-
formances of vanilla fine-tuning and our method
on CSQA degrade slightly, showing that negative
transfer happens. In this case, vanilla fine-tuning
will lead to more serious performance degradation.
The experiment is for demonstration, and a better
combination of tasks that promote each other may
be found.
Ablation Study. To verify the effectiveness of
our method, we consider the following ablated
version of our method: (1) replacing the KNNs
(Large,Ours) with randomly selected samples
(Rand) or samples with the smallest similarity
(Small); (2) searching the KNNs according to the
similarity of average last hidden states (Avg) in-
stead of gold answers (Gold, Ours). The result in
Table 5 shows that the model learns commonsense

Table 4: The results of cyclical sequential fine-tuning
for three cycles. The average accuracy (%) is reported.

Dataset Fine-Tuning CET(Ours)

Cycle1
CSQA 75.74 76.82
OBQA 68.80 70.89
QASC 54.31 57.49

Cycle 2
CSQA 75.52 76.69
OBQA 69.95 71.18
QASC 55.06 57.64

Cycle 3
CSQA 75.44 76.75
OBQA 70.28 71.45
QASC 55.12 57.78

Table 5: The ablation study of our method. Gold/Avg:
searching the KNNs according to the similarity
of gold answers or the average last hidden states.
Large/Small/Rand: searching the KNNs with the largest
or smallest similarity, or randomly. The average accu-
racy (%) is reported.

Methods CSQA OBQA QASC

Gold+Large(Ours) 76.82 70.76 57.57

Gold+Rand 74.61 68.53 55.77
Gold+Small 74.04 64.67 53.13
Avg+Large 76.17 69.64 55.62
Avg+Rand 74.12 68.54 54.54
Avg+Small 74.20 68.07 53.46

Fine-Tuning 75.74 68.12 54.04

knowledge better when the KNNs share the gold
answer with close meaning.
Additional Experiments. Due to space con-
straints, we present the experiments on T5, the
hyper-parameter analysis, the experiments on
Named Entity Recognition, and further discussions
in Appendix E.

5 Conclusion

We propose a novel fine-tuning technique rooted in
causal inference for preserving pre-trained knowl-
edge from PLMs. Although many fine-tuning meth-
ods have been proposed in recent years, most of
them overlooked one or both hidden issues of fine-
tuning, catastrophic forgetting and negative trans-
fer, which result in a dilemma. In this paper, we
provide an answer to the dilemma from the casual
lens. Impressively, we empirically find that the
proposed method achieves the best performance
on six commonsense QA datasets and is flexible
to be applied to various QA systems and model
architectures.
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Limitations

There are three limitations on our method. First,
we did not verify our method on more generic tasks,
such as text classification, yet it is not limited to
commonsense QA. Extending our method to other
downstream tasks is our future work. Second, our
method requires a longer training time and a larger
GPU memory since the KNNs require forward and
backward propagation additionally. Third, we do
not consider the ambiguity of gold answers, which
may affect the quality of KNNs. For example, “ap-
ple” may refer to a kind of fruit or a technology
company.
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A A Detailed Derivation for the Colliding
Effect

Algorithm 1: Causal Effect Tuning

Input: D = {(x(i), y(i))}Ni=1: a training set
with N samples; F0: a pre-trained
model

Output: F : a fine-tuned model
1 Initialize F ← F0;
2 Compute the KNNs for each sample x(i):

x(i,1), · · · , x(i,ki);
3 while not converge do
4 Compute EffectP according to Eq.(9);
5 F ← argmax

F
EffectP ;

6 end
7 return F ;

Without loss of generality, we first define the
fine-tuning process formally as follows: Given a
pre-trained modelF0 and a dataset with N samples
{(x(i), y(i)}Ni=1, we aim to learn a model F which
has the best performance on predicting the label
y(i). Recall that in Eq.(5), we re-write EffectP as
the sum of the causal effect on each prediction Ŷ (i).
Now, the outcome node Ŷ in the causal graph be-
comes Ŷ (i). Then, we need to condition on H0

to utilize colliding effects. Considering when pre-
dicting Ŷ (i), x(i) should play an important role.
Furthermore, when X = x(i), its hidden feature is
simply calculated as h(i)0 = F0(x

(i)). Therefore, it
is natural to choose h

(i)
0 as the hidden feature we

condition on.
After controlling H0 = h

(i)
0 , the meaning of the

input node X in the causal graph becomes all sam-
ples whose hidden feature is h

(i)
0 . Unfortunately,

due to the sparsity in high dimensional spaces,

only x(i) satisfies this constraint. Intuitively, if
we loosen this constraint a bit, the colliding effect
will not disappear instantly. Instead, the colliding
effect will vanish gradually when the hidden fea-
ture becomes farther and farther away from h

(i)
0 .

Put differently, colliding effects still exist when
samples bear a resemblance to each other in the
hidden space of the pre-trained model.

Now, we provide a derivation as follows:

Effect(i)P

= P(Ŷ (i)|H0 = h
(i)
0 , P = p)− P(Ŷ (i)|H0 = h

(i)
0 , P = 0)

(10)

=
N∑

k=1

(P(Ŷ (i)|X = x(k), H0 = h
(i)
0 ) (11)

P(X = x(k)|H0 = h
(i)
0 , P = p)

− P(Ŷ (i)|X = x(k), H0 = h
(i)
0 )

P(X = x(k)|H0 = h
(i)
0 , P = 0))

=
N∑

k=1

P(Ŷ (i)|X = x(k))(P(X = x(k)|H0 = h
(i)
0 , P = p)

(12)

− P(X = x(k)|H0 = h
(i)
0 , P = 0))

≈
N∑

k=1

P(Ŷ (i)|X = x(k))P(X = x(k)|H0 = h
(i)
0 , P = p)

(13)

=
N∑

k=1

P(Ŷ (i)|X = x(k)) (14)

P(H0 = h
(i)
0 |X = x(k), P = p)P(X = x(k)|P = p)

P(H0 = h
(i)
0 |P = p)

=
N∑

k=1

P(Ŷ (i)|X = x(k))WP (x
(i), x(k)) (15)

≈
K∑

k=0

P(Ŷ (i)|X = x(i,k))WP (x
(i), x(i,k)) (16)

Eq.(10) is deduced from Eq.(2) and the condition
of H0 = h

(i)
0 . Eq.(11) expands Eq.(10) as the sum

of all N samples. In Eq.(12), P(Ŷ (i)|X,H0) =
P(Ŷ (i)|X) because X is the only mediator (Pearl,
2009) from P to Ŷ (i). In Eq.(13), we approxi-
mate P(X = x(k)|H0 = h

(i)
0 , P = 0) as zero be-

cause the likelihood of X = x(k) is small when the
model is randomly initialized. Eq.(14) is obtained
by applying Bayes formula to Eq.(13). In Eq.(14),
P(H0 = h

(i)
0 |P = p) and P(X = x(k)|P = p)

are intractable and can be seen as constants. We
note that the likelihood term P(H0 = h

(i)
0 |X =

x(k), P = p) represents how likely the hidden fea-
ture is h

(i)
0 when the input sample is x(k). Obvi-

ously, the likelihood is the largest when k = i
and becomes smaller when the hidden feature of
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x(k) become farther away from h
(i)
0 . Therefore, the

fractional term of Eq. 14 can be regarded as a scal-
ing factor of the likelihood P(Ŷ (i)|X = x(k)). In
Eq.(15), we re-write the fractional term of Eq.(14)
as a function of x(i) and x(k) since h(i)0 = F0(x

(i)).
In Eq.(15), we truncate the top K samples, which
are closest to x(i), in the hidden space of the pre-
trained model. Besides, we let x(i,0) = x(i) since
x(i) has the largest similarity with itself. Addition-
ally, we let

∑K
k=0WP (x

(i), x(i,k)) = 1 to ensure
that the joint prediction is a probability distribution
over categories.

B Training Details

The dataset statistics is in Table 6. All models
are implemented based on Pytorch (Paszke et al.,
2019) and Huggingface (Wolf et al., 2019). We
use the default hyper-parameters of RoBERTa and
T5 according to the Huggingface implementation.
Following Yasunaga et al. (2021); Khashabi et al.
(2020), we concatenate all options as input when
the backbone is T5 and concatenate each option re-
spectively when the backbone is RoBERTa. We
tuned the batch size in {64, 128}, the learning
rate of the backbone model in {5e-5, 2e-5, 1e-5}.
Before fine-tuning RoBERTa, a randomly initial-
ized fully connected (FC) layer is added on top of
RoBERTa, and the learning rate of the FC layer
is 1e-2. We use RAdam (Liu et al., 2019a) as the
optimizer and use a constant learning rate sched-
uler. The weight decay is 1e-2, and the maximum
gradient norm is 1.0. For each dataset, the training
hyper-parameters are the same for all methods for
a fair comparison. We select the best model accord-
ing to the performance on the dev set and report
the test accuracy of the chosen model. The experi-
ments are run on GeForce RTX 3090 GPU. Each
experiment is repeated five times. Since we do not
introduce any learnable parameters except PLMs,
the total number of parameters of our method is the
same as PLMs (RoBERTa-large and T5-large have
355M and 770M parameters, respectively).

C Details of the Competitive Fine-tuning
Methods

The details of the competitive fine-tuning methods
are as follows. Note that we use recommended
hyper-parameters in the paper or the source code
for a fair comparison.

• vanilla fine-tuning: fine-tuning has been

proven to be a simple and effective method of
adapting large PLMs to downstream tasks.

• BSS (Chen et al., 2019) 5: BSS focuses on
mitigating negative transfer by penalizing the
small singular values of the feature matrix.
We penalize the smallest singular value, and
the weight of the regularization term is set as
1e-3 as recommended.

• ChildTune-F&ChildTune-D (Xu et al., 2021a)
6: ChildTune-F&ChildTune-D update a subset
of parameters (called child network) of large
PLMs in the backward process. ChildTune-
D utilizes the Fisher Information Matrix es-
timated by the pre-trained model to deter-
mine the child network. ChildTune-F uses
Bernoulli distribution to determine the child
network.

• Mixout 7 (Lee et al., 2019): Mixout randomly
mixes the parameters of the pre-trained and
the fine-tuned model to regularize the fine-
tuning process. In the experiments, the mixing
probability p is set as 0.9.

• NoisyTune (Wu et al., 2022): NoisyTune adds
uniform noises to the parameter of the pre-
trained model based on their standard devia-
tions. The scaling factor λ, which controls the
relative noise intensity, is set as 0.15.

• R3F 8 (Aghajanyan et al., 2020): R3F allevi-
ates representational collapse by introducing
parametric noise. R3F generates noise from
either a normal or uniform distribution.

• RecAdam 9 (Chen et al., 2020): RecAdam
optimizes a multi-task objective and utilize an
annealing coefficient to gradually shift the ob-
jective from pre-training to downstream tasks.

• ReInit (Zhang et al., 2020b): Zhang et al.
(2020b) verified that transferring the top pre-
trained layers slows down learning and hurts
performance. ReInit re-initializes the top lay-
ers of PLMs when adapting to new tasks. In
our experiments, we re-initialize the top 3
transformer block.

5https://github.com/thuml/Batch-Spectral-Shrinkage
6https://github.com/alibaba/AliceMind/tree/main/

ChildTuning
7https://github.com/bloodwass/mixout
8https://github.com/facebookresearch/fairseq/tree/main/

examples/rxf
9https://github.com/Sanyuan-Chen/RecAdam
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Table 6: The dataset statistics.

Train Dev Test Option Number Question Length Option Length

CommonsenseQA 8.5k 1.2k 1.2k 5 13.4 1.5
OpenBookQA 5.0k 0.5k 0.5k 4 10.7 2.9
ARC-Easy 2.2k 0.6k 2.4k 4 19.4 3.7
ARC-Challenge 1.1k 0.3k 1.2k 4 22.3 4.9
QASC 7.3k 0.8k 0.9k 8 8.1 1.6
PIQA 14k 1.8k 1.8k 2 7.1 19.4
SocialIQA 31k 1.9k 1.9k 3 20.1 3.6

D Related Works of Commonsense QA

Commonsense reasoning is a key pillar of human
cognition and intelligence, but it is still a long-
standing challenge for deep learning systems (Xu
et al., 2021b; Wang et al., 2020b; Talmor et al.,
2018). Current question and answering (QA) sys-
tems rely on external sources such as knowledge
graphs (e.g., ConceptNet) (Yasunaga et al., 2021;
Feng et al., 2020; Wang et al., 2020a; Lin et al.,
2019), knowledge bases (e.g., Wiktionary) (Xu
et al., 2021b) and generative pre-trained language
models (e.g., GPT3 (Brown et al., 2020)) (Liu
et al., 2022b; Yang et al., 2020; Rajani et al., 2019;
Liu et al., 2022a), and achieve remarkable success.
Despite the remarkable success, collecting high-
quality external knowledge is usually expensive,
and noisy knowledge is easily introduced (Liu et al.,
2022b). In this paper, we present a novel fine-
tuning method that retains commonsense knowl-
edge from PLMs since they are exposed to a colos-
sal amount of data in pre-training and inherently
knowledge bases (Petroni et al., 2019; AlKhamissi
et al., 2022). Different from the existing common-
sense QA models, our method does not rely on KGs
or GNNs. Moreover, our method can be a plug-in
module to enhance the performance of common-
sense QA models. We compared six commonsense
QA methods in the experiments:

• Relation Network (Santoro et al., 2017) uti-
lizes a relational reasoning structure over the
knowledge graph;

• KagNet (Lin et al., 2019) aggregates informa-
tion with graph convolutional networks and
LSTMs, and a hierarchical path-based atten-
tion mechanism;

• RGCN (Schlichtkrull et al., 2018) extends
the graph convolutional network with relation-
specific weights;

Table 7: The average accuracy (%) of fine-tuning and
our method when T5-large is used as the backbone
model.

Methods Fine-Tuning CET(Ours)

CSQA 76.33 (0.55) 76.85 (0.30)
OBQA 68.04 (0.62) 69.14 (0.35)

ARC-Easy 70.96 (0.48) 71.63 (0.34)
ARC-Challenge 46.68 (0.53) 48.55 (0.58)

QASC 60.69 (0.78) 61.79 (0.81)
PIQA 78.96 (0.42) 81.58 (0.55)
SIQA 78.25 (0.38) 79.40 (0.44)

Table 8: The average accuracy (%) of our method when
different K is selected.

K=3 K=5

CSQA 76.74 76.82
OBQA 70.88 70.76
ARC-EASY 68.59 68.53
ARC-CHALLENGE 47.40 47.52
QASC 57.42 57.57
PIQA 79.13 79.43
SIQA 78.61 78.76

• MHGRN (Feng et al., 2020) utilizes both
GNNs and path-based models for common-
sense QA;

• QAGNN (Yasunaga et al., 2021) models the
QA context and the knowledge graph in a
joint graph and extracts their representations
through a GNN.

• SAFE (Jiang et al., 2022) designs a simple
MLP-based knowledge encoder that utilizes
statistical relation paths as features.

E Additional Experimental Results

Experiments on T5. Our method is model-
agnostic since it only requires computing the joint
prediction. Different from discriminant models
such as RoBERTa, T5 is a generative model whose
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(a) The backbone is RoBERTa-large (b) The backbone is T5-large

Figure 3: The absolute improvements (%) of our method w.r.t fine-tuning when W0 = {0.50, 0.70, 0.90, 0.95, 0.97}.
The backbone model is RoBERTa-large (a) and T5-large (b), respectively.

output is in text format. Following Khashabi et al.
(2020), we concatenate a question and its all op-
tions with prefixes (a), (b), (c), ... as the input, and
expect the model to output the ground-truth op-
tion in text format. To adapt our model to T5, we
substitute the prediction from the probability distri-
bution over options to the probability distribution
over vocabulary. In this way, we encourage T5 to
generate the same gold answer when the input is
the question of the anchor sample and its KNNs.

The experimental result is in Table 7. From
the result, we find that our method still improves
vanilla fine-tuning consistently, which demon-
strates that our approach can be applied to various
architectures. Besides, we also apply ReInit on T5
as in RoBERTa. Unfortunately, T5 fails to adapt
to downstream tasks when only a few parameters
are re-initiated (e.g., the self-attention layer or the
cross-attention layer in the topmost transformer
block). We conjecture that the final language mod-
eling head (LM head), which maps the last hidden
states to the vocabulary space, hinders the knowl-
edge of the bottom layers to transfer to new tasks.
Different from ReInit, our method is also applica-
ble to T5 because it has no assumptions about the
model architecture.

Hyper-parameter Analysis. We consider two
hyper-parameters that may influence the effective-
ness of our method: the number of neighbors K
and the weight for controlling the strength of col-
liding effects W0. Fig. 3a and 3b show that
our method is robust when various W0 are cho-
sen. When the backbone is RoBERTa-large, our

method achieves the best performance when W0 =
0.7 on OBQA, ARC-Easy, and ARC-Challenge;
when W0 = 0.9 on QASC and SIQA; and when
W0 = 0.97 on CSQA. When the backbone is T5-
large, our method achieves the best performance
when W0 = 0.9 on QASC; when W0 = 0.95 on
CSQA, OBQA, ARC-Easy, and PIQA; and when
W0 = 0.97 on ARC-Challenge and SIQA. In addi-
tion, we find that some datasets, such as CSQA, re-
quire more domain-specific knowledge while some
datasets, such as OBQA, require more pre-trained
knowledge. The result of K in Table 8 shows that
a larger K is beneficial. Our method is also robust
to K because the similarity threshold θ truncates
the number of nearest neighbors for each sample.

Differences between Our Method and Data Aug-
mentation. Our method recombines the KNN
questions with the options of the anchor sample.
A reasonable conjecture is that our method “adds”
KNN samples to enhance generalization ability.
We do the following experiment to test the hypoth-
esis: We add the same KNN samples generated by
our method into the original training set for fine-
tuning. The result shows that its improvement is
not statistically significant. The reason may be as
follows: Recall that we set θ = 1.0 on five out of
six datasets where the gold answer of the anchor
sample and its KNNs should be matched precisely.
Therefore, on most datasets, the KNN samples re-
combine with the options containing their original
gold answer, suggesting that they provide no ad-
ditional information. Besides, the newly added
samples change the data distribution of the original
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Table 9: Comparison between CET and vanilla fine-tuning on NER.

Method
CoNLL2003 OntoNotes5 I2B2

Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Macro F1

Vanilla Fine-Tuning 92.52 91.09 89.35 80.42 92.81 85.61
CET (Ours) 92.94 91.52 90.09 81.67 94.07 88.46

training set.
Experiments on Named Entity Recognition. To
demonstrate that CET has the potential to improve
more generic tasks, we apply CET to another task,
Named Entity Recognition (NER), which is a fun-
damental task in NLP. First, NER can be formu-
lated as a word-level classification task. Therefore,
both "anchor" and KNNs refer to a specific word.
Then, we use the Euclidean distance as a metric to
find the KNNs in the space of the last hidden states
of PLMs. Considering NER focuses on recogniz-
ing entities, we only compute the causal effects on
entity words. During training, both the sentences
containing anchor and KNN words are fed into the
model. And then, we compute the joint prediction
as in Eq.6 by combining the score prediction of the
anchor word and the corresponding KNN words.
Finally, we jointly optimize the causal effects of
entity words and the vanilla fine-tuning objective
of non-entity words as in Eq.9.

We choose three widely used datasets for ex-
periments: CoNLL2003 (Sang and De Meulder,
2003), Ontonotes5 (Hovy et al., 2006), I2B2 (Mur-
phy et al., 2010). Following previous experiments,
we use RoBERTa-large as the backbone. The result
in Table 9 indicates that CET outperforms vanilla
fine-tuning consistently.

To better understand CET, here is an example
from CoNLL2003: The anchor is a Location en-
tity "California" in the sentence ". . . Marine Lab-
oratories in California say . . . ". Its three nearest
neighbours are 1. "California" in the sentence "At
California, Tim . . . "; 2. "Oakland" in the sentence
"OAKLAND AT NEW YORK"; 3. "Florida" in the
sentence "At Florida, . . . ". As shown, the anchor
and KNN words share the related prior knowledge
of PLMs, which can also be illustrated in Figure 2.

F More examples of Colliding Effects

Table 10: Examples from PIQA and QASC.

PIQA Gold Answer Question

Anchor throw it away how do you dispose of a cutip?

KNNs
throw it away how do you dispose of something?

throw it away how do you scrap metal?

QASC Gold Answer Question

Anchor bacteria What causes botulism?

KNNs

bacteria what may die if it becomes too hot?

bacteria what causes serious illness?

bacteria What causes food to spoil?

bacteria What can cause people to die?

bacteria what feed on dead organisms?
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Table 11: Examples from CSQA, OBQA, ARC-Easy, ARC-Challenge, and SIQA.

CSQA Gold Answer Question

Anchor television To prevent any glare during the big football game he made sure to clean the dust of his what?

KNNs

television Where do you watch garbage?

television What home entertainment equipment requires cable?

television What does one watch garbage reality shows on?

television Where might I hear and see information on current events?

television James wasn’t a repair person, but even he knew that he didn’t need a freon coin in a what?

OBQA Gold Answer Question

Anchor sun The leaves of a plant benefit from?

KNNs

sun The moon orbits an object that orbits the

sun Which of these items is required for a deer to live

sun What is larger then the human planet and causes cycles of day and night?

the sun Despite what some think, instead around themselves, our planet spins around

ARC-Easy Gold Answer Question

Anchor line graph
A student wants to find the relationship between the diameter of several plastic disks
and the circumference of each disk. Which of these types of graphs should be constructed
to determine this relationship?

KNNs

line graph
The number of squirrels in a certain ecosystem changes over time. These changes can be
represented as a number of connected data points. Which method would a student most
likely use to show this information?

line graph In a city, the daily high and low 16 temperatures for a month are best represented by which
of the following?

line graph A student measures the growth of a group of plants given different amounts of fertilizer.
Which data display should the student use to compare the growth of the plants?

line graph

Scientists recorded the hourly temperature at a weather station for the month of July and
want to quickly measure a trend over time in temperature changes. Which of these formats
would be the most appropriate representation of the temperature data to quickly measure
any trend?

line graph The most effective way to show a change happening over time is to display your results
using a

ARC-Challenge Gold Answer Question

Anchor air
Four materials are put into small containers. These materials are then moved from the
small containers into larger containers. Which material will spread out to completely
fill a larger container?

KNNs

air When you make soap bubbles, what is inside the bubbles?

air When a tadpole grows, its gills change into lungs. What does it now need to survive?

air How are green plants an important part of the carbon dioxide-oxygen cycle?

air Which of the following substances can be separated into several elements?

SIQA Gold Answer Question

Anchor compassionate Jan had always wanted a puppy, but decided to adopt an older shelter dog instead. How would
you describe Jan?

KNNs

compassionate Jan gave Kai’s husband a hug after hearing the good news about Kai’s recovery. How would
Kai feel as a result?

compassionate Quinn ran over a squirrel on the road. They felt a little guilty. How would you describe Quinn?

compassionate Cameron was volunteering at a soup kitchen and provided assistance to individuals. How would
Cameron feel afterwards?

compassionate Bailey found out that the local fire department lacked funding. Bailey decided to do something
about it. How would you describe Bailey?

compassionate Ash let the dog inside as it was getting too hot for dog to be outside. How would you describe
Ash?
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