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Abstract

In this paper, we propose a novel span-level
model for Aspect-Based Sentiment Analysis
(ABSA), which aims at identifying the senti-
ment polarity of the given aspect. In contrast to
conventional ABSA models that focus on mod-
eling the word-level dependencies between an
aspect and its corresponding opinion expres-
sions, in this paper, we propose Table Filling
BERT (TF-BERT), which considers the consis-
tency of multi-word opinion expressions at the
span-level. Specially, we learn the span repre-
sentations with a table filling method, by con-
structing an upper triangular table for each sen-
timent polarity, of which the elements represent
the sentiment intensities of the specific senti-
ment polarity for all spans in the sentence. Two
methods are then proposed, including table-
decoding and table-aggregation, to filter out tar-
get spans or aggregate each table for sentiment
polarity classification. In addition, we design
a sentiment consistency regularizer to guaran-
tee the sentiment consistency of each span for
different sentiment polarities. Experimental
results on three benchmarks demonstrate the
effectiveness of our proposed model.

1 Introduction

Aspect-based sentiment analysis (Pontiki et al.,
2014) ABSA is a fine-grained branch of sentiment
analysis, which aims at recognizing the sentiment
polarity of the given aspect in the sentence. For
example, given the sentence “Boot time is super
fast, around anywhere from 35 seconds to 1 minute”
and the aspect “Boot time”, the opinion expression
corresponding to the aspect is “super fast” so that
the sentiment polarity of the aspect "Boot time" is
positive.

Recently, several methods (Tang et al., 2015;
Wang et al., 2016; Ma et al., 2017; Huang et al.,
2018; Sun et al., 2019a; Chen et al., 2020; Zhang
and Qian, 2020; Xiao et al., 2021; Li et al., 2021;
Zhou et al., 2021) have been proposed to exploit

the connections between the given aspect and its
corresponding opinion expressions in the task of
ABSA. Tang et al. (2015) introduces recurrent neu-
ral networks (RNNs) to retrieve the aspect-related
information by fusing the aspect with its contextual-
ized information in the sentence. Furthermore, Ma
et al. (2017); Huang et al. (2018) propose to model
the distance dependency between the aspect and the
distant opinion expressions with attention mecha-
nisms (Vaswani et al., 2017). To better leverage the
syntax information in the ABSA task, some recent
studies (Sun et al., 2019a; Xiao et al., 2021; Li et al.,
2021) adopt graph neural networks (GNNs) over
the dependency trees. Moreover, Chen et al. (2020);
Zhou et al. (2021) generate dynamic aspect-specific
trees for every sentence-aspect pair to learn the re-
lationships between the aspect words and opinion
words.

Despite the improvements achieved by the meth-
ods above in the task of ABSA, they take opinion
expressions as single words and rely on attention
mechanisms to learn the dependency between them,
which gives rise to two issues: 1) Word-level depen-
dency ignores the semantics of the entire opinion
expressions. 2) Sentiment conflicts may exist in
the multi-word opinion expressions since the sen-
timent polarities predicted over each word can be
different (Hu et al., 2019). An example is shown
in Figure 1, in which the opinion expression to
the aspect “food” is “delicious but expensive”. If
the model only captures the dependency either be-
tween “food” and “delicious” or between “food”
and “expensive”, it would get the wrong sentiment
polarity of positive/negative. Even if all word-level
dependencies have been built, the sentiment con-
flicts between “delicious” and “expensive” may
still confuse the model. In principle, if the opin-
ion words “delicious”, “but” and “expensive” can
be considered simultaneously, it is easier for the
model to predict the correct sentiment polarity as
neutral.
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To address the above issues, in this paper, we
propose a span-level ABSA model and introduce
the span-level dependencies, which consider all
possible continuous subsequences of a sentence,
namely spans, and build connections with the given
aspect. While being more flexible, spans are of vari-
able lengths, which inevitably pose significant chal-
lenges for standard mechanisms such as attention
or GCN. In this paper, we take a different approach
with a table filling method to learn span represen-
tations naturally and efficiently in the ABSA task,
inspired by the success of table filling methods in
the relational triple extraction (RTE) task (Zhang
et al., 2017; Ren et al., 2021). Based on the span
representations, two methods for sentiment polar-
ity classification are introduced, which consist of
a table-decoding method and a table-aggregation
method. Specifically, we construct an upper trian-
gular table for each sentiment polarity, of which
each element represents the sentiment intensity of
the specific sentiment polarity for the correspond-
ing span. For the table-decoding method, inspired
by Hu et al. (2019), we first select all possible opin-
ion expressions according to the sentiment inten-
sity in the table for each sentiment polarity. Next,
we predict the sentiment polarities with the span
representations, which are aggregated according
to the sentiment intensities of the extracted target
spans. For the table-aggregation method, we di-
rectly aggregate all sentiment polarity tables to get
the probability of the specific sentiment polarity.
Additionally, in order to guarantee the sentiment
consistency of each span with respect to different
sentiment polarities, we design a sentiment con-
sistency regularizer to prevent the same span from
getting high sentiment intensities on different ta-
bles at the same time.

In summary, the main contributions of the work
are as follow:

• To the best of our knowledge, this is the first
work to model span-level dependencies be-
tween aspects and the corresponding opinion
expressions for the ABSA task. We introduce
the table filling method and propose our TF-
BERT model. We maintain a table for each
sentiment polarity, and the elements in the
table represent the sentiment intensities of
the spans to the given aspect. Moreover, we
design a table-decoding method and a table-
aggregation method to predict the sentiment
polarity.

Figure 1: An example sentence of a restaurant review.
The aspect words and opinion words are marked in red
and yellow, respectively. We denote positive, negative
and neutral sentiment as Pos, Neg and Neu, respectively.

• We propose a sentiment consistency regular-
izer to ensure the sentiment consistency of
each span among tables for different sentiment
polarities to prevent each span from express-
ing different sentiments for the given aspect.

• Extensive experimental results on three public
standard datasets verify the effectiveness of
modeling relationships between aspects and
their corresponding opinion expressions in
span-level.

2 Related Works

2.1 Aspect-based Sentiment Analysis
The goal of the ABSA task is to identify the sen-
timent polarity of the given aspect in the sen-
tence (Schouten and Frasincar, 2015; Brauwers
and Frasincar, 2021). Earlier methods (Titov and
McDonald, 2008; Jiang et al., 2011) based on hand-
crafted features are not able to build the connec-
tions between the aspects and opinion expressions,
whose results are largely depending on the quality
of features.

To tackle these problems, recent studies focus
on using deep learning methods to build the end-
to-end models for the ABSA task, which can be
categorized into LSTM-based methods, attention-
based methods, and GNN-based methods.

LSTM-based Methods LSTM (Hochreiter
and Schmidhuber, 1997) is a variant of RNN which
is widely used in processing sequential data. Pio-
neering LSTM-based models treat the sentence as a
word sequence and use relatively simple methods to
exchange the information between the aspect words
and context words. For example, Tang et al. (2015)
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aggregates the representations of aspect words to
obtain the sentiment representation of the given
aspect. However, it is difficult for these methods to
deal with the long-distance dependency problem.

Attention-based Methods To model the long
distance dependency, Wang et al. (2016); Ma et al.
(2017); Huang et al. (2018); Tan et al. (2019) com-
pute the similarity scores between words in a sen-
tence with attention mechanisms. Among them,
AOA (Huang et al., 2018) adopts the cross atten-
tion from aspect to text and text to aspect simulta-
neously to model the aspects and sentences jointly
to better capture their interactions. To distinguish
the conflicting opinions, Tan et al. (2019) combines
the positive and negative attention and learns extra
aspect embeddings.

GNN-based Methods To better construct the
connections between the aspects and the corre-
sponding contexts, a line of works (Sun et al.,
2019b; Chen et al., 2020; Zhang and Qian, 2020;
Li et al., 2021) leverage the syntactic information
by applying GNN on syntax trees. These models
regard words in a sentence as nodes in a graph, and
learn node representations by aggregating infor-
mation from adjacent nodes. Therefore, the effect
of the distance between aspect words and opinion
words is mitigated. Specifically, Sun et al. (2019b)
uses GCN over dependency tree to model the sen-
tence structure. Instead of using the vanilla GCN,
Zhang and Qian (2020) designs a Bi-level GCN
so that the model can assign different attention to
different types of edges in a dependency tree. To
alleviate the effects of parsing errors and informal
expressions, Li et al. (2021) builds an extra seman-
tic graph using the attention mechanism and applies
GCN on the syntactic and semantic graph to obtain
the aspect-specific representation.

In addition, recent pre-trained models, such as
BERT (Devlin et al., 2019), have shown appealing
performance in many tasks including ABSA. For
instance, by constructing auxiliary sentences, Sun
et al. (2019a) converts the ABSA problem into a
sentence-pair classification task. Motivated by the
neuroscience studies, Zhang et al. (2022) selects
the most important word at each step and dynami-
cally changes the aspect-oriented semantics using
a dynamic re-weighting adapter.

2.2 Table Filling
Table filling based methods are widely used in RTE
task. These methods generate a table for each re-

lation, of which the elements are often used to
represent specific information of two entities re-
garding the given relation, such as start and end
positions or entity types. For example, Zhang et al.
(2017) maintains an upper triangular table to repre-
sent the relations between two words, and fills the
table in a specific order. Ren et al. (2021) proposes
to mine the global associations of relations and of
token pairs using the attention mechanism based
on which a proper label is assigned to every item
in the table to better construct the table features.

3 Methodology

In this section, we first show the problem definition
in Section 3.1, then describe the table filling strat-
egy in Section 3.2, followed by the model details
in Section 3.3.

3.1 Problem Definition

In the ABSA task, we are given a sentence-aspect
pair (s, a), where s = {w1, w2, ..., wn} is a se-
quence of n words, and a = {a1, a2, ..., am} is
an aspect, we denote a span {wi, wi+1, ..., wj} as
span(i, j). The goal of the ABSA task is to pre-
cisely predict the sentiment polarity of the given
aspect a. In our proposed TF-BERT, we model
the relationships between an aspect and its corre-
sponding opinion expressions at the span-level. To
effectively handle spans with different lengths, we
convert the ABSA task into the task of filling the
table for each sentiment polarity so that we can use
the start and end positions to denote any span in
the same manner.

3.2 Table Filling Strategy

Given the sentence-aspect pair (s, a), we will main-
tain a table tablec with size n × n for each senti-
ment polarity c (c ∈ C, and C contains all distinct
sentiment polarities). The n×(n+1)

2 elements in the
upper triangular table correspond to the n×(n+1)

2
spans in the sentence s. Unlike the practice in the
RTE task, we do not assign a label for each item
in the table since there is no supervision informa-
tion for the table. Instead, we assign each table
element a value to represent the sentiment intensity
of the corresponding span of the specific sentiment
polarity.

3.3 Model

The overall architecture of TF-BERT is shown in
Figure 2. It consists of three main modules: an
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Figure 2: Model architecture

Encoder module, a Table Generation (TG) module,
and a Sentiment Classification module.

Encoder We adopt a pre-trained model (i.e.,
BERT) to map each word in s into a real
value vector. Given (s, a), we construct
the input as [CLS], s, [SEP], a, [SEP] to ob-
tain the aspect-specific context representations
H = {h1, h2, ..., hn}, where hi ∈ Rd.

Then, to make the model aware of the start and
end positions of spans, we apply two separated
Feed-Forward Networks (FFN) on H to get the
initial start and end features, denoted as Hst and
Hed respectively, which can be formulated as:

Hst = WstH + bst (1)

Hed = WedH + bed (2)

where Wst/ed ∈ Rd×d and bst/ed ∈ Rd are train-
able parameters. Then Hst and Hed are fed into
the Table Generation module.

Table Generation The Table Generation mod-
ule generates the table for each sentiment polarity.
Taking Hst and Hed as input we generate the table
feature for each span span(i, j) at first, which is
denoted as TF (i, j) and computed as follow:

TF (i, j) = σ(Hst,i ⊗Hed,j) (3)

where ⊗ represents the Hadamard Product opera-
tion, σ is the activation function, Hst,i and Hed,j

are the start and end representations for token wi

and wj , respectively.
After obtaining the table features, we apply a

linear layer for TFc(i, j) to compute the sentiment
intensity of span(i, j) regarding the sentiment po-
larity c, that is:

tablec(i, j) = Wc
⊤TF (i, j) + bc (4)

where Wc ∈ Rd and bc ∈ R are trainable parame-
ters.

Besides, we propose a sentiment consistency
regularizer for the generated tables to improve the
performance of the Table Generation module. Intu-
itively, the same span does not show different senti-
ments for a given aspect. Therefore, we maximize
the discrepancy between any two tables for differ-
ent sentiment polarities to ensure that each span
does not get high sentiment intensities on different
tables at the same time, which can be formulated
as:

RSC =
|C|∑

c∈C
∑

c′∈C ||tablec − tablec′ ||F
(5)

where C is the set of all distinct sentiment polari-
ties.

Sentiment Classification After getting senti-
ment intensity of a span for each sentiment polar-
ity, we propose two methods to get the sentiment
probability distribution to better leverage the table
information for sentiment classification, namely
table-decoding and table-aggregation.

In the table-decoding method, we design a de-
coding process to extract the correct opinion ex-
pressions for the given aspect. Firstly, we select
the spans with the M highest sentiment intensities
in every table as the possible opinion expressions
and record their start positions S, end positions E
and sentiment intensities I . In order to prevent the
model from simply choosing too long spans or even
the whole sentence as opinion expressions, we pro-
pose a span selection algorithm to select K target
spans as shown in Algorithm 1. Finally, we use the
weighted sum of the corresponding table features
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of these selected spans according to their sentiment
intensities to get the final sentiment representation
ho, which can be formulated as:

Sc, Ec, Ic = top-M(tablec) (6)

S,E, I =concatc∈C(Sc),

concatc∈C(Ec), concatc∈C(Ic)
(7)

O = SpanSelction(S,E, I,K) (8)

ho =
∑

(Si,Ei,Ii)∈O

exp(Ii)∑
(Sj ,Ej ,Ij)∈O exp(Ij)

TF (Si, Ei)

(9)
Finally, we apply a linear classifier over ho to com-
pute the sentiment probability distribution, that is:

pdec = softmax(Woho + bo) (10)

where Wo ∈ R|C|×d and bo ∈ R|C| are model
parameters.

However, the heuristic decoding algorithm may
also select unrelated spans which would introduce
noise when predicting the sentiment polarity. More-
over, when M becomes larger, the table-decoding
method is time-consuming. In practice, it is not
necessary to identify the correct spans, considering
that the tables already present the intensities of dif-
ferent sentiment polarities. Therefore, instead of
extracting the opinion expressions, we assume that
the prediction results should be consistent with the
sentiment intensities presented in the tables. In the
table-aggregation method, we directly aggregate
and concatenate the tables of each sentiment polar-
ity to obtain the sentiment probability distribution,
which can be formulated as:

tableagg = concatc∈C(f(tablec)) (11)

pagg = softmax(tableagg) (12)

where f represents the aggregating function (i.e.,
max or mean).

Objective We train the model to minimize the
following loss function:

ℓ(θ) = −
|D|∑

i

|C|∑

j

yji log(p
j
i ) + λ1||θ||22 + λ2RSC

(13)
where D is the training data set, yji is the ground-
truth sentiment polarity, θ represents all trainable
model parameters, λ1 and λ2 are regularization
coefficients, and C denotes all distinct sentiment
polarities. The first term represents the standard
cross-entropy loss and the second term is L2-
regularization.

Algorithm 1 Span Selection
Input: S, E, I , K
S denotes the start positions of the candidate spans
E denotes the end positions of the candidate spans
I denotes the sentiment intensities of the candidate spans
K is the number of selected spans
1: Let R,O,U = {}, {}, {}
2: for Si, Ei, Ii in S,E, I do
3: if Si ≤ Ei then
4: rl = Ii − (Ei − Si + 1)
5: ul = (Si, Ei, Ii)
6: R = R ∪ {rl}, U = U ∪ {ul}
7: else
8: continue
9: end if

10: end for
11: while R ̸= {} and |O| < K do
12: l = argmax R
13: O = O ∪ {ul}, R = R− {rl}, U = U − {ul}
14: end while
15: return O

Dataset Division # Pos. # Neg. # Neu.

Laptop Train 976 851 455
Test 337 128 167

Restaurant Train 2164 637 807
Test 727 196 196

Twitter Train 1507 1528 3016
Test 172 169 336

Table 1: Dataset statistics

4 Experiments

4.1 Datasets

We evaluate our proposed TF-BERT model on
three benchmark datasets for aspect-based senti-
ment analysis, including Laptop, Restaurant and
Twitter. The Laptop and Restaurant datasets con-
sist of reviews from the SemEval ABSA chal-
lenge (Pontiki et al., 2014). The Twitter dataset
includes tweets from Dong et al. (2014). We fol-
low Chen et al. (2017) to pre-process these datasets
to remove the samples which have conflicting sen-
timent polarities. Table 1 shows the statistics of the
three datasets.

4.2 Implementation Details

We use bert-base-uncased to build our frame-
work. The TF-BERT model is trained in 10 epochs
with a batch size 16. We use the Adam optimizer
with a learning rate 0.00005 for all datasets, and
all model weights are initialized with a uniform
distribution. The dropout rate is set to 0.3. λ1 is
set to 0.0001 and λ2 is set to 0.1, 0.3 and 0.15
for the three datasets, respectively. In the table-
decoding method, M is set to 5, 7 and 7 for the
three datasets, respectively, and K is set to 3 for all

9277



datasets. In the table-aggregation method, we use
the mean function to aggregate all the tables and
get the probability distribution. All experiments
are conducted on a single Nvidia 3090 GPU. We
run our model three times with different random
seeds and report the average results.

4.3 Baselines

In this subsection, we briefly summarize the base-
line models we compare to in the experiments:
(1) ATAE-LSTM (Wang et al., 2016) combines
the attention mechanism with the LSTM network
and uses extra aspect embeddings to obtain the
aspect-specific representations (2) IAN (Ma et al.,
2017) employs two LSTMs to model contexts and
aspects separately, while using an interactive at-
tention mechanism to exchange information. (3)
AOA (Huang et al., 2018) uses the aspect-to-text
and text-to-aspect cross attention together to intro-
duce interactions between aspect words and context
words. (4) ASGCN (Zhang et al., 2019) uses GCNs
and aspect-aware attention to get the aspect-specific
representations. (5) CDT (Sun et al., 2019b) uti-
lizes the dependency trees from an external de-
pendency parser to shorten the distance between
a given aspect and its corresponding opinion ex-
pression, and applies GCNs for information prop-
agation. (6) DualGCN (Li et al., 2021) uses both
dependency parsing and the attention mechanism to
construct syntactic and semantic connections, and
exchanges information between them through a mu-
tual Bi-Affine transformation. (7) BERT (Devlin
et al., 2019) is the vanilla BERT model fine-tuned
on the three datasets, and uses the representation
of the [CLS] token to build a classifier. (8) BERT-
SPC (Song et al., 2019) feeds the contexts and
aspects into the BERT model for the sentence pair
classification task. (9) RGAT-BERT (Wang et al.,
2020) generates a unified aspect-oriented depen-
dency tree by reshaping and pruning the original de-
pendency tree and proposes a relational graph atten-
tion network to encode the tree. (10) T-GCN(Tian
et al., 2021) designs a type-aware GCN to explic-
itly utilize the information of dependency types
for ABSA. (11) BERT4GCN (Xiao et al., 2021)
enhances the dependency graph with the attention
weights from the intermediate layers in BERT, and
apply GCNs over the supplemented dependency
graph. (12) DR-BERT (Zhang et al., 2022) learns
dynamic aspect-oriented semantics with a dynamic
re-weighting adapter which selects the most impor-

tant words at each step and updates the semantics.

4.4 ABSA Results
We use the accuracy and macro-averaged F1-score
as the main evaluation metrics. From the results
in Table 2, we can first observe that, models using
BERT encoders beat most models with LSTM en-
coders (e.g., ATAE-LSTM, IAN and AOA), which
indicates the superiority of the pre-trained language
models. In our implementation, we also use the
BERT encoder to get the aspect-specific representa-
tions. Secondly, the proposed TF-BERT performs
better than models using the attention mechanisms
and dependency graphs (e.g., CDT, DualGCN and
RGAT-BERT), which connect aspect words and
opinion words, justifying the effectiveness of TF-
BERT to model the dependencies between aspects
and the corresponding contexts from the span-level.
Concretely, TF-BERT can better understand the
semantics of the entire opinion expression and en-
sure the sentiment consistency for each opinion
expression. Moreover, compared with the state-of-
the-art baselines (i.e., T-GCN or DR-BERT), our
TF-BERT still performs better in both evaluation
metrics on the Laptop and Twitter datasets, which
demonstrate the effectiveness of the table filling
strategy.

4.5 Ablation Study
In this subsection, we conduct ablation studies on
the three datasets and further investigate the influ-
ence of each component. The results are shown in
Table 3. As expected, the full model has the best
performance. The model w/o RSC means that we
remove the sentiment consistency regularizer, and
the performance of TF-BERT drops significantly
on all three datasets, which demonstrates that the
regularizer can ensure the sentiment consistency
for each span across tables for different sentiment
polarities. The model w/o separated FFNs means
we do not use two separated FFNs to get the initial
start and end features. Therefore, the performance
degrades substantially on the three datasets which
justifies that our TF-BERT is better aware of the
start and end positions of every span by using sepa-
rated FFNs to obtain different start and end features.
The model w/o span selection means we directly
use the representations of the candidate spans to
predict the sentiment polarity in TF-BERT (dec).
The results show that our span selection algorithm
can help TF-BERT (dec) find the corresponding
opinion expressions for the given aspect rather than
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Models Laptop Restaurant Twitter
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

ATAE-LSTM (Wang et al., 2016) 68.70 - 77.20 - - -
IAN (Ma et al., 2017) 72.10 - 78.60 - - -

AOA (Huang et al., 2018) 74.50 - 81.20 - - -
ASGCN (Zhang et al., 2019) 75.55 71.05 80.77 72.02 72.15 70.40

CDT (Sun et al., 2019b) 77.19 72.99 82.30 74.02 74.66 73.66
DualGCN (Li et al., 2021) 78.48 74.74 84.27 78.08 75.92 74.29
BERT (Devlin et al., 2019) 77.29 73.36 82.40 73.17 73.42 72.17

BERT-SPC (Song et al., 2019) 78.99 75.03 84.46 76.98 74.13 72.73
RGAT-BERT (Wang et al., 2020) 78.21 74.07 86.60 81.35 76.15 74.88

T-GCN (Tian et al., 2021) 80.88 77.03 86.16 79.95 76.45 75.25
BERT4GCN (Xiao et al., 2021) 77.49 73.01 84.75 77.11 74.73 73.76
DR-BERT (Zhang et al., 2022) 81.45 78.16 87.72 82.31 77.24 76.10

TF-BERT (dec) 81.49 78.30 86.95 81.43 77.84 76.23
TF-BERT (agg) 81.80 78.46 87.09 81.15 78.43 77.25

Table 2: Performance comparison on three benchmark datasets. The best scores are bolded, and the second best
ones are underlined.

Models Laptop Restaurant Twitter
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

TF-BERT (dec) 81.49 78.30 86.95 81.43 77.84 76.23
w/o RSC 80.85 77.27 85.97 79.71 75.78 74.50

w/o separated FFNs 80.38 76.03 85.79 78.74 76.66 76.01
w/o span selection 80.54 77.17 86.15 79.97 75.48 74.75

TF-BERT (agg) 81.80 78.46 87.09 81.15 78.43 77.25
w/o RSC 80.70 77.43 86.60 80.72 76.51 75.45

w/o separated FFNs 81.17 77.94 85.70 78.62 77.10 75.35

Table 3: Ablation study on three benchmark datasets.

# Reviews IAN TF-BERT target spans

1 Set up was easy. Pos" Pos" "easy","."

2 Did not enjoy the new Windows 8 and
Neu$ Neg" "did not enjoy","not","did"touchscreen functions.

3 Works well, and I am extremely happy
Pos" Pos" "extremely happy","extremely","happy"to be back to an apple OS.

Table 4: Comparison of the selected opinion expressions between human and TF-BERT. Aspect and opinion words
are in italic. The duplicate spans selected by TF-BERT are removed. We denote positive, negative and neutral
sentiment as Pos, Neg and Neu, respectively.

Models Laptop Restaurant Twitter
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

Att+GCN 79.11 75.53 85.52 77.55 76.81 75.07
Dep+GCN 80.22 77.04 85.88 79.52 76.51 75.33

Span 79.43 75.83 86.06 80.21 76.96 75.55

Table 5: Performance comparison of models using different kinds of features on on three benchmark datasets.

Models Parameter Number Laptop Restaurant Twitter
T E T E T E

TF-BERT (dec) 110.6M 98s 10 222s 10 364s 10
TF-BERT (agg) 110.6M 80s 10 196s 10 233s 10

DR-BERT* (Zhang et al., 2022) - 157s 10 183s 10 379s 10
DualGCN-BERT (Li et al., 2021) 111.8M 100s 15 276s 15 293s 15

Table 6: Computation runtime on three benchmark datasets. "T" and "E" represent the training time of each epoch
(seconds) and the number of training epochs required, respectively. "*" means that we report the results shown in
the original paper. For other models, we conduct experiments on a single Nvidia 3090 GPU with the same batch
size 16 and report the results.

9279



simply choosing the too long spans.

4.6 Case Study
To investigate whether the proposed TF-BERT can
correctly figure out the complex opinion expres-
sions for the given aspects, we select a few sample
cases and present the predictions and target opinion
expressions extracted by Algorithm 1. The results
are shown in Table 4. First, we can observe that,
for the given aspects, the corresponding opinion
expressions are among the selected target spans
and our TF-BERT can make right sentiment pre-
dictions. These results demonstrate that TF-BERT
can correctly construct the connections between the
given aspects and corresponding opinion expres-
sions and understand the semantics of the entire
opinion expressions. Second, even in the complex
scenarios when there are multiple aspects in the
sentence, TF-BERT can still accurately distinguish
the opinion expressions corresponding to each as-
pect. For example, for the aspect “Windows 8”
in the review “Did not enjoy the new Windows
8 and touchscreen functions”, the opinion expres-
sion “did not enjoy” is selected by TF-BERT while
IAN does not capture the key words “did not”. In
summary, these three examples demonstrate the
proposed TF-BERT, by modeling the dependencies
between aspects and opinion expressions from the
span-level, can connect the opinion expressions
with the given aspects through table filling.

4.7 Analysis on the Span-level Features
To better demonstrate the effectiveness of using
span features in the ABSA task, we implement the
following two models based on word-level depen-
dencies: (1) Att + GCN uses the attention mech-
anism to build connections between each pair of
words and applies GCN on the attention weight
matrix, (2) Dep + GCN utilizes the dependency
parse graph to connect aspect words and opinion
words, and applies GCN over the graph. Both mod-
els are based on the BERT encoder and use the
corresponding word features of the given aspect to
predict the sentiment polarity.

We compare these two word-level models with
a simplified variant (Span) of the proposed TF-
BERT which directly uses the table features for
the given aspect to predict the sentiment polar-
ity. The results are shown in Table 5, where we
can observe that, with only simple FFNs to ob-
tain the span representations, Span consistently
outperforms Att+GCN and Dep+GCN on almost

all datasets, which justify that treating the opin-
ion expressions as spans rather than single words
can help better understand the semantics and en-
sure the sentiment consistency of the entire opinion
expressions.

4.8 Analysis on the Computational Cost

Theoretically, the number of spans in a sentence
of length n is n×(n+1)

2 , and we need to consider
all spans and generate a table for every sentiment
polarity c ∈ C, which leads to the time complexity
of O(|C|n2) to fill out all tables. Empirically, to
investigate the computational costs of the proposed
TF-BERT, we compare the running time and num-
ber of trainable parameters of TF-BERT with two
baseline methods. As shown in Table 6, compared
to other BERT-based baseline models, TF-BERT
takes less training time in each epoch with compa-
rable model size, which demonstrate that our TF-
BERT model does not incur extra computational
costs.

4.9 Effects of Hyper-Parameters

To investigate the impact of the hyper-parameters
M and K in the table-decoding method, we eval-
uate our model on the three datasets by fixing the
value of one of them and varying the other. As
shown in Figure 3(a), for a fixed K, the table-
decoding method is robust to the number of candi-
date spans. Meanwhile, although a larger K does
improve the accuracy, it also introduces additional
noise. Setting K to around 3 leads to consistently
better performance.

5 Conclusion

In this paper, we propose a novel table filling based
model TF-BERT for the ABSA task, which main-
tains an upper triangular table for each sentiment
polarity and the elements in the table denotes the
sentiment intensity of the specific sentiment po-
larity for all spans in the sentence. Specifically,
we first append the given aspect to the sentence
and use the BERT model to encode the augmented
sentence to get the aspect-specific representations.
Then, we construct the span features and generate a
table for each sentiment polarity. Finally, we utilize
two methods to obtain the sentiment probability
distribution. Additionally, to ensure the sentiment
consistency of the same span across different ta-
bles, we adopt a sentiment consistency regularizer
on the generated tables. Extensive experiments on
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(a) Impact of M .

(b) Impact of K.

Figure 3: Accuracy on the three datasets with different
hyper-parameter settings.

three benchmarks demonstrate the effectiveness of
our TF-BERT model.

6 Limitations

First, our method needs to check all spans in the
given sentence and build a table for each sentiment
polarity, and is therefore difficult to handle too long
sentences. Another limitation of our work is that
for the different aspects in the same sentence, we
need to rebuild the tables.
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