
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 9299–9316

July 9-14, 2023 ©2023 Association for Computational Linguistics

EEL: Efficiently Encoding Lattices for Reranking

Prasann Singhal♢ Jiacheng Xu♠ Xi Ye♢ Greg Durrett♢
♢The University of Texas at Austin, ♠Salesforce AI

{prasanns, xiye, gdurrett}@cs.utexas.edu, jiacheng.xu@salesforce.com

Abstract
Standard decoding approaches for conditional
text generation tasks typically search for an out-
put hypothesis with high model probability, but
this may not yield the best hypothesis accord-
ing to human judgments of quality. Reranking
to optimize for downstream metrics can better
optimize for quality, but many metrics of in-
terest are computed with pre-trained language
models, which are slow to apply to large num-
bers of hypotheses. We explore an approach for
reranking hypotheses by using Transformers to
efficiently encode lattices of generated outputs,
a method we call EEL. With a single Trans-
former pass over the entire lattice, we can ap-
proximately compute a contextualized represen-
tation of each token as if it were only part of a
single hypothesis in isolation. We combine this
approach with a new class of token-factored
rerankers (TFRs) that allow for efficient extrac-
tion of high reranker-scoring hypotheses from
the lattice. Empirically, our approach incurs
minimal degradation error compared to the ex-
ponentially slower approach of encoding each
hypothesis individually. When applying EEL
with TFRs across three text generation tasks,
our results show both substantial speedup com-
pared to naive reranking and often better perfor-
mance on downstream metrics than comparable
approaches.1

1 Introduction

Part of the progress in natural language genera-
tion over the past few years has been driven by a
proliferation of decoding techniques, from beam
search to sampling approaches like nucleus sam-
pling (Holtzman et al., 2020), typical decoding
(Meister et al., 2022), and contrastive decoding
(Li et al., 2022). These techniques, however, only
optimize for probabilistic objectives, rather than
alignment with human judgments, which is typi-
cally better encapsulated by downstream metrics

1Code available at https://github.com/PrasannS/
eel-reranking.

Il fait beau

Reranking (Prior work)

The weather is nice
Transformer reranker
The weather is beautiful
Transformer reranker

It is nice
Transformer reranker

Explicitly score candidates,
choose highest score

s4

s3

s2

The weather It is nice beautiful
EEL Transformer (causal w/mask)

Compute reranker score
for each node

Token-factored reranking of lattices (This work)

The weather
is

nice

beautifulIt

It is beautiful

Generation model

Efficiently extract
highest scoring pathTransformer reranker s1

0.9

0.3

0.8 0.9
0.2

0.8

The weather is
beautiful

Lattice of generation outputs

Figure 1: Overview of our approach. For a task such as
translation, we can generate a lattice of plausible model
outputs. Reranking these outputs with Transformers
can be slow; we can achieve speedups by efficiently
encoding the lattice in a single Transformer pass and
using a token-factored reranker to efficiently find the
best hypothesis in the lattice.

(Zhang et al., 2019b; Dhingra et al., 2019; Sellam
et al., 2020; Rei et al., 2020) that specifically es-
timate human preference. Transformer (Vaswani
et al., 2017) based rerankers, that assign estimated
downstream scores to generation candidates, have
recently made inroads in translation (Lee et al.,
2021; Bhattacharyya et al., 2021; Rei et al., 2021;
Freitag et al., 2022; Fernandes et al., 2022), open-
ended generation (Krishna et al., 2022), and sum-
marization (Ravaut et al., 2022; Song et al., 2021).

However, using rerankers poses several practical
challenges. Rerankers work best over a large num-
ber of candidates, but generating large sets through
beam search is slow. Recent work (Xu et al., 2022)
has demonstrated the potential to derive and repre-
sent large candidate sets in directed acyclic graphs
called lattices, but the problem remains that naively
reranking these large sets is infeasible: scoring
each candidate requires one, or even multiple (Fer-
nandes et al., 2022) Transformer inference calls.
Classic approaches for searching in lattices effec-
tively (Koehn, 2004; Dyer and Resnik, 2010, in-
ter alia) do not apply to Transformer rerankers,
and there is no previously known approach for ef-

9299

https://github.com/PrasannS/eel-reranking
https://github.com/PrasannS/eel-reranking

ficiently extracting good candidates from lattices.
This paper proposes an approach to do exactly that,
even on lattices encoding thousands of candidates.

We first propose a new class of reranker, the
token-factored reranker (TFR), that allows efficient
inference over a lattice by enforcing a causal mask
and decomposing metric scores to the token level,
allowing for flexible and efficient scoring while still
performing at the same level as standard rerankers.
We then show that lattices of generated hypothe-
ses can be efficiently encoded by a Transformer
in a single pass by using a custom attention mask
and modified position encodings. We call this tech-
nique EEL: Efficient Encoding of Lattices. EEL
enables fast TFR encoding of a large set of gener-
ation outputs at once, specifically enabling rapid
extraction of the hypothesis with the highest TFR
score; see Figure 1.

We evaluate our approach on lattices constructed
from beam search as well as lattice decoding.
Across three generation tasks (machine transla-
tion, summarization, and table-to-text generation),
with several downstream metrics, we show that
EEL is able to find optimal candidates with respect
to the TFR with minimal degradation compared
to an exhaustive approach. That is, the highest-
scoring candidate from the efficient encoding is
nearly as high quality as the highest scoring can-
didate from naively encoding all candidates inde-
pendently. Moreover, we show that our approach is
efficient and leads to gains on downstream metrics
compared to naive reranking approaches. We fur-
ther propose a method to diversely sample multiple
varying hypotheses while reranking with respect
to scoring metrics, allowing us to identify differ-
ent optimal “modes” within an input lattice. Our
approaches are particularly effective when used
with lattice decoding, though we also demonstrate
substantial speedups when reranking beam search
outputs.

Our Contributions: (1) We introduce a
new class of reranker, the token-factored reranker
(TFR), that can support efficient inference over
lattices. (2) We propose a method for encoding
a lattice with a Transformer (EEL) that enables
efficient reranking with TFRs with minimal degra-
dation compared to exhaustive search. (3) We com-
pare beam search, lattice decoding, and multiple
reranking strategies across three NLG problems.

2 Setting

Our approach centers on reranking output from
conditional text generation with neural models
(Sutskever et al., 2014; Bahdanau et al., 2015).
Such models place distributions over target output
y = (y1, . . . , yn) given input sequence x via a text
generation model θ: p(y ∣ x; θ) = ∏n

k=1 p(yk ∣
y<k,x; θ). In trying to optimize this model prob-
ability p(y ∣ x; θ) by finding the most likely x,
decoding algorithms often produce candidate sets
H of highly likely outputs under the model for our
reranking stage (e.g. for beam search, the candidate
set is the N completions for all beams).

Our goal is to rerank candidate sets to optimize
for a downstream objective T (x, ŷ). We assume
our reranker S ∶ (x, ŷ) → R scores an (input,
hypothesis) pair and returns a real-valued approxi-
mation of T using a Transformer model. Reranking
can be divided into two steps: (1) the generation of
a candidate set H = {ŷ(1)

, ŷ
(2)

, . . . , ŷ
(M)}, and

(2) the extraction of the highest scoring candidate
ybest = argmaxy∈H S(x,y). The end result thus
depends on the quality of the candidate set gener-
ated by a decoding method as well as how well
S approximates T . Note, in this paper, we use
reranker to refer to the model S that assigns scores
to hypotheses, which is distinct from the actual
reranking procedure itself.

In our setting, H is represented by a lattice
which encodes the candidates (further detail in Sec-
tion 4). This can either be a packed representa-
tion of beam search candidates or can be a more
complex lattice generated natively by alternate de-
coding approaches. Specifically, we use the ap-
proach of Xu et al. (2022), which expands paths
with a modified depth first search and merges sim-
ilar paths in a recombination step to focus search
budget on new paths, allowing for generation of
larger sets of hypotheses with greater diversity. No-
tably, these lattices are not tree-structured and con-
tain reentrancies.

Compared to complete candidate sets of normal
text sequences, lattices can exponentially reduce
the number of tokens needed to encode large can-
didate sets, enabling strong speedups if leveraged
correctly. Thus, step (2) is the focus of this paper:
given a scoring model S and a lattice encoding
H , can we encode a lattice and still select the
highest scoring candidate encoded in H? Our
solution will specialize S to be a token-factored
reranker, which we define below, and H to be en-

9300

coded in a lattice; we show that these assumptions
hold for strong rerankers that can be applied to
real-world generation problems, even when encod-
ing thousands of candidates in as little as a single
Transformer pass. We attempt to minimize the er-
ror in our selected candidate versus the oracle best
candidate ybest (defined above), which we refer to
as degradation.

3 Reranking Generation Outputs

3.1 Token-factored Rerankers

A key idea in this work is that we can efficiently
rerank a lattice encoding of a candidate set given
a certain reranker structure. Specifically, if we can
decompose the underlying reranking score to be
a linear function of tokens in the lattice, we can
extract hypotheses efficiently (Section 3.2). We
thus propose the token-factored reranker (TFR).

Assume a reranker model S(x, ŷ) that, given a
candidate, generates a score evaluating for some
downstream objective T (e.g. quality, formality,
etc.). Assume moreover that S involves a Trans-
former f ∶ (x, ŷ) → h that produces contextual-
ized embeddings hi for each output token ŷi. These
can condition on x, so f can be either an encoder,
decoder, or encoder-decoder model. This work
primarily examines causally constrained TFRs, de-
fined as follows:

Definition 1 (token-factored reranker). Let S be a
token-factored reranker (TFR) if it takes the form
S(x, ŷ) = ∑n

k=1 s(fc(x, ŷ≤k)k) where s is some
linear function and fc is a causal contextualized
model that only depends on tokens up to and in-
cluding yk.

We specialize fc to be a causal model because we
found this important to improve the quality of our
approximation. However, theoretically we can also
use bidirectional token-factored rerankers (bT-
FRs) where instead S(x, ŷ) = ∑n

k=1 s(f(x, ŷ)k)
for non-causal f (e.g., BERT).

For the aggregation function, we found s(x) =
x
n

, averaging, to work well.

Generality TFRs can be trained straightfor-
wardly on any dataset of (x, ŷ) pairs labeled with
quality scores. Furthermore, a range of existing
architectures fall into or near a TFR-oriented frame-
work. For example, decoding time token-level
model score, the negative log of the probability of
a selected token at a given decoding step, is a TFR.

Algorithm 1 Extract Best Path in Lattice
Input: Topologically sorted list flat, list ends with all end-

ing nodes v ∈ V , the set of all paths in lattice P =(v1, . . . , vk), par(vi) ⊆ V returns set of parents of vi
Output: highest scoring path returned
1: best∶V ↦ (P,R)
2: for c ∈ flat do
3: s, p̂ ← argmaxp∈par(c) score(best(p))
4: best(c)← (p̂∪(c), s+s(f(c))) // extend hypothesis
5: i ← i + 1
6: end for
7: return argmaxe∈ends best(e) // return best end state; can

extract path via backpointers

On-the-fly reranking approaches like RankGen (Kr-
ishna et al., 2022) can also factor into a TFR. Fur-
thermore, the sums of two TFRs (or TFRs) will
also be usable in our pipeline, allowing us to com-
bine multiple TFRs or use a weighted composition
of other token-level scores.

Definition 2 (ensemble TFR; E-TFR). Let S be a
token-factored reranker. Let M be another TFR
where M(x, ŷ) = ∑n

k=1 log p(ŷk ∣ x, ŷ<k), where
p is the probability under the base model. De-
fine the ensemble TFR Se(x, ŷ) = S(x, ŷ) +
λM(x, ŷ).

E-TFR ensembles the TFR with model score for
better performance in some settings. In this pa-
per, E-TFR specifically refers to this combination
(λ = 0.75 in this work), but note that TFRs can be
defined or ensembled from any set of models or
functions that meet Definition 1.

3.2 Reranking Lattices

If we assume that efficient computation of fc is
possible then it becomes easy to optimize S over
H when S is a TFR. We can use dynamic pro-
gramming to extract ybest from the input lattice.
Algorithm 1 describes the procedure, which is es-
sentially the Viterbi algorithm with no transition
scores. We start with lists flat which contains all
v ∈ V , sorted topologically, and ends, which con-
tains the indices in flat of all nodes in V with no
next nodes. We iterate through flat, choosing the
highest scoring path leading to each node based on
whichever previous node has the highest scoring
path. Finally, we return the path ending with the
highest overall score. In practice it may be neces-
sary to normalize ending scores depending on the
function s, for example we divide each path score
by the length of the path before choosing the best
scoring path.

9301

The weather
is

nice

beautifulIt

Input: Lattice
of generation
outputs

The weather It is nice beautiful
1

1 2 1 3 4 4

linearized lattice and pos. encodings
(ambiguities resolved with canonical
paths in lattice)

Form lattice
input and
approximate
positional
encodings

2

Form causal
attention
mask based
on reachability
in the lattice

1 2 3 4 5 6
The weather It is nice beautiful

1 2 3 4 5 6

3 Encode with
Transformer EEL Transformer with mask

The weather It is nice beautiful
0.9

4

Extract best path
given token-
factored scores
(Algorithm 1)

ŷbest
<latexit sha1_base64="BmEkr+qUGH/t6wzNUBW+wbebC7I=">AAADonicfVJdb9MwFHUTPkb46uCRByxKpVZMVTOQ4AGkCTQJoQGdoNtQ0kWO67TWYieyHWiI/L/4Hbzxb3DSZO26aZYiXZ9z7vHJ1Q3TmEo1HP5rWfaNm7dub91x7t67/+Bhe/vRkUwygckYJ3EiTkIkSUw5GSuqYnKSCoJYGJPj8OxDyR//JELShH9XeUomDM04jShGykDBdutPNwqw48+RKnId+AypuWBFSKTSTnfUq4AwMhz0GZ3C5r7QffgONnKZRIqhhe55Df9LB0Vtqk99laTnnZHurZlMgiKHPuVLGqO4+KF13+meXw9WoRgSM8p1TVahLgqLRvn5YF+XHCczSK82k5StOf1umqtUO3STKo1WrzbWNeLlK/VCB8QxI/XVnCi0wqcVft08d+Aybh++gAy+hddraT9od4aDYXXg5cKtiw6ozyho//WnCc4Y4QrHSErPHaZqUiChKI6JdvxMkhThMzQjnik5YkROimrFNOwaZAqjRJiPK1ih6x0FYlLmLDTKMqXc5ErwKs7LVPRmUlCeZopwvHwoymKoEljuK5xSQbCKc1MgLKjJCvEcCYSV2WrHDMHd/OXLxdHuwH052D181dl7X49jCzwBz0APuOA12AMfwQiMAbaeWvvWF+ur/dz+ZB/a35ZSq1X3PAYXju3/BxKuL1A=</latexit>

The weather is beautiful

0.3 0.9 0.2 0.8

1 0 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0

1 1 0 1 0 0
1 1 0 1 1 0
1 1 0 1 0 1

0.8

The w
eather It is nice beautiful

s(fc)

Figure 2: Detailed overview of EEL, starting from bot-
tom, using a single context mask and causal reachability.

3.3 Diverse Path Selection

In addition to estimating a best path, our approach
also supports being able to extract a diverse set of
k paths while still optimizing for S(ŷ). This can
be accomplished by running Algorithm 1 k times,
and at the end of each round, modifying the score
of each node s(yi) = s(yi) − w ⋅ o(yi), where w
is a diversity weight hyper-parameter, and o(yi)
corresponds to the number of times a given token
has occurred in previous bestpath results.

4 Efficient Encoding of Lattices (EEL)

In this section, we discuss the computation of fc:
how can we efficiently compute Transformer en-
codings for a lattice? Across decoding methods,
as the total number of lattice nodes is often expo-
nentially fewer than the total number of tokens in
H , being able to rerank all the candidates by only
encoding each lattice token once can lead to a huge
reduction of computation. Thus, our goal with EEL
is to compute embeddings for all nodes in a set of
hypotheses H represented by a directed graph (lat-
tice) G = (V,E) encoding all candidates in H . V
is the set of all expanded nodes vi ∈ V , and E the
set of directed edges ei,j which represents vi ∈ V

preceding vj ∈ V in some candidate in H (we’ll
use vi interchangeably with its associated token yi).

Figure 2 shows the overall steps of our solution,
which we now describe in detail.

4.1 Constructing Inputs

Transformers primarily take three inputs: 1. Token
Ids, laid out consecutively in an input canvas; 2. Po-
sition Ids, corresponding to each token’s position
in text; 3. Attention Mask, a mask that dictates
which tokens can attend to each other.

To encode a lattice consistently with individual
Transformer passes, the tokens each token attends
to and the position ids of those tokens should be
the same as if just part of a single sequence. As
Transformers can only encode one canvas (con-
text window) of tokens at a time, we accordingly
need to lay the lattice tokens onto a single token
id canvas. For position ids, the default format in
most pre-trained Transformers, such as GPT-3, is
absolute position ids, where the index of a token
t in a sequence of inputs is simply its token id,
corresponding directly to its location in the input.

In order to make lattice position embeddings
compatible, we use a canonical position id strategy,
where we do a depth-first traversal of all nodes in
G with respect to node model probability. Assume
vi is the first node to precede vk in the traversal and
edge ei,k exists; then pos(vk) = pos(vi) + 1 (see
Step 1 of Figure 2). Alternate position id schemes
include computing the longest or shortest path from
the start (Sperber et al., 2019), or a random depth-
first traversal, though we generally don’t note any
empirical differences between these approaches.
Our method gives slightly better outcomes in cer-
tain settings when a lattice doesn’t fully fit within a
canvas, as it serves as an implicit truncation of low
model probability paths.

4.2 Masking

To give individual tokens information about their
context, Transformer encoders typically allow all
input tokens attend to each other. Since our TFR
S is trained on normal text data, where a token ex-
pects to “see” each other position id exactly once,
simply passing in linearized lattice inputs leads to
large degradation, as tokens that don’t share paths
can still attend to each other. We formulate all
masks as n × n matrices where n = ∣V ∣ and each
index corresponds to a node in V based on position
in the canonical canvas. The non-zero values of

9302

row i indicate which tokens yi can attend to. We be-
low walk step-by-step through several mask types
to reach a strategy with the lowest degradation (ab-
lations in Table 3):

Causal Reachability: We first construct an n×n
adjacency matrix A such Aij = 1 if ei,j ∈ E, else
0. We can then obtain a causal reachability mask
using the following reachability equation:

C = min(In +
l

∑
i=1

(AT)i,1) (1)

Where In is an identity matrix, l is the length of
the longest hypothesis in H , and the min opera-
tion causes all values to be either 0 or 1. Such a
mask prevents tokens that aren’t in any common
hypotheses from attending to each other, but con-
nects a token to all tokens that come before it (we’ll
call these contexts) for all paths in H . Note that A,
and thus C are one-directional to match the causal
formulation of TFRs.

We can obtain a mask for a bidirectional TFR
by replacing A

T in Equation 1 with A+A
T . How-

ever, we empirically found that reachability in both
directions results in more degradation in the TFR,
resulting in our decision to use causal TFRs. Causal
TFRs enable lossless encoding for a lattice with no
reentrancies. There can be degradation in graphs
with reentrancies such as those produced by lattice
decoding, due to multiple contexts or mismatched
canonical position ids.

Single Context To constrain sources of degrada-
tion even further, we can limit A to only have a
single randomly selected 1 per row, which would
translate to each token only being able to look back
at a single path: in other words a single context
mask C

∗. This strategy is equivalent to reranking
all hypotheses encoded within a random subgraph
G

∗ = (V,E∗), where E
∗ ⊆ E such that only one

directed edge ei,j exists from any node vi. Thus,
remaining degradation is limited to the paths in G
not encoded in G

∗. In Figure 2, this manifests as
beautiful not attending to It.

Few Mask We can improve our approximation
with higher computational cost using a few-mask
variant of EEL. With the same input and position
ids, we run the EEL pipeline with “single context”
with m different starting random adjacency A in-
stances. This allows us to then obtain m different
extracted best paths based on initialization, from

which we can then choose an overall best scoring
path based on the normalized path scores of the
m best paths. This allows more potential paths in
the lattice to be explored without suffering context-
related degradation. Note that while this approach
leads to the best performance, single context mask-
ing is the best in terms of efficiency.

5 Experimental Setup

5.1 Settings

To demonstrate the robustness of our approach,
we run experiments on a variety of different base
tasks, with lattices generated in different conditions,
and with 3 different reranking models that fit our
criterion. Our base tasks are as follows:

Machine translation We generate lattices (using
an mBART model (Liu et al., 2020)) in 3 machine
translation settings from WMT-2019: English to
German (EN-DE), English to Russian (EN-RU), and
French to English (FR-EN) (Barrault et al., 2019).

Table-to-text We use generated candidate sets
from a BART model from Ribeiro et al. (2021)
on examples from the WebNLG 2017 challenge
(Gardent et al., 2017).

Document summarization We also generate a
set on document summarization, using a BART
model (Lewis et al., 2020) and XSum data
(Narayan et al., 2018).

We experiment with 3 downstream objectives:
COMET (Rei et al., 2020) quality estimation of ma-
chine translations, PARENT score (Dhingra et al.,
2019) precision for quality estimation of table-to-
text generation, and number of unique nouns2 using
a part-of-speech tagger. We train TFRs for each
respectively; see Section 5.2 for model details.

Implementation Details We generate sets of 500
lattices each with different generation conditions,
across 5 settings (3 MT settings, summarization,
table-to-text), parallel for 3 decoding methods:

• lattice decoding (LATT), with a beam width
of 43 and RCB recombination (based on n-gram
matching during decoding) (Xu et al., 2022).

2We choose this somewhat synthetic setting to provide a
reranking setting for summarization and to show that EEL
works on diverse types of downstream metrics, not just contin-
uous scores from 0-1.

3Xu et al. (2022) call this an “equivalent beam size.” We
run with a lower value than our beam search because their
method is slower than beam search due to poorer parallelism.

9303

• beam search, with beam-width 12 (B-12), as
a low generation cost baseline
• beam search, with beam-width 50 (B-50),
which we find to have a comparable wall clock
generation time to LATT

For beam search, we use the Hugging Face gen-
erate() API to generate candidates, and we use the
corresponding model probabilities returned along-
side generation candidates as model scores.

5.2 TFR Training

We fine-tune three TFR (Section 3.1) models.

MT-TFR Downstream objective: COMET score,
for reference-based machine translation quality es-
timation. MT-TFR uses an XLM-RoBERTa-Base
(Conneau et al., 2020) encoder to encode both
source and hypothesis sentences, and is fine-tuned
on COMET scores generated on the multi-lingual
WMT17-21 direct assessment sets (Barrault et al.,
2021). Note that we are estimating a reference-
based metric in a reference-free way similar to
COMET-QE (Rei et al., 2021).

TAB-TFR Downstream objective: PARENT pre-
cision, for reference-based table-to-text generation
quality estimation. We generate 16 candidates us-
ing a T5-large generation model (Wang et al., 2021)
for each examples in the WebNLG 2017 training
set, and obtain PARENT precision scores for each
of these to acquire our training set labels. For
the TFR encoder, we use a BART-Base encoder-
decoder model, using the encoder to encode the
source, and the decoder to encode the candidates.

NOUN-TFR Downstream objective: number of
unique nouns. The model is trained using an XLM-
RoBERTa-Base (Conneau et al., 2020) encoder on
a set of 100,000 English sentences from the news-
test-14 dataset. We fine-tune it to predict how many
unique tokens with the NN, NNS, or NNP POS
tags are passed into the candidate sentence, using
an NLTK (Bird et al., 2009) POS tagger as our gold
labeler (we normalize this by dividing by 10). Note
that, while we believe Noun-TFR correlates with
diversity and informativeness, as more nouns may
indicate more specific content around entities, we
are not setting it up as a gold standard for summa-
rization quality; it’s designed more as a testbed for
our approach.

5.3 TFRs vs Non-TFR Rerankers
To confirm that token-factored rerankers do not
have worse downstream performance, we validate
TFR models against COMET-QE (Rei et al., 2021),
a non-token factored reranking metric. When
refactoring COMET-QE to be token-factored, and
fine-tuning, we’re able to reproduce reranking
performance when ensembled with model score
(see Section 7): 0.699 (French to English), 0.598
(English to German), and 0.650 (English to Rus-
sian) respectively (see more in A.3). With a TFR
model, we find downstream performance to be
0.698 (French to English), 0.576 (English to Ger-
man), and 0.614 (English to Russian); on aver-
age, only 0.02 COMET score worse. In other
words, TFRs don’t significantly fall behind other
Transformer-based reranking models.

5.4 Evaluating Efficiency
Wall clock time: The main costs in a reranking
system are the generation time (GEN) of the de-
coding method, and the reranking time (RRK) to
process and rerank the input. We report these in
the form of wall clock time as a practical heuristic.

Candidates / Nodes: To control for differences
in architecture, parallelism, and other factors that
influence wall-clock time, we also report a measure
we call candidates per nodes (C/N). Specifically,
for a given approach, we measure how many candi-
dates it encodes, and the number of nodes (tokens)
the TFR needs to rerank the candidate set.

6 Intrinsic Evaluation: Finding
Hypotheses with High Reranker Scores

We first evaluate how closely the TFR scores of
EEL selections come to matching the quality of the
oracle top-1 hypotheses ybest with respect to TFR
model S(x, ŷ). We compute an upper bound for
this by calculating TFR scores on exploded lat-
tice candidate sets: enumerating the exponentially-
large set of complete paths and scoring each indi-
vidually. Our EXHAUSTIVE numbers are the aver-
age top-1 TFR score (not the downstream metric
score) across the entire exploded set.

As baselines, we rerank on a randomly sampled
sets of 1 (RAND), 8 (TFR-8-SAMP), and 32 (TFR-
32-SAMP) from exploded sets. For EEL approaches,
we test a single mask (EEL 1-MASK) and few-mask
(EEL 8-MASK) approach. We report these results
across decoding methods in Table 1 alongside ef-
ficiency measurements on the MT-TFR FR-EN

9304

MT-TFR NOUN-TFR TAB-TFR Efficiency (Fr-En)
reranker score score score ratio↑ sec ↓

Method FR-EN EN-DE EN-RU FR-EN XSUM WEBNLG C/N RRK GEN

L
A

T
T

RAND .605 .582 .631 .765 .831 .511 .020 .051

4.135±1.595

TFR-8-SAMP .690 .690 .792 .863 1.022 .589 .020 .167
TFR-32-SAMP .716 .719 .838 .903 1.097 .627 .020 .695
EEL 1-MASK .695 .700 .836 .922 1.118 .653 3.304 .091
EEL 8-MASK .720 .731 .862 .934 1.142 .657 0.413 .252
EXHAUSTIVE .743 .748 .883 .945 1.178 .692 .025 17.950

B
-1

2 RAND .629 .616 .678 .751 .734 .582 .024 0
1.280±.260EEL 1-MASK .687 .684 .783 .812 .848 .641 .064 .078

EXHAUSTIVE .687 .684 .783 .812 .848 .641 .024 .248

B
-5

0 RAND .618 .611 .640 .752 .733 .581 .025 0
3.670±.960EEL 1-MASK .700 .707 .805 .845 .908 .651 .075 .120

EXHAUSTIVE .706 .710 .810 .850 .909 .653 .025 1.051

Table 1: Base task results, grouped by decoding method of input lattices. EEL 1-MASK and EEL 8-MASK strongly
improve candidate/node (C/N) efficiency and demonstrate notable speedups compared to baselines. Across settings
EEL 8-MASK comes close to matching the much slower LATT exhaustive, even outperforming B-50 exhaustive,
demonstrating that EEL comes with low degradation for high efficiency gain.

setting, which we noted to be representative of per-
formance across settings.

EEL universally provides strong efficiency
boosts: While the lattice EXHAUSTIVE rerank-
ing always performs the best, it’s incredibly slow,
taking 17.95s on average to rerank a single can-
didate set. EEL 1-MASK, meanwhile, encodes
the same candidate set roughly 200 times faster,
at only .091s, and even EEL 8-MASK only takes
.252s. The candidate / node ratio of 3.304 (EEL 1-
MASK) and .413 EEL 1-MASK, compared to base-
line C/N efficiencies of .025, further demonstrates
how much computation EEL saves on large lattices.
Even on B-50 and B-12, we see strong reranking
efficiency improvements, with 3x and 2.67x bet-
ter C/N efficiency, and notable rerank time (RRK)
boosts.

EEL selections nearly match ORACLE: While
EEL, especially with large input lattices, can im-
prove encoding efficiency by orders of magni-
tude, it does so while on average still coming very
close to matching oracle top-1 candidates (see Ap-
pendix B for degradation analysis). We find EEL-
8-MASK on LATT to be the most effective overall
for efficiently approximating lattice decoding lat-
tice TFR score, as outside of the unfeasible LATT

EXHAUSTIVE, EEL 8-MASK obtains the highest
TFR scores in every setting, outperforming base-
lines and even B-50 EXHAUSTIVE. Furthermore,
EEL, applied on B-12, and B-50 comes with zero
and near-zero degradation respectively.

COMET NOUN PRT-P
Method FR-EN EN-DE EN-RU XSUM WNLG

RAND-B50 .654 .541 .482 7.01 .573
RAND-LATT .598 .419 .445 8.07 .452
B50-PROB .680 .564 .518 − .623
LATT-PROB .660 .493 .545 − .654

EEL-W 1-MASK .673 .541 .592* 10.80* .667
EEL-W 8-MASK .674 .545 .593* 11.05* .670
B50-E-TFR .689 .576 .562 8.63 .664

Oracle values

LATT-E-TFR .698 .574 .614 11.24 .691
B50-ORACLE .761 .664 .702 8.74 .778
LATT-ORACLE .789 .677 .775 11.40 .825

Table 2: Downstream score results, grouped by sys-
tems which have comparable computational require-
ments. We find that our best method (EEL-W 8-MASK)
achieves strong performance. The bottom rows report
oracle reranking approaches, showing that lattices have
much higher oracle values and that our rerankers can
sometimes come close (especially on NOUN-XSum).
* indicates statistically significant improvement over
B50-E-TFR using a paired bootstrap test, p < 0.05.

7 Downstream Evaluation

While EEL’s algorithmic objective is to find the
best TFR scoring candidate in a lattice, the high-
level goal, assuming a good TFR reranker, is to find
a high downstream scoring candidate. To measure
downstream success, we compute results with re-
spect to the original metrics that we distill our TFR
models on (COMET, NLTK POS-Tagger, PARENT
Precision).

Specifically, we assess whether EEL can en-
able lattice decoding lattices to efficiently outper-
form comparable beam search (B50) reranking ap-
proaches. For the COMET and PRT-P settings, we
use E-TFR, a weighted sum of TFR and token-level

9305

2 4 6 8 10
Number of Diverse samples

0.80

0.85

0.90

0.95

1.00

1.05

1.10
NO

UN
-T

FR

40

60

80

100

120

Un
iq

ue
 4

-g
ra

m
s

Figure 3: Scatter plot, showing, for XSUM NOUN-TFR
(blue) and Unique 4-grams (red) for successive diverse
samples. Red (Unique 4-grams) and Blue ORACLE
NOUN-TFR are B-12 baselines. Within 3 diverse sam-
ples, EEL outperforms the baselines in both NOUN-
TFR and Unique 4-grams.

model score (PROB) (see Section 3.1).
Table 2 reports our results. In addition to E-TFR

EEL on lattice decoding (EEL-W 1-MASK, EEL-W

8-MASK), we report model score reranking base-
lines (B50-PROB, LATT-PROB), a weighted naive
TFR (B50-E-TFR, LATT-E-TFR) upper bound, and
downstream ORACLE results. Note, ORACLE re-
sults that need references (COMET and PRT-P) as-
sume access to human annotation and are unrealis-
tic upper bounds.

EEL and TFRs can enable LATT to efficiently
outperform B-50: Across settings, the gap be-
tween downstream E-TFR performance and EEL

is minimal: for EEL 8-MASK, only .024 (FR-EN),
.029 (FR-EN), .019 (EN-RU), .019 (XSUM), and .021
(WNLG), compared to much larger gaps from ran-
dom baselines. In other words, EEL is always quite
close to gold TFR reranking selections even on
downstream metrics. In settings where the rerank-
ing capabilities of lattice decoding (LATT-ORACLE)
strongly outperforms ORACLE capabilities of B50-
ORACLE, such as EN-RU (.073), XSUM (2.66), and
WNLG(.047), where LATT-E-TFR strongly outper-
forms B50-E-TFR, EEL on LATT likewise outper-
forms the reranking capabilities of beam search.
Note that, on settings such as FR-EN where the
oracle gap is a more narrow .028, EEL still outper-
forms LATT-PROB, but not B50. Recall from Ta-
ble 1, however, that this isn’t apples-to-apples: EEL

approaches achieve comparable / best performance
while being several times faster than exhaustive
reranking alternatives.

8 Analysis

Diversity We further explore whether EEL can
sample a diverse set of candidates (see Section 3.3)

MT-TFR TAB-TFR
Method FR-EN XSUM

RANDOM .605 .831
ORACLE .743 1.178

EEL FULL CONTEXT .695 1.120
EEL DEFAULT POS .655 .989

M
U

LT
I EEL 1-MASK .695 1.118

EEL 8-MASK .720 1.142
EEL 16-MASK .724 1.148

Table 3: Ablation that validates several choices in EEL
pipeline, including posids, contexts, and more masks.

that still optimize for TFR metrics. We examine
this trade-off in Figure 3, which shows diversity
and NOUN-TFR of diverse samples taken at n steps
(x-axis) aggregated across several examples on
XSUM. While overall diversity increases rapidly,
this comes with a trade-off of lower TFR scores,
eventually selecting candidates with roughly aver-
age NOUN-TFR score (the random baseline is .831).

That said, we find diverse sampling works to
produce several diverse samples. Our approach is
able to rapidly obtain a highly diverse set of candi-
dates before the NOUN-TFR score of samples even-
tually converges with the random baseline. BEAM-
12, across all 12 candidates, has an average diver-
sity of 66.35 4-grams, and .848 ORACLE NOUN-
TFR. at 3 samples, we have good diversity and
good quality, while the first 5 diverse samples all
outperform the B-12 NOUN-TFR and diversity base-
lines. It’s worth noting that the diversity weight is
a hyperparameter, and can be adjusted to allow for
a slower trade-off.

Ablations Table 3 shows ablations of different
parts of our method. We validate that canonical
position ids, and single-context masks are neces-
sary for the success of our approach. We further
note that while allowing a token to see all valid
contexts has similar performance to EEL 1-MASK,
it doesn’t scale to multi-mask versions, and comes
with correctness downsides. We also find there to
be diminishing returns past 8 mask runs.

9 Related Work

Reranking and efficiency There is substantial
past work on reranking, including significant recent
work using Transformers for it (Rei et al., 2021).
Some models can be expressed as TFRs (Krishna
et al., 2022); however, others like Rei et al. (2021)
use approaches like pooling of representations of
the hypothesis before additional preprocessing. We

9306

do not have an approximation for such techniques;
we show that TFRs can be successfully trained in
this setting, but other approximations beyond TFRs
would be a useful contribution of future research.

Older machine translation work takes advantage
of the structure of n-gram language models to do
“reranking” on the fly, either in hierarchical models
(Li and Khudanpur, 2012) or phrase-based decod-
ing (Koehn, 2004). However, recent work on both
evaluation (Sellam et al., 2020; Rei et al., 2020)
and reranking (Rei et al., 2021) show how effective
Transformers are, suggesting that approximating
these is more promising than devising rerankers
with inherently more restrictive factorizations.

Background: Lattice Encoding Work in the
speech recognition community (Pandey et al., 2021;
Li et al., 2021) encodes lattices of speech recog-
nition model decoding outputs with LSTMs to de-
code better candidates in second pass. Other work
examines the ability to encode lattices with self-
attentional models (Sperber et al., 2019), for the
purpose of augmented text generation (Zhang et al.,
2019a; Lai et al., 2021), albeit using models trained
on datasets of lattices. As these approaches often
require lattice-specific training, and often don’t ac-
count for degradation, due to alternate, coarser task
formulations, they are much more constrained, and
not suitable for our setting.

Controlled generation While we focus on re-
ranking for better generation “quality”, our work
relates to tasks where one may want to re-rank with
respect to some control attribute. Prior work exam-
ines the ability to adjust output logits specific to
controls (Yang and Klein, 2021), MCTS (Leblond
et al., 2021) as well as control classifier guided
decoding (Dathathri et al., 2020).

10 Conclusion

Across a variety of settings, downstream objectives,
and decoding methods, we consistently find EEL to
provide high quality selections with low degrada-
tion and substantial speedup compared to exhaus-
tive top-1 reranking output. We further demonstrate
the capability of our approach to select multiple di-
verse outputs while still optimizing for TFR scores.
By proposing a method that can efficiently encode
lattices of large candidate sets, through the com-
bination of EEL and TFR models, we thus demon-
strate the capability of reranking to be more effec-
tive and efficient than what was previously possible

with naïve approaches.

Limitations

While our approach is designed to be as broadly
applicable as possible, an inherent limitation of our
work is that it depends on the usage of causal TFR-
style models, which, though architecturally sim-
ilar to many existing pre-trained models, require
hyperparameter search and fine-tuning to replace
non-TFRs on downstream tasks. While we find
evidence that such models are as capable as other
rerankers, and we believe TFRs can be a default
design choice going forward with little loss, this ex-
tra requirement may still be a barrier for the broad
adoption of our approach.

More broadly, our approach is designed for set-
tings where some reranker is available. If it is not
possible to train a robust reranker, for example in a
low data setting or a setting where evaluation relies
entirely on human judgments that cannot be repro-
duced by models, our approach cannot be applied.
However, we believe that the growth in learned
functions of human judgments as part of RL from
human feedback loops provides a promising avenue
to roll out our approach to new settings.

Our experiments were carefully chosen to rep-
resent the capabilities of our models with several
base tasks and several reranking objectives. We
didn’t, however, explore certain domains involv-
ing attribute control such as formality or simplic-
ity, choosing instead to explore more quality-based
downstream exploration. We showed the applica-
bility of our approach when reranking outputs on
languages other than English, but further results on
languages with different typological characteristics
may show different trends.

While our work already provides strong
speedups both with candidate sets from lattice and
beam search decoding, these speedups become
even more valuable for approaches that combine
multiple rerankers, which have been shown to po-
tentially lead to further improvements in reranking
(Fernandes et al., 2022). While we explore this
partially in the form of ensembled EEL with model
probabilities, more exploration on EEL for multi-
ple rerankers may be valuable.

Acknowledgments

This work was supported by NSF CAREER Award
IIS-2145280, a grant from Open Philanthropy, a
gift from Salesforce, Inc., a gift from Amazon, and

9307

a gift from Adobe. Thanks to Darcey Riley, André
Martins, Ben Peters, Ricardo Rei, António Farin-
has, Perez Ogayo, and José Souza for discussion
and feedback during the completion of this paper.
Thanks as well to the anonymous reviewers for
their helpful feedback.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Loic Barrault, Ondrej Bojar, Fethi Bougares, Rajen
Chatterjee, Marta R. Costa-jussa, Christian Feder-
mann, Mark Fishel, Alexander Fraser, Markus Fre-
itag, Yvette Graham, Roman Grundkiewicz, Paco
Guzman, Barry Haddow, Matthias Huck, Antonio Ji-
meno Yepes, Philipp Koehn, Tom Kocmi, Andre
Martins, Makoto Morishita, and Christof Monz, edi-
tors. 2021. Proceedings of the Sixth Conference on
Machine Translation. Association for Computational
Linguistics, Online.

Loïc Barrault, Ondřej Bojar, Marta R. Costa-jussà,
Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, Christof Monz, Mathias Müller,
Santanu Pal, Matt Post, and Marcos Zampieri. 2019.
Findings of the 2019 conference on machine trans-
lation (WMT19). In Proceedings of the Fourth Con-
ference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 1–61, Florence, Italy. As-
sociation for Computational Linguistics.

Sumanta Bhattacharyya, Amirmohammad Rooshenas,
Subhajit Naskar, Simeng Sun, Mohit Iyyer, and An-
drew McCallum. 2021. Energy-based reranking:
Improving neural machine translation using energy-
based models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 4528–4537, Online. Association for
Computational Linguistics.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural language processing with Python: analyzing text
with the natural language toolkit. " O’Reilly Media,
Inc.".

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2020. Plug and play language models:
A simple approach to controlled text generation. In
8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

Bhuwan Dhingra, Manaal Faruqui, Ankur Parikh, Ming-
Wei Chang, Dipanjan Das, and William Cohen. 2019.
Handling divergent reference texts when evaluating
table-to-text generation. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 4884–4895, Florence, Italy. Asso-
ciation for Computational Linguistics.

Chris Dyer and Philip Resnik. 2010. Context-free re-
ordering, finite-state translation. In Human Lan-
guage Technologies: The 2010 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics, pages 858–866, Los
Angeles, California. Association for Computational
Linguistics.

Patrick Fernandes, António Farinhas, Ricardo Rei, José
De Souza, Perez Ogayo, Graham Neubig, and Andre
Martins. 2022. Quality-aware decoding for neural
machine translation. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1396–1412, Seattle,
United States. Association for Computational Lin-
guistics.

Markus Freitag, David Grangier, Qijun Tan, and Bowen
Liang. 2022. High quality rather than high model
probability: Minimum Bayes risk decoding with neu-
ral metrics. Transactions of the Association for Com-
putational Linguistics, 10:811–825.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. Creating training
corpora for NLG micro-planners. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 179–188, Vancouver, Canada. Association for
Computational Linguistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Philipp Koehn. 2004. Pharaoh: A beam search decoder
for phrase-based statistical machine translation mod-
els. In Proceedings of AMTA.

Kalpesh Krishna, Yapei Chang, John Wieting, and Mo-
hit Iyyer. 2022. RankGen: Improving Text Gener-
ation with Large Ranking Models. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing.

9308

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://aclanthology.org/2021.wmt-1.0
https://aclanthology.org/2021.wmt-1.0
https://doi.org/10.18653/v1/W19-5301
https://doi.org/10.18653/v1/W19-5301
https://doi.org/10.18653/v1/2021.acl-long.349
https://doi.org/10.18653/v1/2021.acl-long.349
https://doi.org/10.18653/v1/2021.acl-long.349
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
https://doi.org/10.18653/v1/P19-1483
https://doi.org/10.18653/v1/P19-1483
https://aclanthology.org/N10-1128
https://aclanthology.org/N10-1128
https://doi.org/10.18653/v1/2022.naacl-main.100
https://doi.org/10.18653/v1/2022.naacl-main.100
https://doi.org/10.1162/tacl_a_00491
https://doi.org/10.1162/tacl_a_00491
https://doi.org/10.1162/tacl_a_00491
https://doi.org/10.18653/v1/P17-1017
https://doi.org/10.18653/v1/P17-1017
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH

Yuxuan Lai, Yijia Liu, Yansong Feng, Songfang Huang,
and Dongyan Zhao. 2021. Lattice-BERT: Leverag-
ing multi-granularity representations in Chinese pre-
trained language models. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1716–1731, Online.
Association for Computational Linguistics.

Rémi Leblond, Jean-Baptiste Alayrac, Laurent Sifre,
Miruna Pislar, Lespiau Jean-Baptiste, Ioannis
Antonoglou, Karen Simonyan, and Oriol Vinyals.
2021. Machine translation decoding beyond beam
search. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 8410–8434, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Ann Lee, Michael Auli, and Marc’Aurelio Ranzato.
2021. Discriminative reranking for neural machine
translation. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 7250–7264, Online. Association for Computa-
tional Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Ke Li, Daniel Povey, and Sanjeev Khudanpur. 2021. A
parallelizable lattice rescoring strategy with neural
language models. CoRR, abs/2103.05081.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang,
Jason Eisner, Tatsunori Hashimoto, Luke Zettle-
moyer, and Mike Lewis. 2022. Contrastive decoding:
Open-ended text generation as optimization.

Zhifei Li and Sanjeev Khudanpur. 2012. Forest rerank-
ing for machine translation with the perceptron algo-
rithm.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Clara Meister, Tiago Pimentel, Gian Wiher, and Ryan
Cotterell. 2022. Typical decoding for natural lan-
guage generation. CoRR, abs/2202.00666.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018

Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807, Brussels, Bel-
gium. Association for Computational Linguistics.

Prabhat Pandey, Sergio Duarte Torres, Ali Orkan Bayer,
Ankur Gandhe, and Volker Leutnant. 2021. Latten-
tion: Lattice-attention in asr rescoring. ICASSP 2022
- 2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 7877–
7881.

Mathieu Ravaut, Shafiq Joty, and Nancy Chen. 2022.
SummaReranker: A multi-task mixture-of-experts
re-ranking framework for abstractive summarization.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 4504–4524, Dublin, Ireland.
Association for Computational Linguistics.

Ricardo Rei, Ana C Farinha, Chrysoula Zerva, Daan
van Stigt, Craig Stewart, Pedro Ramos, Taisiya
Glushkova, André F. T. Martins, and Alon Lavie.
2021. Are references really needed? unbabel-IST
2021 submission for the metrics shared task. In Pro-
ceedings of the Sixth Conference on Machine Trans-
lation, pages 1030–1040, Online. Association for
Computational Linguistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Leonardo F. R. Ribeiro, Martin Schmitt, Hinrich
Schütze, and Iryna Gurevych. 2021. Investigating
pretrained language models for graph-to-text genera-
tion. In Proceedings of the 3rd Workshop on Natural
Language Processing for Conversational AI, pages
211–227, Online. Association for Computational Lin-
guistics.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
BLEURT: Learning robust metrics for text genera-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7881–7892, Online. Association for Computational
Linguistics.

Kaiqiang Song, Bingqing Wang, Zhe Feng, and Fei Liu.
2021. A new approach to overgenerating and scoring
abstractive summaries. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1392–1404, Online.
Association for Computational Linguistics.

Matthias Sperber, Graham Neubig, Ngoc-Quan Pham,
and Alex Waibel. 2019. Self-attentional models for
lattice inputs. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1185–1197, Florence, Italy. Associa-
tion for Computational Linguistics.

9309

https://doi.org/10.18653/v1/2021.naacl-main.137
https://doi.org/10.18653/v1/2021.naacl-main.137
https://doi.org/10.18653/v1/2021.naacl-main.137
https://doi.org/10.18653/v1/2021.emnlp-main.662
https://doi.org/10.18653/v1/2021.emnlp-main.662
https://doi.org/10.18653/v1/2021.acl-long.563
https://doi.org/10.18653/v1/2021.acl-long.563
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
http://arxiv.org/abs/2103.05081
http://arxiv.org/abs/2103.05081
http://arxiv.org/abs/2103.05081
https://doi.org/10.48550/ARXIV.2210.15097
https://doi.org/10.48550/ARXIV.2210.15097
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
http://arxiv.org/abs/2202.00666
http://arxiv.org/abs/2202.00666
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/2022.acl-long.309
https://doi.org/10.18653/v1/2022.acl-long.309
https://aclanthology.org/2021.wmt-1.111
https://aclanthology.org/2021.wmt-1.111
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2021.nlp4convai-1.20
https://doi.org/10.18653/v1/2021.nlp4convai-1.20
https://doi.org/10.18653/v1/2021.nlp4convai-1.20
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2021.naacl-main.110
https://doi.org/10.18653/v1/2021.naacl-main.110
https://doi.org/10.18653/v1/P19-1115
https://doi.org/10.18653/v1/P19-1115

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-
quence to sequence learning with neural networks. In
Advances in neural information processing systems,
pages 3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Qingyun Wang, Semih Yavuz, Xi Victoria Lin, Heng
Ji, and Nazneen Rajani. 2021. Stage-wise fine-
tuning for graph-to-text generation. In Proceedings
of the ACL-IJCNLP 2021 Student Research Work-
shop, pages 16–22, Online. Association for Compu-
tational Linguistics.

Jiacheng Xu, Siddhartha Jonnalagadda, and Greg Dur-
rett. 2022. Massive-scale decoding for text gener-
ation using lattices. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 4659–4676, Seattle,
United States. Association for Computational Lin-
guistics.

Kevin Yang and Dan Klein. 2021. FUDGE: Controlled
text generation with future discriminators. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
3511–3535, Online. Association for Computational
Linguistics.

Pei Zhang, Niyu Ge, Boxing Chen, and Kai Fan. 2019a.
Lattice transformer for speech translation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6475–
6484, Florence, Italy. Association for Computational
Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. 2019b. BERTScore: Evalu-
ating Text Generation with BERT. In International
Conference on Learning Representations.

A TFR Model Details

A.1 Model Architecture
While the over-arching idea of TFRs stays the same,
our TFR models all differ slightly in the setup of the
final hidden layers. For the NOUN-TFR model, we
actually don’t encode the input, as it isn’t necessary
for the task, and thus, for a given candidate, we
only run the feedforward network at the end on
individual token hidden states, as opposed to the
concatenated vector with the product and difference
between it and the pooled input state.

For the MT-TFR and the TAB-TFR model, we
follow the output format described in Section 5.2.
The only difference is that for MT-TFR, we use

Model Raw Val Size Val Size

MT EN-DE 294,497 500
MT FR-EN 156,121 500
MT EN-RU 265,807 500

XSum 11,334 500

WebNLG 1863 500

Table 4: Information on evaluation sets used for our
results sections. We randomly sample 500 examples to
use for our evaluation from different base task datasets
to use for our exploration. MT data comes from the
WMT-2019 NewsTest Corpus, XSum comes from the
XSum test set, and WebNLG from the WebNLG Test
Set

the same encoder model for both the input and the
output, and for TAB-TFR we follow an encoder-
decoder architecture, where the input is acquired
by the encoder, and the output by the decoder, both
which are fine-tuned separately during training. We
do this as the structure of data is more divergent
in table-to-text, and thus reasoned that separate
encodings of input and output would lead to greater
success.

A.2 Training

For training, as a rough heuristic of how well a
model would perform as a re-ranker, we optimized
for correlation metrics between TFR model scores
and downstream metric scores (Pearson, Spearman,
and Kendall’s Tau correlations). For our MT-TFR
validation set, our model reached .879 Pearson,
.854 Spearman, and .690 Kendall correlation with
COMET score. For our NOUN-TFR model, our
model reached .971 Perason, .940 Spearman, and
.800 Kendall correlations with gold NLTK noun
count. Lastly, for our TAB-TFR model, our model
reached .646 Pearson, .632 Spearman, and .470
Kendall correlation. Interestingly, though the cor-
relation metrics weren’t good for the TAB-TFR
model, the downstream re-ranking still worked
well, outperforming model score with similar mar-
gins to MT-TFR. We trained each model for an
average of roughly 12 hours of training for the
TAB-TFR and MT-TFR models, and roughly 3
hours of training for the NOUN-TFR model.

Note the size of the train / validation set for
MT-TFR were 958,122/74,522, for TAB-TFR
were 260,668/28,964, and for NOUN-TFR were
90,000/10,001.

9310

https://aclanthology.org/2021.acl-srw.2
https://aclanthology.org/2021.acl-srw.2
https://doi.org/10.18653/v1/2022.naacl-main.344
https://doi.org/10.18653/v1/2022.naacl-main.344
https://doi.org/10.18653/v1/2021.naacl-main.276
https://doi.org/10.18653/v1/2021.naacl-main.276
https://doi.org/10.18653/v1/P19-1649

A.3 Format Validation

In order to validate that token-factoring doesn’t in-
herently lead to degradations of a model, we test
a token-factored version of COMET-QE (2020),
a referenceless re-ranking metric. On a valida-
tion set, we measure its correlations on randomly
sampled WMT Direct Assessments scores to be
.479 Spearman, .431 Pearson, and .333 Kendall’s
Tau correlations. We then modified the model to
be token-factored (re-ordered pooling and feed-
forward pass), and fine-tuned the model on Direct
Assessments data. We found that we were able
to reproduce these correlations with .477 Spear-
man, .431 Pearson, and .333 Kendall’s Tau correla-
tions. More-over we measured similar re-ranking
performance on a set of beam search 50 candi-
date sets, thus validating that token-factoring re-
rankers doesn’t inherently lead to better or worse
re-ranking.

B Degradation Analysis

By design, on any token-level task, or task that can
be decomposed into a token-level task (we examine
reranking), EEL can perform perfectly on lattices
without recombination, while offering greater ef-
ficiency. This is because the Transformer lattice
encoding scheme with causal models in these cir-
cumstances is mathematically equivalent to evalu-
ating each path separately: the use of masking and
modified positional encodings enables the computa-
tion to exactly replicate the standard setting. While
we use beam search lattices to demonstrate this, it
can apply to a variety of sequence-modeling tasks
with Transformers.

Note the graphs that we look at have 163 (B-12),
551 (B-50), and 431 (LATT) nodes on average, with
lattice decoding lattices generally having 15+ re-
combination points, for an average sequence length
of around 40 tokens. The lattice-decoding lattices
we examine encode between 1000-4000 candidates
per lattice .

Sources of remaining degradation On lattices
with recombination, we still experience some degra-
dation. We can pinpoint remaining degradation as
observed in results to 2 sources. Firstly, as masks
are randomly generated, there’s a chance (increas-
ingly small with each new mask) chance that the
true top-1 candidate isn’t covered. By the nature
of our single-context masks, and how they cover
every node in a lattice, its often the case that even

if the true top-1 path isn’t traced by a mask con-
nection, our approach is likely to extract something
similar. Additionally, due to recombination, the
absolute position ids we encode tokens with will
occasionally mismatch at certain points, leading to
slightly different scores than if EEL were not used.

C Robustness

TFR-n-samp / EEL We control for randomness
in several of our experiments as follows. For the
TFR-N-SAMP rows, we sample 10,000 times from
each input lattice, averaging those values to get our
final results; we note that across robust runs the
numbers don’t change up to the 3 decimal preci-
sion that we report. Likewise, for the EEL num-
bers, we randomly generate 32 masks, and then
sample results 1000 times respectively from those
masks. It’s further worth noting that past 16 ran-
dom masks, the 1-best result often repeats from
earlier versions (hence the diminishing returns in
our ablation study), so we reason this to be a rea-
sonable cut-off. We follow a similar procedure for
the downstream table.

Timing While the absolute magnitudes of our
timing results are subject to variance as a result
of varying compute setting and load, we run our
timing results several times at different points in
time, and note that the relative ranking and overall
patterns remain similar across runs. We run these
experiments as 10 runs over the entire sets of 500
which we report results on. We apply batching
evenly across our approaches and baselines, and
we believe that the comparisons are representative
of actual performance deltas, as further validated
by our C/N results.

D Responsible NLP Checklist

D.1 Artifacts

We use several scientific artifacts in this work.

Data We use the WMT datasets (2017-2021,
licensed under CC-BY-SA-4.0), the WebNLG
Dataset (2017, licensed under CC BY-NC-SA 4.0),
and the XSUM dataset (MIT License).

Code We use open-source code from the
COMET repository (APACHE License 2.0), PAR-
ENT score (Dhingra et al., 2019), and lattice gener-
ation code from the original lattice decoding paper
(Xu et al., 2022).

9311

Generation Models For generations models
we use bart-large-xsum, facebook/mbart-large-50-
many-to-one-mmt, facebook/mbart-large-50-one-
to-many-mmt, and bart-large fine-tuned on web-nlg
data from (Ribeiro et al., 2021).

D.2 Model Hyperparameters / Infrastructure
We run all of our experiments on a single PNY
NVIDIA Quadro RTX 8000 GPU.

As we found it to work well across models, for
training our TFR models, we use the following
common hyperparameters: encoder learning rate:
1e-5, learning rate: 3.1e-5, layerwise decay: 0.9,
dropout: 0.1, number of encoder frozen epochs:
0.3, and a batch size of 8.

We run our NOUN-TFR model for 40000 train
steps, our MT-TFR model for 140000 train steps,
and our TAB-TFR model for 190000 train steps.
This came out to roughly 28 GPU hours total to
train the models that we used. Note that beyond
manual adjustments, we don’t use any sort of hy-
perparameter grid search.

We further report another approximately 8 GPU
hours for generating and reranking the lattices we
used for our evaluation.

D.3 Libraries Used
We use version 3.7 of the NLTK python library
(Bird et al., 2009) to extract part of speech tags to
use for our NOUN-TFR setting.

E Generation Output

9312

Label COMET Text

Source - Depuis longtemps, plusieurs éléments mettent en péril l’économie
américaine :

Reference - A number of worrying factors about the US economy have been
around for a long time:

E-TFR #1 .683 For a long time, several factors have threatened the US economy:
E-TFR #2 .683 For a long time, several factors have threatened the US economy:
E-TFR #3 .669 For a long time, several factors have threatened the American econ-

omy:

model score rerank #1 .420 The U.S. economy has long been threatened by several factors:
model score rerank #2 .420 The U.S. economy has long been threatened by several factors:
model score rerank #3 .683 For a long time, several factors have threatened the US economy:

oracle over lattice .749 For a long time, a number of factors have been threatening the US
economy:

Table 5: Example 1, French to English, Reranked on LATT

Label COMET Text

Source - Une enquête d’opinion menée de longue date à travers l’Europe
permet de relier les deux.

Reference - A pan-European opinion survey, which has been carried out for many
years, allows us to relate the two.

E-TFR #1 .533 A long-standing opinion poll across Europe makes it possible to link
the two.

E-TFR #2 .549 A long-term opinion poll across Europe makes it possible to link the
two.

E-TFR #3 .374 A long-standing public opinion survey across Europe links the two.

model score rerank #1 .207 A long-standing opinion poll across Europe links the two.
model score rerank #2 .533 A long-standing opinion poll across Europe makes it possible to link

the two.
model score rerank #3 .549 A long-term opinion poll across Europe makes it possible to link the

two.

oracle over lattice .733 A long-term opinion poll conducted across Europe makes it possible
to link these two.

Table 6: Example 2, French to English, Reranked on LATT

Label PARENT-P Text

Source - <H> 250 Delaware Avenue <R> architectural Style <T> Postmodern
architecture

Reference - 250 Delaware Avenue has the Postmodern style of architecture.

E-TFR #1 .883 The architecture style of 250 Delaware Avenue is Postmodern.
E-TFR #2 .519 250 Delaware Avenue is in the Postmodern architectural style.
E-TFR #3 .589 250 Delaware Avenue is located in Postmodern architecture style.

model score rerank #1 .519 250 Delaware Avenue is in the Postmodern architectural style.
model score rerank #2 .883 The architecture style of 250 Delaware Avenue is Postmodern.
model score rerank #3 .389 250 Delaware Avenue is in the postmodern architectural style.

oracle over lattice 1.0 The architectural style of 250 Delaware Avenue is Postmodern.

Table 7: Example 3, Table to Text, Reranked on LATT

9313

Label PARENT-P Text

Source - <H> Bakso <R> ingredient <T> Celery <H> Celery <R> family <T>
Apiaceae

Reference - Celery is a member of the Apiaceae family and is an ingredient of
Bakso.

E-TFR #1 .857 Celery is a member of the Apiaceae family and is an ingredient in
Bakso.

E-TFR #2 .668 Celery is part of the Apiaceae family and is an ingredient in Bakso.
E-TFR #3 .828 Celery is part of the Apiaceae family and is an ingredient of Bakso.

model score rerank #1 .447 Celery is part of the Apiaceae family and is one of the ingredients in
Bakso.

model score rerank #2 .857 Celery is a member of the Apiaceae family and is an ingredient in
Bakso.

model score rerank #3 .468 Celery is part of the Apiaceae family and is one of the ingredients of
Bakso.

oracle over lattice 1.0 Celery is a member of the Apiaceae family and is an ingredient of
Bakso.

Table 8: Example 4, Table to Text, Reranked on LATT

Label Unique Nouns Text

Source - The Death of Poor Joe, which dates back to March 1901, was dis-
covered by British Film Institute...

Reference - The oldest surviving film featuring a Charles Dickens character has
been discovered, in the year of the 200th anniversary of the author’s
birth.

TFR #1 11 The earliest known film of Charles Dickens’ A Christmas Carol
is to be shown in the UK as part of a celebration of the author’s
bicentenary next year.

TFR #2 11 The earliest known film of Charles Dickens’ A Christmas Carol
is to be screened in March as part of a celebration of the author’s
bicentenary next year.

TFR #3 11 The earliest known film of Charles Dickens’ A Christmas Carol is
to be screened in London as part of a celebration of the author’s
bicentenary next year.

oracle over lattice 11 The earliest known film of Charles Dickens’ A Christmas Carol is
to be screened in March as part of a bicentenary celebration of the
author’s work.

Table 9: Example 5, Summarization, Unique Nouns, Reranked on LATT

Label Unique Nouns Text

Source - Regulator Ofcom ruled the performance, by Alexandr Magala of
Moldova, was "in line with audience expectations"...

Reference - ITV show Britain’s Got Talent will not be investigated by the broad-
casting watchdog over a sword-swallowing act that drew 33 com-
plaints.

TFR #1 13 A daredevil sword act on Britain’s Got Talent drew no complaints,
despite the stunt leaving one contestant fearing for his life, will not
be investigated, TV watchdog Ofcom has said

TFR #2 13 A daredevil sword act on Britain’s Got Talent drew no complaints,
despite the stunt leaving one contestant fearing for his life, will not
be investigated, TV watchdog Ofcom has said.

TFR #3 11 A stunt in which a man slid down a pole with a sword lodged in his
mouth on Britain’s Got Talent will not be investigated, TV watchdog
Ofcom has said

oracle over lattice 13 A daredevil sword act on Britain’s Got Talent will not be investigated
over a stunt in which a man fell down a pole with a sword stuck in
his mouth, the media watchdog has said.

Table 10: Example 6, Summarization, Unique Nouns, Reranked on LATT

9314

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Right after Section 10

�7 A2. Did you discuss any potential risks of your work?
This work is improving the quality of text generation systems. We believe that the risks of these
methods are essentially the same as the risks of broader text generation systems, which have been
documented at length in other publications.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Yes, they are the first 2 sections.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Yes, we use scientific artifacts, and discuss them in the appendix, specifically in Appendix Section E

�3 B1. Did you cite the creators of artifacts you used?
Yes, we cite them throughout the paper, as well as in Appendix Section E

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Yes, we document these in Appendix Section E

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Yes, we only use data and code specifically prepared for research contexts, and thus stay in line with
intended use of the artifacts we use, as we only use them in a research context.

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No, these are standard datasets that do not contain PII to our knowledge.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Yes, we document languages clearly for all sets we use them in (All tables in the paper).

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Yes, we document this in Appendix A.2

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

9315

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

C �3 Did you run computational experiments?
Yes, we report details in Appendix E, in addition to descriptions in Section 5.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
We report these in Appendix E.

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Yes, we discuss this in Appendix E.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Yes, we discuss our mechanism for computing results robustly in detail in Appendix B.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Yes, this is included in Appendix E.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

9316

