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Abstract

Automatic melody-to-lyric generation is a task
in which song lyrics are generated to go with
a given melody. It is of significant practical in-
terest and more challenging than unconstrained
lyric generation as the music imposes addi-
tional constraints onto the lyrics. The train-
ing data is limited as most songs are copy-
righted, resulting in models that underfit the
complicated cross-modal relationship between
melody and lyrics. In this work, we propose a
method for generating high-quality lyrics with-
out training on any aligned melody-lyric data.
Specifically, we design a hierarchical lyric gen-
eration framework that first generates a song
outline and second the complete lyrics. The
framework enables disentanglement of training
(based purely on text) from inference (melody-
guided text generation) to circumvent the short-
age of parallel data.

We leverage the segmentation and rhythm align-
ment between melody and lyrics to compile
the given melody into decoding constraints as
guidance during inference. The two-step hi-
erarchical design also enables content control
via the lyric outline, a much-desired feature for
democratizing collaborative song creation. Ex-
perimental results show that our model can gen-
erate high-quality lyrics that are more on-topic,
singable, intelligible, and coherent than strong
baselines, for example SongMASS (Sheng
et al., 2021), a SOTA model trained on a paral-
lel dataset, with a 24% relative overall quality
improvement based on human ratings. 1

1 Introduction

Music is ubiquitous and an indispensable part of
humanity (Edensor, 2020). Self-serve songwrit-
ing has thus become an emerging task and has re-
ceived interest by the AI community (Sheng et al.,
∗Work was done when the author interned at Amazon.
1Our code is available at https://
github.com/amazon-science/
unsupervised-melody-to-lyrics-generation.

Melody

L S L S L S L S L
Ma- ny skies ’ve turned to grey be- cause
Hey, ba- by what ain’t nothing wrong to hide away
So- me one got to - go - -

Take me back to old- er time in lit-

…
Music Note

Human
Baseline 1
Baseline 2
Lyra (Ours)

Figure 1: An example of the melody and the corre-
sponding lyrics, where ‘L’ denotes a music note with
long duration and ‘S’ stands for short. Our model LYRA
generates more coherently than the baselines. Besides,
the rhythms of lyrics (i.e., accents and relaxations when
spoken) generated by human and LYRA align well with
the flows of the melody. On the other hand, existing
methods output lyrics that have low singability by either
aligning multiple words with one single note (baseline
1) or vice versa (baseline 2) as highlighted in red.

2021; Tan and Li, 2021; Zhang et al., 2022; Guo
et al., 2022). However, the task of melody-to-lyric
(M2L) generation, in which lyrics are generated
based on a given melody, is underdeveloped due
to two major challenges. First, there is a limited
amount of melody-lyric aligned data. The process
of collecting and annotating paired data is not only
labor-intensive but also requires strong domain ex-
pertise and careful consideration of copyrighted
source material. In previous work, either a small
amount (usually a thousand) of melody-lyrics pairs
is manually collected (Watanabe et al., 2018; Lee
et al., 2019), or Sheng et al. (2021) use the recently
publicized data (Yu et al., 2021) in which the lyrics
are pre-tokenized at the syllable level leading to
less sensical subwords in the outputs.

Another challenge lies in melody-to-lyric model-
ing. Compared to unimodal sequence-to-sequence
tasks such as machine translation, the latent cor-
relation between lyrics and melody is difficult to
learn. For example, Watanabe et al. (2018); Lee
et al. (2019); Chen and Lerch (2020); Sheng et al.
(2021) apply RNNs, LSTMs, SeqGANs, or Trans-
formers with melody embeddings and cross atten-
tion (Vaswani et al., 2017), hoping to capture the
melody-lyrics mapping. However, as shown in Fig-
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ure 1, these methods may generate less singable
lyrics when they violate too often a superficial
yet crucial alignment: one word in a lyric tends
to match one music note in the melody (Nichols
et al., 2009). In addition, their outputs are not flu-
ent enough because they are neural models trained
from scratch without leveraging large pre-trained
language models (PTLMs).

In this paper, we propose LYRA, an unsuper-
vised, hierarchical melody-conditioned LYRics
generAtor that can generate high-quality lyrics with
content control without training on melody-lyric
data. To circumvent the shortage of aligned data,
LYRA leverages PTLMs and disentangles training
(pure text-based lyric generation) from inference
(melody-guided lyric generation). This is moti-
vated by the fact that plain text lyrics under open li-
censes are much more accessible (Tsaptsinos, 2017;
Bejan, 2020; Edmonds and Sedoc, 2021), and prior
music theories pointed out that the knowledge
about music notes can be compiled into constraints
to guide lyric generation. Specifically, Dzham-
bazov et al. (2017) argue that it is the durations
of music notes, not the pitch values, that plays a
significant role in melody-lyric correlation.

As shown in Figure 1, the segmentation of lyrics
should match the segmentation of music phrases
for breathability. Oliveira et al. (2007); Nichols
et al. (2009) also find that long (short) note du-
rations tend to associate with (un)stressed sylla-
bles. However, existing lyric generators, even when
equipped with state-of-the-art neural architectures
and trained on melody-lyrics aligned data, still fail
to capture these simple yet fundamental rules. In
contrast, we show that through an inference-time
decoding algorithm that considers two melody con-
straints (segment and rhythm) without training on
melody-lyrics aligned data, LYRA achieves better
singability than the best data-driven baseline. With-
out losing flexibility, we also introduce a factor to
control the strength of the constraints.

In addition, LYRA adopts the hierarchical text
generation framework (i.e., plan-and-write (Fan
et al., 2019; Yao et al., 2019)) that both helps with
the coherence of the generation and improves the
controllability of the model to accommodate user-
specified topics or keywords. During training, the
input-to-plan model learns to generate a plan of
lyrics based on the input title and salient words,
then the plan-to-lyrics model generates the com-
plete lyrics. To fit in the characteristics of lyrics

and melody, we also equip the plan-to-lyrics model
with the ability to generate sentences with a prede-
fined count of syllables through multi-task learning.

Our contributions are summarized as follows:
• We design LYRA, the first melody-constrained

neural lyrics generator without training on par-
allel data. Specifically, we propose a novel
hierarchical framework that disentangles train-
ing from inference-time decoding, which is sup-
ported by music theories. Our method works
with most PTLMs, including those black-box
large language models (LLMs) when finetuning
is replaced by in-context learning.

• The hierarchical generation design of LYRA en-
ables content or topic control, a feature of practi-
cal interest but missing among existing works.

• Both automatic and human evaluations show that
our unsupervised model LYRA outperforms fully
supervised baselines in terms of both text quality
and musicality by a significant margin. 2

2 Background and Problem Setup

Representation of Melody Melody is a succes-
sion of pitches in rhythm consisting of a sequence
of music phrases, which can be further decom-
posed into timed music notes. Each music note
is defined by two independent pivots: pitch values
and durations. Pitch represents the highness/low-
ness of a musical tone; duration is the note’s
length of time. Namely, melody M can be de-
noted by M = {p1, p2, ...pM}, where each pi
(i ∈ 1, 2, ...,M ) is a music phrase. The music
phrase can be further decomposed into timed mu-
sic notes (pi = {ni1, ni2, ...niNi}), where each
music note nij (j ∈ {1, 2, ..., Ni}) comes with a
duration and is associated with or without a pitch
value. When a music note comes without a pitch
value, it is a rest that indicates the absence of a
sound and usually aligns with no lyrics.

Task Definition Our goal is to achieve unsuper-
vised melody-to-lyrics generation. We follow the
definition of “unsupervised” Machine Translation
(MT) tasks (Lample et al.; Artetxe et al., 2019)
which achieve cross-lingual translation by training
on monolingual data only. In our case, we achieve
melody-to-lyrics generation by training on text data
only and do not require any parallel melody-lyrics
aligned data for training.

2Examples of lyrics generated by the complete pipeline can
be found in this demo page.
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Melody (inference-time only)
Output

Title: In a Little 
Spanish Town;
Genre: Jazz;
Salient words: 
town, kiss, heart.

Decoding constraints: 
1) music phrase 
segmentation, 
2) rhythm alignment.

Keywords:
Line 1: [Spanish, town], 
Line 2: [love, kiss],
Line 3: [heart soul], …

Input Plan

Plan-to-Lyrics
(aware of 
phonetics)

Input-
to-Plan

Figure 2: An overview of our approach that disentangles training from inference. Blue parts represent components
used during both training and inference, while brown means inference only. During training, our input-to-plan
model learns to predict the sentence-level plan (i.e., keywords) given the title, genre, and salient words as input.
Then, the plan-to-lyrics model generates the lyrics while being aware of word phonetic information and syllable
counts. At inference time, we compile the given melody into 1) music phrase segments and 2) rhythm constraints to
guide the generation.

Task Formulation We aim to generate lyrics that
comply with both the provided topic and melody.
The input topic is further decomposed into an
intended title T and a few salient words S to
be included in the generated lyrics (see Figure
2 for an example input). Following the settings
of previous work (Chen and Lerch, 2020; Sheng
et al., 2021), we assume that the input melody M
is predefined and consists of M music phrases
(M = {p1, p2, ...pM}), and each music phrase
contains Ni music notes (pi = {ni1, ni2, ...niNi}).
The output is a piece of lyrics L that aligns with
the music notes: L = {w11, w12, ..., wMN}. Here,
for j ∈ {1, 2, ..., Ni}, wij is a word or a syllable
of a word that aligns with the music note nij .

3 Lyric Generation Model

We draw inspirations from recent generation mod-
els with intermediate outlines as content planning.
These models are shown to achieve increased co-
herence and relevance over end-to-end generation
frameworks in other tasks such as story genera-
tion (Fan et al., 2018; Yao et al., 2019; Yang et al.,
2022). Our lyrics generation model is similarly
hierarchical as is shown in Figure 2. Specifically,
we finetune two modules in our purely text-based
pipeline: 1) an input-to-plan generator that gen-
erates a keyword-based intermediate plan, and 2)
a plan-to-lyrics generator which is aware of word
phonetics and syllable counts.

3.1 Input-to-Plan

In real-world scenarios, users will likely have an
intended topic (e.g., a title and a few keywords)
to write about. We similarly extract a few salient
words from the training lyric using the YAKE algo-
rithm (Campos et al., 2020), and feed them to our
input-to-plan module to improve topic relevance.

Model Output: Generated Lyric
Naïve Cause the Christmas gift was for.

Chen and Lerch (2020) Hey now that’s what you ever.
Sheng et al. (2021) Believe you like taught me to.
Ours, Multi-task Night and day my dreams come true.

Table 1: Examples of lyrics generated by different mod-
els with seven syllable counts as a constraint. Our model
with multi-task auxiliary learning is the only system that
successfully generates a complete line of lyrics with the
desired number of syllables. On the other hand, the
supervised models (Chen and Lerch, 2020; Sheng et al.,
2021) trained with melody-lyrics paired data still gener-
ate dangling or cropped lyrics.

The input contains the song title, the music genre,
and three salient words extracted from ground truth
lyrics. Note that we chose 3 as a reasonable num-
ber for practical use cases, but our approach works
for any arbitrary number of salient keywords.

Our input-to-plan model is then trained to gener-
ate a line-by-line keyword plan of the song. Consid-
ering that at inference time we might need different
numbers of keywords for different expected output
lengths, the number of planned keywords is not
fixed. Specifically, we follow the settings used by
Tian and Peng (2022) and include a placeholder
(the <MASK> token) in the input for every key-
word to be generated in the intermediate plan. In
this way, we have control over how many keywords
we would like per line. We finetune BART-large
(Lewis et al., 2020) as our input-to-plan generator
with format control.

3.2 Plan-to-Lyrics

Our plan-to-lyrics module takes in the planned key-
words as input and generates the lyrics. This mod-
ule encounters an added challenge: to match the
music notes of a given melody at inference time,
it should be capable of generating lyrics with a
desired syllable count that aligns with the melody.
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Task Sample Data (Input → Output)

T1 Line 1: 8 syllables; Keywords: ... →
Line 1: Moon river wider than a mile; ....

T2 Moon river wider than a mile → 8

T3
Line 1: 8 syllables; Keywords: ... →
Line 1: Moon (1) river (3) wider (5)

than (6) a (7) mile (8); ....

T4 Moon → MUWN; river → RIH_VER;
wider → WAY_DER; ...

Table 2: Sample data of the four proposed tasks to
facilitate lyric generation with syllable planning.

If we naïvely force the generation to stop once it
reaches the desired number of syllables, the out-
puts are usually cropped abruptly or dangling. For
example, if the desired number of syllables is 7, a
system unaware of this constraint might generate
‘Cause the Christmas gift was for’ which is cropped
and incomplete. Moreover, two recent lyric genera-
tors which are already trained on melody-to-lyrics
aligned data also face the same issue (Table 1).

We hence propose to study an under-explored
task of syllable planning: generating a line of lyrics
that 1) is a self-contained phrase and 2) has the de-
sired number of syllables. To this end, we include
both the intermediate plan and the desired syllable
count as input. Additionally, we propose to equip
the plan-to-lyrics module with the word phonetics
information and the ability to count syllables. We
then adopt multi-task auxiliary learning to incorpo-
rate the aforementioned external knowledge during
training, as Liebel and Körner (2018); Guo et al.
(2019); Poth et al. (2021); Kung et al. (2021) have
shown that related auxiliary tasks help to boost the
system performance on the target task. Specifi-
cally, we study the collective effect of the follow-
ing related tasks which could potentially benefit
the model to learn the target task:

• T1: Plan to lyrics generation with syllable con-
straints (the target task)

• T2: Syllable counting: given a sentence, count
the number of syllables

• T3: Plan to lyrics generation with granular sylla-
ble counting: in the output lyric of T1, append
the syllable counts immediately after each word

• T4: Word to phoneme translation

We list the sample data for each task in Table 2. We
aggregate training samples from the above tasks,
and finetune GPT-2 large (Radford et al., 2019) on
different combinations of the four tasks. We show

our model’s success rate on the target task in Table
3 in Section 6.1.

4 Melody-Guided Inference

In this section, we discuss the procedure to com-
pile a given melody into constraints to guide the
decoding at inference time. We start with the most
straightforward constraints introduced before: 1)
segmentation alignment and 2) rhythm alignment.
Note that both melody constraints can be updated
without needing to retrain the model.

4.1 Segment Alignment Constraints

The segmentation of music phrases should align
with the segmentation of lyrics (Watanabe et al.,
2018). Given a melody, we first parse the melody
into music phrases, then compute the number of
music notes within each music phrase. For exam-
ple, the first music phrase in Figure 2 consists of
13 music notes, which should be equal to the num-
ber of syllables in the corresponding lyric chunk.
Without losing generality, we also add variations
to this constraint where multiple notes can corre-
spond to one single syllable when we observe such
variations in the gold lyrics.

4.2 Rhythm Alignment Constraints

According to Nichols et al., the stress-duration
alignment rule hypothesizes that music rhythm
should align with lyrics meter. Namely, shorter
note durations are more likely to be associated with
unstressed syllables. At inference time, we ‘trans-
late’ a music note to a stressed syllable (denoted
by 1) or an unstressed syllable (denoted by 0) by
comparing its duration to the average note duration.
For example, based on the note durations, the first
music phrase in Figure 2 is translated into alter-
nating 1s and 0s, which will be used to guide the
inference decoding.

4.3 Phoneme-Constrained Decoding

At each decoding step, we ask the plan-to-lyrics
model to generate candidate complete words, in-
stead of subwords, which is the default word piece
unit for GPT-2 models. This enables us to retrieve
the word phonemes from the CMU pronunciation
dictionary (Weide et al., 1998) and identify the re-
sulting syllable stresses. For example, since the
phoneme of the word ‘Spanish’ is ‘S PAE1 NIH0
SH’, we can derive that it consists of 2 syllables
that are stressed and unstressed.
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Next, we check if the candidate words satisfy the
stress-duration alignment rule. Given a candidate
word wi and the original logit p(wi) predicted by
the plan-to-lyrics model, we introduce a factor α
to control the strength:

p′(wi) =

{
p(wi), if wi satisfies rhythm alignment,

αp(wi), otherwise.
(1)

We can either impose a hard constraint, where we
reject all those candidates that do not satisfy the
rhythm rules (α = 0), or impose a soft constraint,
where we would reduce their sampling probabilities
(0 < α < 1). Finally, we apply diverse beam
search (Vijayakumar et al., 2016) to promote the
diversity of the generated sequences.

5 Experimental Setup

In this section, we describe the train and test data,
baseline models, and evaluation setup. The evalua-
tion results are reported in Section 6.

5.1 Dataset

Train data. Our training data consists lyrics of
38,000 English songs and their corresponding gen-
res such as Pop, Jazz, and Rock, which we pro-
cessed from the Genre Classification dataset (Bejan,
2020). The phonetic information needed to con-
struct the auxiliary tasks to facilitate the syllable
count control is retrieved from the CMU pronunci-
ation dictionary (Weide et al., 1998).

Automatic test data. The testing setup is the
complete diagram shown in Figure 2. Our input
contains both the melody (represented in music
notes and phases) and the title, topical, and genre
information. Our test melodies come from from
the lyric-melody aligned dataset (Yu et al., 2021).
In total, we gathered 120 songs that do not appear
in the training data. Because the provided lyrics
are pre-tokenized at the syllable level (e.g. "a lit tle
span ish town" instead of "a little spanish town"),
we manually reconstructed them back into natural
words when necessary.

Two sets of human test data. To facilitate hu-
man evaluation, we leverage an online singing
voice synthesizer (Hono et al., 2021) to generate the
sung audio clips. This synthesizer however requires
files in the musicXML format that none of the exist-
ing datasets provide (including our automatic test

data). Therefore, we manually collected 6 copy-
righted popular songs and 14 non-copyrighted pub-
lic songs from the musescore platform that supports
the musicXML format.

The first set of pilot eval data are these 20 pieces
of melodies that come with ground truth lyrics.
In addition, we composed a second, larger set of
80 test data by pairing each existing melody with
various other user inputs (titles and salient words).
This second eval set, which does not come with
ground truth lyrics, is aimed at comparison among
all the models.

5.2 Baseline Models for Lyrics Generation

We compare the following models. 1. SongMASS
(Sheng et al., 2021) is a state-of-the-art (SOTA)
song writing system which leverages masked se-
quence to sequence pre-training and attention based
alignment for M2L generation. It requires melody-
lyrics aligned training data while our model does
not. 2. GPT-2 finetuned on lyrics is a uni-modal,
melody-unaware GPT-2 large model that is fine-
tuned end-to-end (i.e., title-to-lyrics). In the auto-
matic evaluation setting, we also compare an extra
variation, content-to-lyrics, in which the input con-
tains the title, salient words, and genre. These serve
as ablations of the next model LYRA w/o rhythm
to test the efficacy of our plan-and-write pipeline
without inference-time constraints. 3. LYRA w/o
rhythm is our base model consisting of the input-
to-plan and plan-to-lyrics modules with segmen-
tation control, but without the rhythm alignment.
4. LYRA w/ soft/hard rhythm is our multi-modal
model with music segmentation and soft or hard
rhythm constraints. For the soft constraints setting,
the strength controlling hyperparameter α = 0.01.
All models except SongMASS are finetuned on the
same lyrics training data described in Section 5.1.

5.3 Automatic Evaluation Setup

We automatically assess the generated lyrics on two
aspects: the quality of text and music alignment.
For text quality, we divide it into 3 subaspects: 1)
Topic Relevance, measured by input salient word
coverage ratio, and sentence- or corpus-level BLEU
(Papineni et al., 2002); 2) Diversity, measured by
distinct unigrams and bigrams (Li et al., 2016);
3) Fluency, measured by the perplexity computed
using Huggingface’s pretrained GPT-2. We also
compute the ratio of cropped sentences among all
sentences to assess how well they fit music phrase
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segments. For music alignment, we compute the
percentage where the stress-duration rule holds.

5.4 Human Evaluation Setup

Turker Qualification We used qualification
tasks to recruit 120 qualified annotators who 1)
have enough knowledge in song and lyric annota-
tion, and 2) pay sufficient attention on the Mechan-
ical Turk platform. The qualification consisted of
two parts accordingly. First, to test the Turkers’
domain knowledge, we created an annotation task
consisting of the first verse from 5 different songs
with gold labels. The 5 songs are carefully selected
to avoid ambiguous cases, so that the quality can be
clearly identified. We selected those whose scores
have a high correlation with gold labels. Second,
we adopted attention questions to rule out irrespon-
sible workers. As is shown in the example question-
naire in Appendix A, we provided music sheets for
each song in the middle of the questions. We asked
all annotators the same question: “Do you think the
current location where you click to see the music
sheet is ideal?”. Responsible answers include “Yes”
or “No”, and suggesting more ideal locations such
as “immediately below the audio clip and above
all questions”. We ruled out irresponsible Turk-
ers who filled in geographical locations (such as
country names) in the provided blank.

Annotation Task Our annotation is relative,
meaning that annotators assess a group of songs
generated from different systems with the same
melody and title at once. We evaluated all base-
line models except for GPT-2 finetuned (content-to-
lyrics), as the two GPT-2 variations showed similar
performance in automatic evaluation. We thus only
included one due to resource constraints of the hu-
man study. Each piece of music was annotated by
at least three workers, who were asked to evaluate
the quality of the lyrics using a 1-5 Likert scale on
six dimensions across musicality and text quality.
For musicality, we asked them to rate singability
(whether the melody’s rhythm aligned well with
the lyric’s rhythm) and intelligibility (whether the
lyric content was easy to understand when listened
to without looking at the lyrics).3 For the lyric
quality, we asked them to rate coherence, creative-
ness, and in rhyme. Finally, we asked annotators
to rate how much they liked the song overall. A

3The task was carefully designed so that intelligibility was
asked before the workers read the lyrics. See Appendix A for
more details.

Task Name Success Rate

T1
Lyrics

T2
Count

T3
Granular

T4
Phoneme

Greedy
Decode

Sampling
Decode

✓ 23.14% 19.87%
✓ ✓ 50.14% 44.64%

✓ ✓ 55.01% 49.70%
✓ ✓ ✓ 93.60% 89.13%
✓ ✓ ✓ ✓ 91.37% 87.65%

Table 3: Success rate for variants of our plan-to-lyrics
model on generating sentences with the desired number
of syllables.

complete example of the survey can be found in
Appendix A. The workers were paid $16 per hour
and the average inter-annotator agreement in terms
of Pearson correlation was 0.47.

6 Results

6.1 Generating a Sequence of Lyrics with the
Desired Number of Syllables

Recall that in Section 3.2, we trained the plan-to-
lyrics generator on multiple auxiliary tasks in order
to equip it with the ability to generate a sentence
with a pre-defined number of syllables. A sample
output (boldfaced) can be found below: Line 1 (8
syllables): Last Christmas I gave you my gift; Line
2 (13 syllables): It was some toys and some clothes
that I said goodbye to; Line 3 (11 syllables): But
someday the tree is grown with other memories;
Line 4 (7 syllables): Santa can hear us singing;...

To test this feature, we compute the average suc-
cess rate on a held-out set from the training data
that contains 168 songs with 672 lines of lyrics.
For each test sample, we compute its success as
a binary indicator where 1 indicates the output se-
quence contains exactly the same number of syl-
lables as desired, and 0 for all other cases. We
experimented with both greedy decoding and sam-
pling, and found that BART (Lewis et al., 2020)
could not learn these multi-tasks as well as the GPT-
2 family under the same settings. We hence report
the best result of finetuning GPT-2 large (Radford
et al., 2019) in Table 3.

The first row in Table 3 shows that the model
success rate is around 20% without multi-task learn-
ing, which is far from ideal. By gradually training
with auxiliary tasks such as syllable counts, the suc-
cess rate increases, reaching over 90% (rows 2, 3,
4). This shows the efficacy of multi-task auxiliary
learning. We also notice that the phoneme transla-
tion task is not helpful for our goal (row 4), so we
disregard the last task and only keep the remaining

9240



Content Control/Topic Relevance Diversity Fluency Music
Model Name Salient Word

Coverage↑
Sent

Bleu↑
Corpus
Bleu↑ Dist-1↑ Dist-2↑ PPL ↓ Cropped

Sentence↓
Stress-

Duration
SongMASS (Sheng et al., 2021) / 0.045 0.006 0.17 0.57 518 34.51% 58.8%

GPT-2 (title-to-lyrics) / 0.026 0.020 0.09 0.31 82 / 53.6%
GPT-2 (content-to-lyrics) 83.3% 0.049 0.027 0.10 0.42 87 / 54.2%

LYRA w/o rhythm 91.8% 0.074 0.046 0.12 0.45 85 3.65% 63.1%
LYRA w/ soft rhythm 89.4% 0.075 0.047 0.11 0.46 85 8.96% 68.4%
LYRA w/ hard rhythm 88.7% 0.071 0.042 0.12 0.45 108 10.26% 89.5%

Ground Truth 100% 1.000 1.000 0.14 0.58 93 3.92% 73.3%

Table 4: Automatic evaluation results. Human (ground truth) performance is highlighted in a grey background.
Among all models, we highlight the best scores in boldface and underline the second best.

(a) Human evaluation results on the pilot test set with human as ground truth lyrics.

(b) Human evaluation results on the larger test set without ground truth lyrics.

Figure 3: Average human Likert scores for two lyrics evaluation datasets on singability, intelligibility, coherence,
creativity, rhyme, and overall quality. For each pair of systems in either study, we conduct paired t-test and observe
statistical significance across all dimensions except creativeness (denoted by *).

three tasks in our final implementation (row 3).

6.2 Automatic Evaluation Results
We report the automatic evaluation results in Table
4. Our LYRA models significantly outperform the
baselines and generate the most on-topic and fluent
lyrics. In addition, adding rhythm constraints to the
base LYRA noticeably increases the music align-
ment quality without sacrificing too much text qual-
ity. It is also noteworthy that humans do not consis-
tently follow stress-duration alignment, meaning
that higher is not necessarily better for music align-
ment percentage. The comparisons between GPT-2
content-to-lyrics and LYRA w/o rhythm support the
hypothesis of the better topic control provided by
our hierarchical architecture.

Since the baseline model SongMASS has no con-
trol over the content, it has lowest topic relevance
scores. Moreover, although the SongMASS base-
line seems to achieve the best diversity, it tends to
produce non-sensical sentences that consist of a few

gibberish words (e.g., ‘for hanwn to stay with him
when, he got to faney he alone’), partially because
its training data are pre-tokenized at the syllable
level. Such degeneration is also reflected by the ex-
tremely high perplexity and cropped sentence ratio
(CSR). Meanwhile, CSR is not applicable to both
GPT-2 finetuned models because they are melody-
unaware and generate lyrics freely without being
forced to end at the end of each music segment.

6.3 Human Evaluation Results
The results on both evaluation sets are shown in
Figures 3a and 3b. Clearly, human-written lyrics
greatly outperform all models. For both evaluation
sets, we notice the relative rankings of the models
remain the same across all metrics except creative-
ness. This observation is mirrored by paired t-tests
where we find that the best machine model differen-
tiates from the second best machine model with sta-
tistical significance (p-value < 0.05) for all aspects
except creativeness. Both indicate the reliability
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(a) Human (b) SongMASS

(c) GPT-2 Finetuned on Title-to-Lyrics (d) LYRA w/o Rhythm

(e) LYRA w/ Soft Rhythm (f) LYRA w/ Hard Rhythm

Figure 4: Music sheets showing the lyric generated by different systems given the same piece of melody. LYRA
with soft and hard rhythm control are the only two models that can generate highly singable lyrics. The singing
voices of the complete song can be found in this demo page.

a - Human b - SongMASS (Sheng et al., 2021)
Many skies have turned to gray because we’re far apart,
Many moons have passed away and still she’s in my heart,
We made a promise and sealed it with a kiss, In a little
Spanish town twas on a night like this.

Someone got to go here, Forget that rest of my life,
Everybody loves somebody who i, In the middle of the
night when the.

c - GPT-2 Finetuned on Title-to-Lyrics d - LYRA w/o Rhythm

In a little Spanish town, In a little Spanish town, We’ll make
you feel good, We’ll make you dance, In a little Spanish
town, In a little Spanish town . . .

It takes me back to a time and a place in a town, But if you
do love me you will give me some kisses, Where my heart
and soul are not the same but now, Your heart is in my heart
and not in a soul i know.

e - LYRA w/ Soft Rhythm f - LYRA w/ Hard Rhythm
Take me back to older time in little Spanish town, And all
the love and all the kisses that you gave me, I need your
heart and your soul and your love too, I need your heart and
soul and I need you back again.

Spanish people in the city and all in the town, Love and all
the tender kisses between two of us, Is it my heart or my
soul in you and me, In the heart and in the soul and in the
mind and then.

Table 5: An example of the generated lyrics with the same input - Title: In a little Spanish Town; Genre: Jazz;
Salient words: town, kisses, heart. We highlight the generated keywords in italics.

of our collected results in singability, intelligibility,
coherence, rhyme, and overall quality.

LYRA with hard or soft rhythm constraint are the
best models in terms of singability, intelligibility,
rhyme, and overall quality, which demonstrates the
efficacy of our plan-and-write pipeline with melody
alignment. We regard LYRA with soft rhythm as
our best model since it has highest overall qual-
ity. The addition of soft rhythm alignment leads
to further improvements in musicality and over-
all quality, with only a little sacrifice in coherence
compared to GPT-2 (title-to lyrics). On the other
hand, imposing hard rhythm constraints sacrifices
the coherence and intelligibility of lyrics.

Surprisingly, SongMASS performs even worse
than the finetuned GPT-2 baseline in terms of musi-
cality. Upon further inspection, we posit that Song-
MASS too often deviates from common singing
habits: it either assigns two or more syllables to
one music note, or matches one syllable with three
or more consecutive music notes.

6.4 Qualitative Analysis

We conduct a case study on an example set of gen-
erated lyrics to better understand the advantages of
our model over the baselines. In this example, all
models generate lyrics given the same title, genre,
and salient words, as well as the melody of the
original song. We show the music sheet of the
first generated segment in Figure 4 and the com-
plete generated lyrics in Table 5. We also provide
the song clips with synthesized singing voices and
more examples in this demo website.

Musicality. The melody-lyric alignment in Fig-
ure 4 is representative in depicting the pros and
cons of the compared models. Although Song-
MASS is supervised on parallel data, it still often
assigns too many music notes to one single sylla-
ble, which reduces singability and intelligibility.
The GPT-2 title-to-lyrics model is not aware of
the melody and thus fails to match the segmen-
tation of music phrase with the generated lyrics.
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LYRA w/o rhythm successfully matches the seg-
ments, yet stressed and long vowels such as in
the words ‘takes’ and ‘place’ are wrongly mapped
to short notes. Humans, as well as our models
with both soft and hard rhythm alignment, produce
singable lyrics.

Text quality. As shown in Table 5, SongMASS
tends to generate simple and incoherent lyrics be-
cause it is trained from scratch. The GPT-2 title-to-
lyrics model generates coherently and fluently, but
is sometimes prone to repetition. All three varia-
tions of LYRA benefit from the hierarchical plan-
ning stage and generate coherent and more infor-
mative lyrics. However, there is always a trade-off
between musicality and text quality. Imposing
hard rhythm constraints could sometimes sacrifice
coherence and creativity and thus hurt the overall
quality of lyrics.

7 Related Work

7.1 Melody Constrained Lyrics Generation

End-to-End Models. Most existing works on
M2L generation are purely data-driven and suffer
from a lack of aligned data. For example,Watanabe
et al. (2018); Lee et al. (2019); Chen and Lerch
(2020) naively apply SeqGAN (Yu et al., 2017) or
RNNs to sentence-level M2L generation. The data
collection process is hard to automate and leads to
manual collection of only small amounts of sam-
ples. Recently, Sheng et al. (2021) propose Song-
MASS by training two separate transformer-based
models for lyric or melody with cross attention.
To the best of our knowledge, our model LYRA is
the first M2L generator that does not require any
paired cross-modal data, and is trained on a readily
available uni-modal lyrics dataset.

Integrating External Knowledge. Oliveira et al.
(2007); Oliveira (2015) apply rule-based text gen-
eration methods with predefined templates and
databases for Portuguese. Ma et al. (2021) use
syllable alignments as reward for the lyric gen-
erator. However, it only estimates the expected
number of syllables from the melody. We not only
provide a more efficient solution to syllable plan-
ning, but also go one step further to incorporate the
melody’s rhythm patterns by following music theo-
ries (Nichols et al., 2009; Dzhambazov et al., 2017).
Concurrently, Xue et al. (2021); Guo et al. (2022)
partially share similar ideas with ours and lever-
age the sound to generate Chinese raps or translate

lyrics via alignment constraints. Nevertheless, the
phonetics of Chinese characters are very different
from English words, and rap generation or transla-
tion is unlike M2L generation.

7.2 NLG with Hierarchical Planning

Hierarchical generation frameworks are shown to
improve consistency over sequence-to-sequence
frameworks in other creative writing tasks such
as story generation (Fan et al., 2018; Yao et al.,
2019). Recently, a similar planning-based scheme
is adopted to poetry generation (Tian and Peng,
2022) to circumvent the lack of poetry data. We
similarly equip LYRA with the ability to comply
with a provided topic via such content planning.

7.3 Studies on Melody-Lyrics Correlation

Music information researchers have found that it
is the duration of music notes, not the pitch values
that a play significant role in melody-lyric align-
ment (Nichols et al., 2009; Dzhambazov et al.,
2017). Most intuitively, one music note should not
align with two or more syllables, and the segmenta-
tion of lyrics should match the segmentation of mu-
sic phrases for singability and breathability (Watan-
abe et al., 2018). In addition, Nichols et al. (2009)
find out that there is a correlation between sylla-
ble stresses and note durations for better singing
rhythm. Despite the intuitiveness of the aforemen-
tioned alignments, our experiments show that ex-
isting lyric generators which are already trained
on melody-lyrics aligned data still tend to ignore
these fundamental rules and generate songs with
less singability.

8 Conclusion and Future Work

Our work explores the potential of lyrics generation
without training on lyrics-melody aligned data. To
this end, we design a hierarchical plan-and-write
framework that disentangles training from infer-
ence. At inference time, we compile the given
melody into music phrase segments and rhythm
constraints. Evaluation results show that our model
can generate high-quality lyrics that significantly
outperform the baselines. Future directions include
investigating more ways to compile melody into
constraints such as the beat, tone or pitch variations,
and generating longer sequences of lyrics with song
structures such as verse, chorus, and bridge. Future
works may also take into account different factors
in relation to the melody such as mood and theme.
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Limitations

We discuss the limitations of our work. First of
all, our model LYRA is build upon pre-trained lan-
guage models (PTLM) including Bart (Lewis et al.,
2020) and GPT-2 (Radford et al., 2019). Although
our method is much more data friendly than pre-
vious methods in that it does not require training
on melody-lyric aligned data, our pipeline may not
apply to low-resource languages which do not have
PTLMs. Second, our current adoption of melody
constraints is still simple and based on a strong as-
sumption of syllable stress and note duration. We
encourage future investigation about other align-
ments such as the tone or pitch variations. Lastly,
although we already have the music genre as an
input feature, it remains an open question how to
analyze or evaluate the generated lyrics with re-
spect to a specific music genre.

Ethics Statement

It is known that the generated results by PTLMs
could capture the bias reflected in the training data
(Sheng et al., 2019; Wallace et al., 2019). Our mod-
els may potentially generate offensive content for
certain groups or individuals. We suggest to care-
fully examine the potential biases before deploying
the models to real-world applications.
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A Survey Form Used In Human
Evaluation

We show the original survey with the evaluation
instructions and the annotation task in Figures 5
through 9. Figure 5, Figure 6, and Figure 7 pro-
vide task instructions, including the definition of
each metric (Intelligibility, Singability, Coherence,
Creativeness, and Rhyme), and examples of good
and bad lyrics in each criterion. Figures 8 and 9
showcase the actual annotation task.

In the the actual annotation tasks, we noticed
that annotators tended to adjust their rating to In-
telligibility (whether the content of the lyrics was
easy to understand without looking at the lyrics)
after they were prompted to see the lyrics texts. We
hence explicitly asked them to rate Intelligibility
twice, both before and after they saw the gener-
ated lyrics and music scores. Annotators must not
modify their ratings to the first question after they
saw the lyric texts, but could still use the second
question to adjust their scores if needed. Such a
mechanism helped us reduce the noise introduced
by the presentation of lyric texts and music sheets.
Namely, we asked the same questions twice, but
only took into account the first intelligibility ratings
when we computed the results.
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Figure 5: Task Instruction Page 1
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Figure 6: Task Instruction Page 2
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Figure 7: Task Instruction Page 3
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Figure 8: Annotation Task Page 1. We explicitly asked the annotators to rate Intelligibility twice, before and after
they saw the generated lyrics and provided musicality scores. See explanations in Appendix A.
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Figure 9: Annotation Task Page 2. We explicitly asked the annotators to rate Intelligibility twice, before and after
they saw the generated lyrics and provided musicality scores.
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