
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 9285–9298

July 9-14, 2023 ©2023 Association for Computational Linguistics

Limitations of Language Models in Arithmetic and Symbolic Induction

Jing Qian∗, Hong Wang∗, Zekun Li, Shiyang Li, Xifeng Yan
University of California, Santa Barbara

{jing_qian, hongwang600, zekunli, shiyangli, xyan}@cs.ucsb.edu

Abstract

Recent work has shown that large pretrained
Language Models (LMs) can not only perform
remarkably well on a range of Natural Lan-
guage Processing (NLP) tasks but also start
improving on reasoning tasks such as arith-
metic induction, symbolic manipulation, and
commonsense reasoning with increasing size
of models (Wei et al., 2022; Chowdhery et al.,
2022). However, it is still unclear what the
underlying capabilities of these LMs are. Sur-
prisingly, we find that these models have limi-
tations on certain basic symbolic manipulation
tasks such as copy, reverse, and addition. When
the total number of symbols or repeating sym-
bols increases, the model performance drops
quickly. We investigate the potential causes
behind this phenomenon and examine a set of
possible methods, including explicit positional
markers, fine-grained computation steps, and
LMs with callable programs. Experimental re-
sults show that none of these techniques can
solve the simplest addition induction problem
completely. In the end, we introduce LMs with
tutor, which demonstrates every single step of
teaching. LMs with tutor is able to deliver
100% accuracy in situations of OOD and re-
peating symbols, shedding new insights on the
boundary of large LMs in induction.

1 Introduction

Transformer-based large pretrained Language Mod-
els, such as GPT3 and T5 (Vaswani et al., 2017;
Brown et al., 2020; Raffel et al., 2020), have been
widely used as few-shot learners in many NLP
tasks. Recent work even finds these models can
achieve state-of-the-art performance in arithmetic
and symbolic reasoning (Nye et al., 2021; Wei et al.,
2022). Although these models exhibit surprisingly
impressive capabilities in complex arithmetic rea-
soning tasks, such as MultiArith (Roy and Roth,
2015) and GSM8k (Cobbe et al., 2021), it has also

∗ The first two authors (Jing and Hong) contributed
equally to this work.

Figure 1: Examples of addition: the baseline setting
(top) and Scratchpad (Nye et al., 2021) with intermedi-
ate steps (bottom). A similar method with more detailed
demonstration is introduced in (Recchia, 2021).

been pointed out that they tend to make certain
calculation errors and perform significantly worse
when the number of math operations increases in
equations (Wei et al., 2022). Brown et al. (2020)
find that GPT3 displays strong proficiency in 2-
digit arithmetic addition, but struggles in arithmetic
addition on numbers with more than three digits.
Nogueira et al. (2021) also observe that the fine-
tuned T5 model can not correctly add or subtract
arbitrarily long numbers. Larger models might
perform better on the testing data, but worse on
numbers that are longer than the training data (out-
of-distribution, OOD) (Nogueira et al., 2021).

Figure 1 shows two possible addition exemplars
for LMs on addition problem. The scratchpad ver-
sion gives more details on how humans do basic
arithmetic. Nye et al. (2021) show that with more
fine-grained demonstrations, the accuracy of addi-
tion can be improved dramatically with fine-tuning.
Yet, it still can not achieve 100% on OOD data,
even with thousands of training data points. Figure
2 shows the performance of GPT-3 and T5 on addi-
tion using the scratchpad version of training data.
The problem becomes more severe when there are

9285



Figure 2: The horizontal axis is the number of digits and the vertical axis is the accuracy. The prompts for GPT3
consist of 4 examples. The T5 models are trained on 1-5 digits of up to 2,000 examples and each training example
consists of random numbers in the format of 2 4 1. In-dist: in-distribution. Out-of-dist.: out-of-distribution
(OOD). In-distribution refers to training on up to k-digit numbers and testing on up to k-digit numbers while out-of-
distribution refers to training on up to k-digit numbers and testing on numbers with more digits. α indicates the
repetition level of the examples. An example x1 · · ·xn with n digits are sampled with the next digit probability
p(xi+1|xi) = α, when xi+1 = xi; otherwise, (1− α)/9. Larger α indicates a higher repetition level.

repeating digits in the addition operands.
As the performance drops with repeating digits,

we suspect that LMs might not handle the repeating
symbols well. Figure 2 illustrates the performance
of GPT-3 and T5 on the copy task, one of the sim-
plest symbolic manipulation operations. GPT-3
and T5 still can not perform well on OOD. We
further do a preliminary experiment where a T5
model is fine-tuned using the data containing re-
peating numbers of up to 80 digits, T5 still can
not achieve 100% in-distribution accuracy on long
repeating digits. The results indicate that there are
two problems intervening: Transformers are not
good at handling repeating symbols and OOD gen-
eralization. The repeating symbols can also be a
problem even for in-distribution data. We believe
that overcoming the aforementioned limitations is
of critical importance for the future application
of Transformer-based LMs to reasoning-intensive
tasks such as data format conversion and robotic
process automation.

In this paper, we investigate the potential causes
behind this phenomenon and examine a set of pos-
sible mitigation solutions including fine-grained
computation steps, positional markers, and LMs
with callable programs. Since incorporating com-
putation steps improves the OOD generalization in
arithmetic addition (Nye et al., 2021), one possible
direction is to provide more fine-grained compu-
tation steps in the fine-tuning data or the few-shot
prompt. However, it may not be sufficient to alle-
viate the problem of repeating numbers. When a
human does addition, the position of each digit is
used to differentiate the repeating digits. However,
the self-attention mechanism in the Transformer
may not tell which “1” is referred to in the input.

This prompts us to explore using positional markers
to differentiate the important tokens. Using these
two methods to augment the reasoning process, we
find that the performance of pretrained LMs still
can not reach satisfying results. Then we resort to
a method where the copy operation is implemented
as a primitive function and explore whether the LM
can further boost its performance.

We experiment with three symbolic manipula-
tion tasks: copying, reversing, and addition. Exper-
imental results show that although generalization
in these symbolic manipulation tasks is straightfor-
ward for humans, it is still challenging for LMs, and
none of these mitigation methods fully solves the
problems. In the end, we introduce LMs with tutor
which demonstrates every single step of teaching,
pinpointing where these digits come from. LMs
with tutor is able to deliver 100% accuracy in situa-
tions of OOD and repeated symbols. In this design,
LMs are used to generate actions that mimic opera-
tions in multiple tape Turing machines, rather than
the intermediate results. These actions generate the
intermediate results on tapes. We hope this could
shed light on the capability of Transformer-based
LMs in addition to providing large training datasets
or scaling up the size of these models.

To conclude, our main contributions are:

• We identify a set of simple symbolic manipu-
lation tasks and uncover the limitations of the
LMs in arithmetic and symbolic induction.

• We examine a set of potential techniques in-
cluding positional markers, fine-grained com-
putation steps, and LMs with callable pro-
grams. Though they could mitigate the limita-
tions of the LMs, none of them can completely

9286



solve the generalization problem.

• Finally, we demonstrate that LMs with tutor
is able to deliver 100% accuracy in situations
of OOD and repeated symbols. Our analysis
could inspire new thoughts to overcome the
limitation of LMs in symbolic manipulation.

2 Related Work

Large Pretrained Language Models: Brown et al.
(2020) show that GPT3 exhibits strong proficiency
on 2-digit addition and subtraction using simply
few-shot prompting, without any task-specific train-
ing. Furthermore, the larger the LM, the better the
performance. Following GPT3, Chowdhery et al.
(2022) further scale the Transformer-based LMs
to a 540-billion parameter model, called Pathways
Language Model (PaLM). Same as Brown et al.
(2020), Chowdhery et al. (2022) find that scaling
the LMs consistently results in better arithmetic
reasoning ability with few-shot prompting. How-
ever, the reasoning ability of the large LMs is still
limited. GPT3 struggles with 3-digit arithmetic
and with direct prompting, even 540B PaLM can
not achieve high performance on complex tasks
requiring multi-step reasoning. Therefore Wei et al.
(2022) propose the following prompting method
for large pretrained LMs.

Chain-of-Thought Prompting: This prompting
method provides a few chain-of-thought demonstra-
tions, which is a series of intermediate reasoning
steps, as exemplars in the prompting. Therefore,
given a complex reasoning task, the model is al-
lowed to calculate the intermediate results step-
by-step before generating the final answer. With
chain-of-thought prompting, a complex reasoning
task is decomposed into a list of simple operations
and LMs can derive these operations one by one.
Kim et al. (2022) adopt faithful explanations that
accurately represent the reasoning process behind
solving a math word problem. Wei et al. (2022)
show that combining chain-of-thought prompting
and a sufficiently large LM, 540B PaLM, can sig-
nificantly improve the LMs’ reasoning ability on
complex tasks, such as math word problems.

Fine-tuning with Large Training Datasets: In-
stead of few-shot prompting, another direction is
to fine-tune large LMs with a sufficient amount
of training data. Nogueira et al. (2021) fine-tune
T5 with different ways of representing numbers,
but even with the best-performing representation,
the fine-tuned model can not achieve as good ac-

curacy on out-of-distribution testing examples as
in-distribution testing examples. Nye et al. (2021)
propose to use Scratchpad to improve the out-of-
distribution accuracy. Scratchpad combines step-
by-step reasoning with fine-tuning. The training
examples include the intermediate steps of an algo-
rithm in target, so the model is trained to generate
not only the final answer, but also the intermediate
steps, which is similar to chain-of-thought, but re-
quires more training data. Nye et al. (2021) show
that using the training data augmented with interme-
diate steps significantly improves the model perfor-
mance, but even with 100k augmented training ex-
amples for the addition task, the fine-tuned 1B LM
still does not perform well on out-of-distribution
addition. Our work is also related to Graves et al.
(2014), which extends the capabilities of Recurrent
Neural Networks to two simple symbolic manipula-
tion tasks, copy and sort, by augmenting the model
with external memory resources.

3 Mitigation Methods

3.1 Positional Markers

We first explore possible methods to mitigate the
problem of repeating numbers. We introduce two
types of positional markers: implicit positional
markers and explicit ones.

Most Transformer-based LMs encode the posi-
tional information into positional vectors and add
each of them to the corresponding word vector.
Although large LMs have already incorporated po-
sitional encoding in the model architecture (Fig-
ure 3), results in Figure 2 indicate that the posi-
tional encoding commonly used in large LMs may
not be sufficient to locate each repeating digit ef-
fectively. Instead of representing each token by the
sum of its contextual token embedding and the po-
sition embedding, DeBERTa (He et al., 2021) rep-
resents each token with a token embedding and a
position embedding, respectively, and the attention
weights are computed using disentangled matrices
based on both embeddings, respectively (Figure 3).
In other words, the self-attention in DeBERTa is
disentangled. With the disentangled relative po-
sition embeddings, the attention scores between
tokens depend not only on the content but also
on the relative position between the tokens, so the
disentangled relative position embeddings act as
implicit position markers within DeBERTa, which
might make it easier for the model to learn the la-
tent position relationship in the training data of the

9287



Figure 3: An illustration of standard Transformer atten-
tion (left) and DeBERTa disentangled attention (right).

symbolic manipulation tasks.
Although DeBERTa uses disentangled attention

mechanism, it was not originally introduced to en-
hance the locating capability of LMs, so no pre-
training task was specifically proposed for training
the position embeddings in DeBERTa. This may
potentially lead to its limited generalization ability
on the induction tasks requiring accurate locating.
Rather than relying on implicit positional markers,
another, more straightforward approach is to add
explicit positional markers in the model input. For
example, the input string 2 2 2 is augmented with
positional markers A, B, C, · · · . We explore two
methods of adding explicit positional markers:
Ordered marker: The markers are inserted into
the input in order. 2 2 2→ A 2 B 2 C 2
Random marker: The markers are inserted into
the input in random order. 2 2 2→ E 2 X 2 J 2

With the explicit positional markers, each repeat-
ing 2 becomes different for the model. When do-
ing symbolic manipulation, the Transformer-based
LMs can easily locate the digit by recognizing the
explicit positional markers. Essentially, adding
explicit positional markers breaks the repeating
numbers into a non-repeating input sequence. This
method is also related to pointer networks (Vinyals
et al., 2015), which uses attention as a pointer to
select the position indexes of the input tokens as
the output. A hybrid pointer-generator network can
also be leveraged to copy number from the source
text, while retaining the ability to produce new
numbers through the generator (See et al., 2017).

3.2 Fine-grained Computation Steps

We then explore possible methods to alleviate the
OOD generalization problem. One observation is
that the complexity of addition with long digits

is larger than that of the 1-digit addition. Thus,
the model should be given more computation time
on the task when the numbers are large. The fine-
tuned T5 and prompted GPT3 mentioned above,
however, is required to generate the answer with
a fixed amount of computation, so one possible
direction to mitigate this limitation is to allow the
model to operate step-by-step instead of generating
the answer in one forward pass. For example, in k-
digit addition, the model is allowed to break it down
into k simple 1-digit addition and the model is
allowed to generate k intermediate addition results
to get the final answer.

Generating fine-grained computation steps can
potentially alleviate the generalization problem, but
may not contribute to the locating capability of
the Transformer-based LMs. To mitigate the locat-
ing problem, we add positional markers to scratch-
pad (Nye et al., 2021) (Figure 4).

question: 1 1 + 2 5
solution:
convert 1 1 into ☞ 1, ☛ 1.
convert 2 5 into ☞ 2, ☛ 5.
☛ 1 5, carry 0, so 1 + 5 + 0 = 6. carry 0, step result 6. 
combine 6 and result, get result 6.
☞ 1 2, carry 0, so 1 + 2 + 0 = 3. carry 0, step result 3. 
combine 3 and result 6, get result 3 6.
carry 0, combine 0 and result 3 6, final result 3 6.

Figure 4: The prompt for GPT3 on the addition task.
We use ¬ and ¬ to denote optional different markers
as described in Section 3.1 if they are applied.

We also experiment a more comprehensive
scheme where we directly copy the number associ-
ated with the explicit positional marker to its later
appearance. For example, for the explicit marker
S[B], we copy its value 1 to the later appearance in
the fourth line as shown in Figure 5. More detail
and experimental results are put in appendix A.4.

question: question: S[B] 1 S[A] 1 + T[B] 2 T[A] 5
solution:
S[A] 1 + T[A] 5 + Z[A] 0 = R[A] 6, Z[B] 0
S[B] 1 + T[B] 2 + Z[B] 0 = R[B] 3, Z[C] 0
result: Z[C] 0 R[B] 3 R[A] 6

Figure 5: The demonstration of comprehensive scheme
for addition problem. Position markers are marked in
red and reference markers are marked in green.

9288



3.3 LM with Callable Programs
Since callable programs do not have the general-
ization problem, we combine LMs with callable
programs to replace the basic symbolic operations
when possible. For example, when combined with
the fine-grained computation steps in the addition
task, the convert, add, or combine operations can
be considered callable programs. When the LM
generates the text sequence add(1,5), the callable
function add will be invoked and return the result
in text: carry C: 0, result 6.

Following the example in Section 3.2, with
callable functions, the prompt format is as follows:

question: 1 1 + 2 5
solution:
call convert (1 1, 2 5), return ☞ (1 2), ☛ (1 5).
☛ (1 5), call add (1, 5), return carry C: 0, result 6.
call combine (6, ), return 6.
☞ (1 2), call add (C: 0, 1, 2), return carry C: 0, result 3.
call combine (3, 6), return 3 6.
call combine (C: 0, 3 6), return 3 6, final result 3 6.

Figure 6: The prompt for GPT3 on the addition task
with callable programs. ¬ and ¬ are positional mark-
ers. Different callable programs (convert, add and com-
bine) are marked in different colors, and the results they
returned are underlined with the corresponding color.

Given a testing example, the prompted GPT3
first generates the solution step by step. During
the process, the results of the function calls will be
appended to the generated result to be used in the
following steps. Callable programs can be viewed
as decomposing a complex task to smaller, simpler
jobs. The remaing issue is to learn chaining these
smaller jobs together to complete the task.

Callable programs can guarantee the correctness
of output given correct input for a given job. How-
ever, LMs may still suffer from the locating prob-
lem since the callable programs rely on LMs to
decide which token to copy (Figure 11 in the ap-
pendix). Unfortunately, LMs cannot guarantee the
correctness of this copy action.

3.4 LM with Tutor
Scratchpad (Nye et al., 2021) ignores the visual
process when an elementary school tutor visually
illustrates how to perform addition step by step:
pinpointing where each digit in the output sequence
comes from, adding single digits together and iter-
ating. It turns out that these details and abstractions

Figure 7: An illustration of doing copy with pattern
matching.

are important in order to simplify the learning pro-
cess and help kids learn addition in a few shots.

A tutor shows every single step visually and
sometimes calls an already learned sub-module to
complete a task. In this way, the hypothesis space
between two consecutive steps can be dramatically
simplified; hence the chance of learning a correct
model can be improved.

Take copy as an example. Instead of providing a
training example: copy: 1 1 1 2 2 2 result:
1 1 1 2 2 2, we need to demonstrate where the
first 1, the second 1, and the third 1 in the output
sequence come from, which exactly imitates the
finest action a human could do to perform such an
operation. Suppose there is a cursor placed at the
beginning of the input sequence, a “rmov” oper-
ation moves the cursor one token to the right. A
“cpy” operation copies a single digit to the output
sequence. An “end” operation checks if the marker
reaches the end of the sequence. “T” and “F” rep-
resent true and false respectively. We assume all
these actions have been learned. Then a possible
action sequence to complete the copy operation is
as follows:
rmov, end=F, cpy, rmov, end=F, cpy, . . . ,
rmov, end=T.
This fine-grained action sequence accurately de-

scribes the whole copy operation. Certainly, there
are other ways to perform copying. For example,
instead of using a cursor, one can use a pattern
match to perform the copy operation (Figure 7).
We suspect that the copy operation learned from
Transformer is following this pattern-matching ap-
proach, which is error-prone when the pattern has
repeating symbols and when the long pattern is
out-of-distribution. Positional markers do not help
either as they seem unable to handle the OOD gen-
eralization problem.

If we take the action sequence “rmov, end=F,
. . . ” to train a Transformer for copying, the hypoth-
esis space is simplified, thus making it possible
to find the simplest model that can simulate the
whole action sequence. This setting involves train-

9289



Figure 8: An illustration of the LM with Tutor method.
With the tutor (right), the LM or just a transformer (left)
generates an action sequence that simulates how humans
do arithmetic addition.

ing a learner to predict the next action based on
the input and the actions demonstrated by experts,
which is similar to the setting of imitation learning
(Pomerleau, 1988; Ross et al., 2011). Although
there is no guarantee that Transformer can defi-
nitely find the correct model, the chance is much
higher. One can also relate the setting with a multi-
ple tape Turing machine where the state transition
is conducted among the positions of tape heads and
read/write operations. The Transformer is trained
to learn such state transitions, thus completing the
programming of a Turing machine.

As for the addition operation, a similar action
sequence can be obtained to simulate how humans
tutor kids do addition at an early age (Figure 8).
Let “lmov” denote moving the cursor one token
to the left. The “add” operation adds three single
digits together, one from each of the two operands
and the third one from the carry digit, appends the
result to the output, and updates the carry digit.
Assume “add” is a callable program as kids have
learned how to do single digits addition. Suppose
the cursor starts from the end of the operands. The
entire action sequence looks like the following.
lmov, end=F, add, lmov, end=F, add, . . . ,
lmov, end=T.

The main difference between the tutor and the
Scratchpad method (Nye et al., 2021) is the abstract
callable function and detailed action sequence. The
action sequence includes all the state transitions
needed to complete the task. It perfectly overcomes
the OOD issue and does not require many training
examples in order to achieve 100% accuracy.

While there is a great effort to enlarge
Transformer-based LMs such as PALM (Chowdh-
ery et al., 2022) and Minerva (Lewkowycz et al.,

2022), to improve the performance in symbolic and
logical reasoning, our result reveals that it might
be necessary to demonstrate the action sequence
with reasonable abstraction to the Transformer to
leverage its full strength.

In cases where action sequences are not avail-
able, e.g., only a problem specification is given, it
might be more appropriate to develop an LLM (al-
gorithm generator) to generate an algorithm sketch
and then run another LLM to execute the sketch
to get the answer. The sketch need not to be in
the form of program codes. A human understand-
able step-by-step instruction is good enough. The
sketch can be viewed as an intermediate model
whose complexity is much smaller than the LLM
itself. Hence it has a better chance of solving the
generalization/OOD issue.

4 Experiments

In this section, we conduct experiments on three
different problems including copying, addition, and
another basic symbolic manipulation operation, re-
verse. We illustrate the limitation of LMs in sym-
bolic and arithmetic induction and the improvement
that could be achieved by the mitigation methods.

4.1 Copy Operation

Copying is the most basic operation. We experi-
ment with the following methods and make sure
each digit is tokenized into a single token by sepa-
rating the digits with blanks:
GPT3: We prompt GPT3 to output the same to-
kens as the given input. Full prompt can be found
in appendix (Figure 12).
DeBERTa / T5: The training example is as follows:
copy: 1 2 3 4 result: 1 2 3 4
T5 + ordered marker: The training data is aug-
mented with explicit positional markers. copy: A
1 B 2 C 3 result: A 1 B 2 C 3
T5 + random marker: Same as above, but the
augmented positional markers are in random order.
copy: E 1 A 2 F 3 result: E 1 A 2 F 3
T5 / GPT3 + tutor: The training and testing exam-
ples are as described in Section 3.4.

We experiment with the T5-base (220M) model,
DeBERTa-base (140M) model, and GPT3 text-
davinci-002. The models are initiated with the
pretrained parameters and further fine-tuned on the
training data. For GPT3 or T5 with tutor, the train-
ing data consists of 15 examples of up to 5 digits.
For all the other T5 models and DeBERTa, the

9290



Figure 9: Experimental results. (a): results of copying repeating numbers. (b)(c): results of reversing the list.
(d)(e)(f): results on arithmetic addition. The x-axis is the number of digits or number of items.

training data consists of 2,000 random numbers
of up to 5 digits. We evaluate all the models on
copying repeating numbers of up to 80 digits. The
results are illustrated in Figure 9(a).

As shown in Figure 9(a), GPT3 achieves 100%
accuracy on the in-distribution testing data (1-5 dig-
its) but the fine-tuned T5 achieves 78% accuracy on
the 5-digit repeating numbers although they are in-
distribution. Augmented with random or ordered
positional markers, the T5 models achieve 100%
in-distribution accuracy, and so does using implicit
positional markers (DeBERTa). This suggests that
both implicit positional markers and explicit po-
sitional markers may help with the locating capa-
bility of LMs. However, using explicit positional
markers, either ordered or random, the model ex-
hibits significantly better generalization to OOD
testing data whereas DeBERTa fails on OOD data.
GPT3 exhibits better OOD generalization than T5
with positional markers but it does not generalize
well beyond 30 digits. Both T5 + tutor and GPT3
+ tutor keeps 100% accuracy on OOD testing data.

4.2 Addition

For arithmetic addition, we experiment with the
following methods:
GPT3: We prompt GPT3 to directly output the

sum for given addition equation. Full prompt can
be found in appendix (Figure 13).
GPT3 + coarse-grained steps: The exemplar is
similar to that in Figure 4, but the instructions for
the result combination and the computation of the
carry digit and step result are omitted.
GPT3 + fine-grained steps (+ ordered marker):
The exemplar we use is as shown in Figure 4.
GPT3 + callable programs: The exemplar is
shown in Figure 6.
DeBERTa / T5: The training data follows the for-
mat of the exemplar for GPT3.
DeBERTa / T5 + fine-grained steps: The training
data used in this setting follow the format as the
exemplar in GPT3 + fine-grained steps.
T5 + ordered / random marker: The training ex-
ample is augmented with ordered or random mark-
ers. For example, question: G 1 C 1 + G 2 C
5 result: G 3 C 6. For the ordered marker, we
apply it to the digits as the following: C 2 B 2 A 2.
T5 + fine-grained steps + ordered / random
marker: The training data in this setting follow
a similar format as the exemplar in GPT3 + fine-
grained steps + ordered marker, but the positional
markers can be in random order.
T5 / GPT3 + tutor: The training and testing exam-
ples are as described in Section 3.4.

9291



The model settings are the same as in the above
copy experiments. For LMs with tutor, the training
data or prompt consists of 15 examples of up to 5
digits. In other settings, the training data consists of
1,000 examples of 1-5 digit addition and for GPT3,
the prompt includes 4 examples. We evaluate all
the models on the addition of up to 30 digits. The
results are shown in Figure 9(d)(e)(f).

As shown in Figure 9(d), both coarse-grained
and fine-grained computation steps contribute to
the in-distribution performance of GPT3, and us-
ing finer-grained steps achieves larger performance
gains on both in-distribution data and OOD data.
The performance is further boosted with explicit
positional markers. Experiments on T5 (Figure
9(e)(f)) also show the effectiveness of using explicit
positional markers, with or without fine-grained
computation steps, indicating that the explicit po-
sitional markers might make it easier for LMs to
learn the induction in the arithmetic reasoning tasks.
Similar to the results on the copying task, both De-
BERTa and DeBERTa + fine-grained steps achieve
near 100% in-distribution accuracy but 0% OOD
accuracy, suggesting that the relative position em-
bedding of DeBERTa might have limited OOD
generalization ability. On T5, incorporating fine-
grained computation steps does not improve the
OOD performance as significantly as on GPT3
(Figure 9(f)). The reason might be that fine-tuning
T5 tends to overfit more easily than prompting
GPT3. Unsurprisingly, GPT3 + callable programs
achieves much better OOD generalization. How-
ever, its OOD performance still degrades as the
number of digits increases. Same as in the copy
experiments, LMs + tutor keeps 100% accuracy on
all the experimented numbers of digits.

4.3 Reverse List

Besides copying and addition, we also experiment
with reversing. Reversing is similar to copying.
Both require replicating the items in the input, but
reversing might be more challenging than copying
in the terms of locating. In copying, the distance
between each source digit and the replicated digit
is the same for each digit in the number. However,
when reversing, the distance between the source
item and the replicated item keeps increasing dur-
ing the generation. For this problem, we experi-
ment with the following methods:
GPT3: We prompt GPT3 to directly output the
reversed list of items without intermediate steps.

Full prompt can be found in appendix (Figure 14).
DeBERTa / T5: reverse the list: bike,
apple, book result: bike, cat, pen
GPT3 / DeBERTa / T5 + fine-grained steps: The
training example for T5 and the exemplar for GPT3
are shown in Figure 10.

reverse the list: bike, cat, pen
solution:
A is bike. B is cat. C is pen.
Now to reverse, change the order to:
C is pen. B is cat. A is bike.
Result: pen, cat, bike

Figure 10: The prompt for GPT3 on the reverse task
with fine-grained steps.

T5 + ordered marker: The list items are aug-
mented with the ordered positional markers in the
input. reverse the list: A bike, B cat, C
pen result: pen, cat, bike.
T5 / GPT3 + tutor: The training and testing exam-
ples are very similar to that for the copy task. The
only difference is the direction for move operation.
“rmov” in the copy task is replaced by “lmov” here.

The model settings are the same as in the above
experiments and the training data consists of ex-
amples of 1-5 items, which are randomly sampled
from a predefined list of single-token nouns. For
LMs with tutor, the training data or prompt consists
of 15 examples of up to 5 items. For T5, the train-
ing data consists of 1,000 examples. For GPT3,
each prompt includes 4 examples. We evaluate all
the models on reversing the list of up to 30 items.
The results are shown in Figure 9(b)(c).

Although GPT3 can generalize to 80 digits
on copying random numbers (Figure 2), it does
not generalize well beyond 20 items on revers-
ing, which suggests that reversing might require
stronger locating capability than copying. This
problem also occurs on DeBERTa and T5. When
tested on the OOD data, the models tends to gener-
ate only a sublist of the input. Using fine-grained
steps (Figure 9(b)) or positional markers, whether
implicit or explicit (Figure 9(c)), does not signif-
icantly improve the generalization of the experi-
mented models. The reason might be the increasing
distance between the source item and the replicated
item as stated above. Again, LMs + tutor maintains
100% accuracy throughout the experiments. We
put more discussion about the results in appendix
A.5 due to the page limit.

9292



5 Conclusion

In this work, we explore the limitations of pre-
trained LMs on arithmetic reasoning and symbolic
manipulation. We experiment with three simple
symbolic manipulation tasks and show that improv-
ing the locating and induction capability of LMs
can be important for further improving their perfor-
mance. Our method that combines abstraction and
finest-grained step-by-step tutoring demonstrates
its potential to generalize correctly, shedding light
on possible directions orthogonal to scaling up LMs
for future work in this area.

6 Limitations

In this work, we experiment with GPT3, T5, and
DeBERTa. Other large pretrained LMs, such as
PaLM (Chowdhery et al., 2022), is not covered in
this work. We do not experiment with methods
such as fine-tuning GPT3 due to the computation
cost. The main purpose of this work is to uncover
and analyze the fundamental limitations of LMs
on symbolic and arithmetic induction instead of
improving their performance of reasoning tasks, so
we do not directly compare the mitigation methods
with the previous work such as scratchpad (Nye
et al., 2021) and (Wei et al., 2022) in our experi-
ments. We leave more advanced methods for future
work.

References
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob

Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways. CoRR, abs/2204.02311.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Jacob Hilton, Reiichiro Nakano, Christopher Hesse,
and John Schulman. 2021. Training verifiers to solve
math word problems. CoRR, abs/2110.14168.

Alex Graves, Greg Wayne, and Ivo Danihelka. 2014.
Neural turing machines. CoRR, abs/1410.5401.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: decoding-enhanced
bert with disentangled attention. In 9th International
Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net.

Bugeun Kim, Kyung Seo Ki, Sangkyu Rhim, and Gah-
gene Gweon. 2022. EPT-X: An expression-pointer
transformer model that generates eXplanations for
numbers. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 4442–4458.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay V. Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag,
Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur,
Guy Gur-Ari, and Vedant Misra. 2022. Solving quan-
titative reasoning problems with language models.
CoRR, abs/2206.14858.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. 2021.
Investigating the limitations of the transformers with
simple arithmetic tasks. CoRR, abs/2102.13019.

Maxwell I. Nye, Anders Johan Andreassen, Guy Gur-
Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten
Bosma, David Luan, Charles Sutton, and Augustus
Odena. 2021. Show your work: Scratchpads for inter-
mediate computation with language models. CoRR,
abs/2112.00114.

Dean Pomerleau. 1988. ALVINN: an autonomous land
vehicle in a neural network. In Advances in Neural
Information Processing Systems 1, [NIPS Confer-
ence, Denver, Colorado, USA, 1988], pages 305–313.
Morgan Kaufmann.

9293

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2204.02311
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/1410.5401
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://doi.org/10.48550/arXiv.2206.14858
https://doi.org/10.48550/arXiv.2206.14858
http://arxiv.org/abs/2102.13019
http://arxiv.org/abs/2102.13019
http://arxiv.org/abs/2112.00114
http://arxiv.org/abs/2112.00114
http://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network
http://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network


Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Gabriel Recchia. 2021. Teaching autoregressive lan-
guage models complex tasks by demonstration. Com-
puting Research Repository, abs/2109.02102. Ver-
sion 3.

Stéphane Ross, Geoffrey J. Gordon, and Drew Bag-
nell. 2011. A reduction of imitation learning and
structured prediction to no-regret online learning. In
Proceedings of the Fourteenth International Confer-
ence on Artificial Intelligence and Statistics, AIS-
TATS 2011, Fort Lauderdale, USA, April 11-13, 2011,
volume 15 of JMLR Proceedings, pages 627–635.
JMLR.org.

Subhro Roy and Dan Roth. 2015. Solving general arith-
metic word problems. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2015, Lisbon, Portugal,
September 17-21, 2015, pages 1743–1752. The As-
sociation for Computational Linguistics.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural
Information Processing Systems 28: Annual Confer-
ence on Neural Information Processing Systems 2015,
December 7-12, 2015, Montreal, Quebec, Canada,
pages 2692–2700.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed H. Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. CoRR, abs/2201.11903.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38–45.

A Appendix

A.1 Error case for LM with callable program
Here we show one error case for LM with callable
program in Figure 11.

Figure 11: An error example of GPT3 with callable
functions. The error is highlighted.

A.2 GPT3 prompts

Here we show the prompts of GPT3 used for copy,
addition and reverse tasks in Figure 12, 13 and 14.

copy: 8 3 2 2
result: 8 3 2 2
copy: 7 7 7 7
result: 7 7 7 7
copy: 3 9 4 3 2
result: 3 9 4 3 2
copy: 6 6 6 6 6
result: 6 6 6 6 6

Figure 12: The prompt for GPT3 on the copy task.

question: 1 1 + 2 5
result: 3 6
question: 5 0 2 + 7 0 3
result: 1 2 0 5
question: 1 9 2 7 + 4 2 1 8
result: 6 1 4 5
question: 3 1 3 9 8 + 4 7 2 7 1
result: 7 8 6 6 

Figure 13: The prompt for GPT3 on the addition task
without intermediate steps.

reverse the list: bike, cat, pen
result: pen, cat, bike
reverse the list: chair, bike, apple, book
result: book, apple, bike, chair
reverse the list: book, phone, fish, orange, fish
result: fish, orange, fish, phone, book

Figure 14: The prompt for GPT3 on the reverse task
without intermediate steps.

9294

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2109.02102
https://arxiv.org/abs/2109.02102
http://proceedings.mlr.press/v15/ross11a/ross11a.pdf
http://proceedings.mlr.press/v15/ross11a/ross11a.pdf
https://doi.org/10.18653/v1/d15-1202
https://doi.org/10.18653/v1/d15-1202
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/29921001f2f04bd3baee84a12e98098f-Abstract.html
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903


question: S[F] 5 S[E] 2 S[D] 8 S[C] 1 S[B] 7 S[A] 1 +
T[F] 6 T[E] 5 T[D] 0 T[C] 2 T[B] 4 T[A] 5

solution: 
S[A] 1 + T[A] 5 + Z[A] 0 = R[A] 6, Z[B] 0. 
S[B] 7 + T[B] 4 + Z[B] 0 = R[B] 1, Z[C] 1. 
S[C] 1 + T[C] 2 + Z[C] 1 = R[C] 4, Z[D] 0. 
S[D] 8 + T[D] 0 + Z[D] 0 = R[D] 8, Z[E] 0. 
S[E] 2 + T[E] 5 + Z[E] 0 = R[E] 7, Z[F] 0. 
result: Z[F] 0 R[E] 7 R[D] 8 R[C] 4 R[B] 1 R[A] 6

Figure 15: Error case for T5 model with positional and
reference marker on addition problem.

A.3 Experiment configuration

For fine-tuning the T5-base and DeBERTa model,
we use the learning rate 5e-5, batch size 16, train-
ing epochs 200. The maximum generation length
is set to 512. The checkpoints are evaluated every
1000 optimization steps. The random seed is fixed
to 42. We use the implementation for Hugging-
Face (Wolf et al., 2020). For GPT3, we set tem-
perature=0, top_p=1, frequency_penalty=0, and
presence_penalty=0. All the experiments are con-
ducted on NVIDIA RTX A6000 GPUs.

A.4 Reference marker

As shown in Figure 5, we apply two different mark-
ers in the demonstration. The positional marker
is used to define the value stored in the marker,
while reference marker is used to explicitly copy
the value from the positional marker with the
same name. Each number in this demonstration
is uniquely marked with positional or reference
marker. For the positional marker, the model needs
to generate both the marker and its value. For the
reference marker, the model only needs to generate
the marker and the value will be explicitly copied
from its corresponding positional marker.

Similar to previous experiments on the addition
problem, we train the model on 1-5 digits and
test its performance on both in-domain (1-5 digits)
and out-of-domain (6-10 digits) settings. The ex-
perimental results show that the model is able to
achieve 100% accuracy on in-domain data, but get
0% accuracy on out-of-domain data. We also tried
to extend the in-domain to 10 digits and get the
same results that the model can solve in-domain
problems, but fail to generalize to out-of-domain.

We show one error case of this model in Figure
15, where the error step is highlighted in yellow. On
this 6-digit addition problem, the model skipped
the last digit and directly jump to the result, which

causes the error. The problem is the model doesn’t
learn to how to generalize from 1-5 digits to 6 digits.
Instead, it is overfitting to the training data, which
makes it directly output the results after adding 5
digits. How to reduce the hypothesis space and
force the model to learn to generalize to out-of-
domain data would be one future research direction
to solve this problem.

A.5 Discussion

From the experimental results, we observe that fine-
grained computation steps may improve the LM’s
induction ability on the arithmetic reasoning tasks
and the granularity of the steps has an impact on the
performance improvement. Finer-grained compu-
tation steps may contribute to larger performance
improvement.

Positional markers, whether implicit or explicit,
improves LMs’ in-distribution performance on all
the symbolic manipulation tasks in our experi-
ments. However, We find that augmented with
the relative position embeddings, DeBERTa tends
to face more severe over-fitting than T5 during
fine-tuning. In the reversing experiment, using the
T5 model without pretrained parameters, the fine-
tuned model can not achieve a good in-distribution
performance after 200k optimization steps. How-
ever, the DeBERTa model without pretrained pa-
rameters achieves 100% in-distribution accuracy
within only 2k optimization steps while the OOD
accuracy drops, indicating that it has overfitted
within 2k optimization steps. In other words, the
relative position embeddings in DeBERTa signifi-
cantly improve the model’s capacity of positions,
which improves in-distribution performance on
simple symbolic manipulation tasks, but may not
generalize well on OOD data. Compared with the
implicit positional markers (relative position em-
beddings in DeBERTa), explicit positional markers
might have better OOD generalization ability. How-
ever, incorporating symbolic manipulation tasks in
the LM pretraining stage might alleviate this prob-
lem, so incorporating implicit positional markers
can still be a possible direction of improving the
LM’s performance on reasoning tasks requiring
locating ability.

Using LM with callable programs exhibits strong
OOD performance on addition, suggesting that the
LMs’ ability to perform simple symbolic opera-
tions, such as copying, splitting, and combining,
can be critical for improving their performance on

9295



reasoning tasks. How to further improve the LMs’
performance on more complex reasoning tasks in
this direction is left for future work.

9296



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

6

�7 A2. Did you discuss any potential risks of your work?
We don’t think our work has any potential risks.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �7 Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
No response.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
No response.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C �3 Did you run computational experiments?
4

�7 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Left blank.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

9297

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
A.3

�7 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
I reported the results from a single run

�7 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
No used.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

9298


