
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 912–928

July 9-14, 2023 ©2023 Association for Computational Linguistics

From Key Points to Key Point Hierarchy:
Structured and Expressive Opinion Summarization

Arie Cattan1∗ Lilach Eden2∗ Yoav Kantor2 Roy Bar-Haim2

1Computer Science Department, Bar Ilan University
2IBM Research

arie.cattan@gmail.com {lilache, yoavka, roybar}@il.ibm.com

Abstract

Key Point Analysis (KPA) has been recently pro-
posed for deriving fine-grained insights from
collections of textual comments. KPA extracts
the main points in the data as a list of concise
sentences or phrases, termed key points, and
quantifies their prevalence. While key points
are more expressive than word clouds and key
phrases, making sense of a long, flat list of
key points, which often express related ideas in
varying levels of granularity, may still be chal-
lenging. To address this limitation of KPA, we
introduce the task of organizing a given set of
key points into a hierarchy, according to their
specificity. Such hierarchies may be viewed
as a novel type of Textual Entailment Graph.
We develop THINKP, a high quality benchmark
dataset of key point hierarchies for business
and product reviews, obtained by consolidat-
ing multiple annotations. We compare different
methods for predicting pairwise relations be-
tween key points, and for inferring a hierarchy
from these pairwise predictions. In particular,
for the task of computing pairwise key point
relations, we achieve significant gains over ex-
isting strong baselines by applying directional
distributional similarity methods to a novel dis-
tributional representation of key points, and
further boost performance via weak supervi-
sion.

https://github.com/IBM/kpa-hierarchy

1 Introduction

Many organizations face the challenge of extract-
ing insights from large collections of textual com-
ments, such as user reviews, survey responses, and
feedback from customers or employees. Current
text analytics tools summarize such datasets via
word clouds (Heimerl et al., 2014) or key phrases
(Hasan and Ng, 2014; Merrouni et al., 2019), which
are often too crude to capture fine-grained insights.

∗ Equal contribution. Work done while the first author
was an intern at IBM Research.

Multi-document summarization methods, on the
other hand (Chu and Liu, 2019; Bražinskas et al.,
2020a,b; Angelidis et al., 2021; Louis and Maynez,
2022), do not quantify the prevalence of each point
in the summary, and are not well-suited for repre-
senting conflicting views (Bar-Haim et al., 2021).

Key Point Analysis (KPA) is a recent opinion
summarization framework that aims to address the
above limitations (Bar-Haim et al., 2020b). KPA
extracts concise sentences and phrases termed Key
Points (KPs), which represent the most salient
points in the data, and quantifies the prevalence
of each KP as the number of its matching input sen-
tences. One remaining shortcoming of KPA, how-
ever, is that it generates a flat list, which does not
capture the relations between the key points. For
example, consider the sample set of key points in
Figure 1 (left), which was automatically extracted
from reviews of one of the hotels in the Yelp Open
Dataset1. The results do not provide a high level
view of the main themes expressed in the reviews.
It is hard to tell which key points convey similar
ideas, and which key points support and elaborate
on a more general key point. As the number of
key points in the summary increases, such output
becomes even harder to consume.

In this work we introduce Key Point Hierarchies
(KPH) as a novel structured representation of opin-
ion summaries. Organizing the key points in a hier-
archy, as shown in Figure 1 (right), allows the user
to quickly grasp the high-level themes in the sum-
mary (the hotel is beautiful, the shows are great,
comfortable rooms, great service), and drill down
on each theme to get more fine-grained insights,
e.g., from “The personnel were great” to “check-in
was quick and easy”. Furthermore, key points that
(nearly) convey the same meaning (e.g., “House-
keeping was fantastic”, and “The cleaning crew is
great”) are clustered together and represented as a

1https://www.yelp.com/dataset

912

mailto:arie.cattan@gmail.com
mailto:lilache@il.ibm.com
mailto:yoavka@il.ibm.com
mailto:roybar@il.ibm.com
https://github.com/IBM/kpa-hierarchy
https://www.yelp.com/dataset

Figure 1: From a flat list of key points to a key point hierarchy (KPH). Nodes group together key points that roughly
express the same idea and directed edges connect specific key points to more general ones. The number of matches
for each key point is omitted.

single node in the hierarchy. This structured output
makes KPA results more consumable, informative,
and easier to navigate. KPH can be viewed as a
new type of textual entailment graph (§2).

We develop THINKP (Tree HIerarchy of
Naturally-occuring Key Points), the first bench-
mark dataset for Key Point Hierarchies, created
from KPA summaries of user reviews in multiple
domains (§4). Due to the complexity of KPH an-
notation, THINKP was created by consolidating
multiple annotations, to ensure its high quality.

We explore different methods for automatic KPH
construction from a given set of key points (§5).
Following previous work on entailment graphs (§2),
this is formulated as a two-step approach. We first
compute local scores predicting the directional re-
lation between each pair of key points. We then
construct a hierarchy guided by these local pairwise
predictions.

We present novel methods and algorithmic im-
provements for each of the above subtasks. In par-
ticular, for the task of predicting pairwise key point
relations, we achieve significant gains over existing
strong baselines by applying directional distribu-
tional similarity methods to a novel distributional
representation of key points, and further boost per-
formance via weak supervision. We release the
THINKP dataset to encourage further research on
this challenging task.

Overall, our work contributes to several lines
of research, including key point analysis, opinion
summarization, entailment graphs, and distribu-
tional methods for natural language inference. Fur-
thermore, as we demonstrate in §4.3, our novel
THINKP dataset captures diverse types of infer-
ences between pairs of naturally-occurring texts,
making it an interesting resource for NLI research
in general.

2 Background

Key Point Analysis. Bar-Haim et al. (2020a,b)
proposed Key Point Analysis (KPA) as a summa-
rization framework that provides both textual and
quantitative summary of the main points in a col-
lection of comments. KPA extracts a set of con-
cise, high-quality sentences or phrases, termed Key
Points, and maps each of the input sentences to
its corresponding key points. The prevalence of
each key point is quantified as the number of its
matching sentences. KPA summaries are more
expressive than the commonly-used word clouds
and key phrases, while adding an important quan-
titative dimension that is missing from plain text
summaries.

The KPA algorithm aims to extract a set of key
points that provide high coverage of the data, while
removing redundancies. It employs two super-
vised models: one for assessing the quality of key
point candidates, and another one for computing
a match score between a sentence and a candidate
key point. Bar-Haim et al. (2021) adapted KPA
to business reviews, by introducing several exten-
sions to the original algorithm. In particular, they
integrated sentiment analysis into KPA, creating
separate summaries for positive and negative sen-
tences. They also developed a specialized key point
quality model for the business reviews domain.

Entailment Graphs. Most of the prior work on
entailment graphs has focused on learning entail-
ment relations between predicates, while satisfying
some global constraints such as transitivity (Berant
et al., 2010), soft transitivity (Chen et al., 2022),
and other types of soft constraints (Hosseini et al.,
2018). Levy et al. (2014) extended the notion of
entailment graphs to instantiated predicates.

Most similar to our Key Point Hierarchies are en-

913

tailment graphs over text fragments, introduced by
Kotlerman et al. (2015). Their motivating scenario
was summarizing customer feedback, for which
they developed a benchmark dataset. However, the
text fragments in this dataset were extracted man-
ually. The approach proposed in the current work,
which first finds the most salient points in the data
using KPA, and then constructs a hierarchy from
the extracted key points, allows fully-automatic
generation of structured summaries for large collec-
tions of opinions, views or arguments. Construct-
ing hierarchies over automatically-extracted key
points, which are often noisy and imperfect, rep-
resents a more realistic scenario, and makes both
manual annotation of KPHs and their automatic
construction more challenging.

3 Key Point Hierarchies

Figure 1 illustrates the transformation of a flat
key point list into a Key Point Hierarchy (KPH).
Formally, given a list of key points K =
{k1, k2, ..., kn}, we define a KPH H = (V, E) as
a directed forest, that is, H is a Directed Acyclic
Graph (DAG) where each node has no more than
one parent. The vertices V are clusters of key points
{C1, ..., Cm} that convey similar ideas, and the
directed edges ϵij ∈ E represent hierarchical rela-
tions between clusters Ci and Cj . Similar to Kotler-
man et al. (2015), a directed edge Ci −→ Cj indi-
cates that the key points in Ci provide elaboration
and support for the key points in Cj . By transitivity,
this relation extends to any two clusters Ci and Ck

such that there is a directed path in H from Ci to
Ck, which we denote as Ci ; Ck. Accordingly,
we defineR(H) as the set of directional relations
between pairs of key points (x, y) that can be de-
rived from H as:

R(H) = {(x, y)) | Cx = Cy ∨ Cx ; Cy} (1)

where Cx, Cy ∈ V are the clusters of x and y re-
spectively. Considering the example in Figure 1,
R(H) includes the relations “Housekeeping was
fantastic”−→ “The personnel were great”, “House-
keeping was fantastic” −→ “Friendly service all
around”, “Housekeeping was fantastic” −→ “The
cleaning crew is great”, and so on.

We chose a hierarchical representation over a
more general graph structure since it results in a
simpler output that is easier to consume. In addi-
tion, this greatly simplified the annotation process.
We found that hierarchical representation works

well in practice, as the vast majority of the nodes
in our dataset did not have more than one potential
parent. This is in line with previous work, which
suggested that entailment graphs tend to have a
tree-like structure (Berant et al., 2012).

4 THINKP: A Dataset for Key Point
Hierarchies

In this section we present THINKP, a benchmark
dataset of key point hierarchies. To build THINKP,
we first apply Key Point Analysis to reviews of busi-
nesses and products from multiple domains (§4.1).
A KPH is then constructed manually from the set
of key points extracted for each business or prod-
uct (§4.2). We provide statistics on the resulting
dataset, as well as qualitative analysis of the types
of inferences it includes (§4.3).

4.1 Key Point Set Generation

The first step in creating the dataset was to run
KPA on the reviews of selected businesses and
products. Our implementation follows (Bar-Haim
et al., 2021), who suggested several extensions of
KPA for analyzing business reviews.2 For each
business, two separate summaries of positive and
negative key points are created.

To obtain a diverse dataset, we considered three
different domains, from two data sources:

Yelp. This dataset includes 7M written business
reviews, where each business may be classified into
multiple categories, in varying levels of granular-
ity. We apply KPA to a sample of businesses that
include at least one of the following categories:
RESTAURANTS, HOTELS, and ART & ENTER-
TAINMENT, and had at least 1,000 reviews. For
the KPH annotation, we selected four restaurants
(which we refer to as the RESTAURANTS domain),
and four businesses categorized as ART & EN-
TERTAINMENT, out of which three were hotels
(hereafter, the Hotels & Entertainment domain, or
HOTELS for brevity). Each domain includes two
positive and two negative KPA summaries.

Amazon3. This dataset includes over 130M cus-
tomer reviews for a huge collection of products
in Amazon.com across a wide variety of domains.

2Specifically, our implementation follows their RKPA-FT
configuration, except that we extract the key points for each
business independently, and allow each sentence to match
multiple key points.

3https://s3.amazonaws.com/amazon-reviews-pds/
tsv/index.txt

914

Amazon.com
https://s3.amazonaws.com/amazon-reviews-pds/tsv/index.txt
https://s3.amazonaws.com/amazon-reviews-pds/tsv/index.txt

Here, we focused on laptops and tablets from the
PC domain, for which we could expect a rich and
diverse set of key points discussing various aspects
such as size, ease of use, design etc. Eventually,
we annotated a KPH for three positive and one
negative KPA summaries.

4.2 KPH Annotation

Annotating complex structures such as KPHs is
a challenging task, since it involves global, inter-
dependent decisions. Furthermore, the annotator
needs to consider different types of hierarchical
relations that may hold between the key points, as
we further discuss in Section 4.3. Finally, user re-
views make extensive use of informal and figurative
language. For example, “The food is outrageous!”
should be interpreted as great food; “Elevators
should go up and down, not diagonal” means that
the elevators were scary and “Internet was a joke
to get to work” indicates a poor WiFi signal.

To overcome these challenges and obtain a high-
quality dataset, three annotators individually con-
structed a KPH for each KPA summary (§4.2.1);
The annotators then met to resolve their disagree-
ments and reach a consolidated KPH (§4.2.2).

4.2.1 Creating an Initial KPH
To construct an initial KPH, annotators were shown
the key points one by one in a descending order
according to the number of their matched sentences.
For each key point, they first decided whether it
conveys the same idea as any previously seen key
point, in which case it was added to an existing
cluster. If not, a new node was added to the KPH,
and the annotator dragged it to its right position in
the hierarchy. Since key points with many matches
tend to be more general, the key point ordering
facilitated top-down construction of the KPH. At
any point in the annotation process, annotators had
a complete view of the KPH constructed so far, and
could adjust it by modifying previous decisions,
including both clustering and hierarchical relations.
Each KPH was annotated separately by three of the
authors and took about one hour to complete per
annotator. Our annotation guidelines are detailed
in Appendix A.1.

Since the key points were extracted automati-
cally, some of them did not satisfy the desired prop-
erties of a key point - a concise and self contained
sentence or phrase that discusses a single point with
a certain polarity (Bar-Haim et al., 2021). To avoid
noise in THINKP, annotators could mark such bad

key points as candidates for removal from the final
KPH.

As our annotation tool, we used CoRefi (Born-
stein et al., 2020), an interface for cross-document
coreference annotation with Cattan et al. (2021)’s
extension for annotating a forest of clusters,
which we adapted to handle key points (see Ap-
pendix A.2).

4.2.2 KPH Consolidation

To obtain the final KPHs, the three annotators met
to discuss and resolve the differences in their indi-
vidual KPHs annotations. This is a complex pro-
cess because both clusters and the relations be-
tween them can differ. We therefore separated the
consolidation process into two subsequent stages:
clustering and hierarchy.

In the first phase, following the reviewer mode
in CoRefi (Bornstein et al., 2020), annotators were
shown one key point at a time with their origi-
nal clustering decisions. In case of disagreement,
the annotators discussed and reached a joint deci-
sion, which automatically modified their original
KPH accordingly. At the end of this stage, the ini-
tial KPH of each of the annotators was modified
to include the exact same nodes. In the second
phase, since each key point has a single parent, we
could easily identify the remaining disagreements
by comparing the parent of each node across the
different annotators. To support this consolidation
phase, we enhanced CoRefi with the ability to iden-
tify and highlight both clustering and hierarchy
disagreements between any number of annotators
(see Appendix A.3 for more details).

Consolidating multiple annotations was also ef-
ficient due to the hierarchical structure of the KPH
and took about an hour per KPH.

4.2.3 Dataset Quality Assessment

To verify the quality of the resulting dataset, we
asked two additional annotators to annotate and
consolidate a portion of THINKP (3 RESTAU-
RANTS, 2 HOTEL and 2 PC).4 We then evaluated
their individual and consolidated KPHs against our
consolidated annotation, as follows. In each do-
main, we compared the two sets of annotated KPHs
by taking the union of the KP relations induced by
the KPHs in each set (Eq. 1), and computing the F1
score over the two resulting sets of relations. The

4See Appendix A.4 for more details about annotators train-
ing.

915

REST HOTEL PC Total

#KPHs 4 4 4 12
#Key points 181 208 128 517
#Filtered KPs 21 17 48 86
#R(H) 850 302 266 1,418

Table 1: Statistics of THINKP. R(H) is the set of key
point relations that can be derived from a KPH H (§3).

final F1 was obtained by macro-averaging over the
three domains.

The annotators’ performance after consolida-
tion reached an F1 of 0.756, indicating substan-
tial agreement.5 Furthermore, consolidation was
shown to increase individual performance by 5-6
points.

4.3 Dataset Properties
Table 1 shows some statistics for the THINKP
dataset. Overall, THINKP includes 12 KPHs, 517
key points, and 1,418 key points relations (R(H))
out of the total 24,430 key point pairs. Due to its
size, we did not split THINKP into development
and test sets, but rather used the entire dataset for
evaluation. As described in Section 4.2.1, during
the annotation, we filter a relatively small number
of key points (14%), mostly from the PC domain.
This is mainly because the key point quality model
that we used was not trained on this domain.

From a qualitative perspective, THINKP has sev-
eral appealing properties that make it a valuable
benchmark for NLI. First, recall that the KPA algo-
rithm aims to remove similar key points to avoid re-
dundancy in the summary (Bar-Haim et al., 2020b).
Hence, remaining equivalent key points in THINKP
are mostly non-trivial paraphrases that are challeng-
ing to detect (e.g., “Took forever to get our room”
↔ “Lines to check in are ridiculous”). In addition,
hierarchical relations between key points represent
diverse types of inferences. Table 2 shows a few
examples of common relations we observed by ana-
lyzing a sample from the dataset. Finally, THINKP
comprises naturally-occurring texts and relations,
coming from real-world data.

5 Automatic KPH Construction

We use a two-step approach to automatically build
a KPH from a set of key points. In the first step,
we predict directional scores between all pairs of

5We do not report Kappa because decisions are mutually
dependent.

key points (§5.1). In the second step, we construct
a hierarchy based on the local scores (§5.2).

5.1 Scoring Pairwise Key Point Relations

Given a pair of key points (i, j), we aim to pre-
dict whether a directional relation i −→ j holds
between i and j, by computing a likelihood score
s(i, j) ∈ [0, 1]. We experimented with both exist-
ing baselines and new methods we developed for
this task. Due to the size of THINKP, it was not
used to fine-tune the scoring models (§4.3).

Baselines. Identifying directional relations be-
tween two key points is closely related to two exist-
ing tasks: Textual Entailment, also known as Natu-
ral Language Inference (NLI) (Dagan et al., 2007)
and matching arguments to key points (Bar-Haim
et al., 2020a). Accordingly, we implemented two
baselines: (1) NLI, a RoBERTa model (Liu et al.,
2019) fine-tuned on the MNLI dataset (Williams
et al., 2018) to predict whether i entails j6 and
(2) KPA-Match, a RoBERTa model trained on the
ArgKP dataset (Bar-Haim et al., 2020a) to predict
whether i matches j, following (Bar-Haim et al.,
2021)’s implementation.

Directional Distributional Similarity. Geffet
and Dagan (2005) introduced the distributional
inclusion hypothesis for lexical entailment (Gef-
fet and Dagan, 2004), which suggests that the
context surrounding an entailing word w1 is nat-
urally expected to occur also with the entailed
word w2. Specifically, for each word w, they
built a sparse feature vector where the value of
the i-th entry is the PMI of the i-th word in the
dictionary with w. Many distributional similar-
ity metrics have been proposed to predict direc-
tional relations such as hyponymy between a pair
of words, based on their distributional feature vec-
tors. Among these methods are WeedsPrec (Weeds
and Weir, 2003), BInc (Szpektor and Dagan, 2008),
ClarkeDE (Clarke, 2009) and APinc (Kotlerman
et al., 2009).

In this work, we argue that this distributional
inclusion hypothesis may be extended to identify
directional relations between two key points. In-
deed, if i −→ j, it is likely that an input sentence
that matches the key point i will also match j.
For example, the sentence “The beds were really
comfortable, I literally knocked out as soon as my
head touched the pillow.” matches both “The beds

6https://huggingface.co/roberta-large-mnli

916

https://huggingface.co/roberta-large-mnli

Relation Type Examples

Support / Elaboration

Housekeeping needs worked on←− The beds weren’t even made right
The room was poorly maintained←− The air conditioning was not functioning right.
The device itself is so difficult to use←− Transferring data was a nightmare!
Customer service is a joke←− No help moving rooms

Part-of
The hardware is fantastic←− Sound is surprisingly good
The theatre is great←− The entrance is absolutely beautiful.

IS-A
The toiletries they offer are the worst←− not even good shampoo in room
Food varieties was very limited←− Desert selection was below average as well

Table 2: Examples of relations between key points in THINKP.

were awesome” and “The rooms are comfortable”.
Therefore, we construct a feature vector for each
key point k, whose length is equal to the number
of input sentences. The value at the i-th position
in this vector is the likelihood that the i-th sen-
tence matches k, as predicted by the KPA match-
ing model (§4.1). Then, we apply the aforemen-
tioned distributional similarity metrics to predict a
directional score s(i, j). We only report the perfor-
mance of APinc as it slightly outperformed other
metrics. Additionally, we implemented a simple
variant of WeedsPrec, in which the entries in the
feature vectors are binary (match/no match). This
metric, termed Binary Inclusion (BinInc), com-
putes the ratio between the number of sentences
matched by KPA to both i and j and the number
sentences matched to i. Intuitively, when most
of the sentences that were mapped to i were also
mapped to j, it is a strong indication that i −→ j.

Combining NLI with Distributional Methods.
As further discussed in Section 6, we empirically
found that the NLI model and the distributional
methods have complementary strengths. The NLI
model performs better on RESTAURANTS, whereas
the distributional methods perform better on the
HOTEL and PC domains. Furthermore, even within
each domain, those two methods produce very dif-
ferent rankings, as indicated by a low Spearman
correlation between their output scores (see Ap-
pendix C for more details).

To take advantage of the strengths of both ap-
proaches, we explored two alternatives for com-
bining BinInc, the best-performing distributional
method (as shown in Section 6), with NLI:

1. Averaging the output scores of NLI and Bin-
Inc (denoted NLI+BinInc-Avg).

2. Fine-tuning the NLI model on weak la-
bels created by the BinInc model (denoted

NLI+BinInc-WL). Specifically, we first apply
the BinInc method to a large number of unla-
beled KPA summaries and obtain local scores
between all pairs of key points. We then con-
vert these pairwise scores to the NLI format,
where we consider all pairs above some thresh-
old as entailment and the others as neutral.
Finally, we fine-tune the NLI model on this
automatically-generated training data and use
the resulting model to predict the local scores
s(i, j) on THINKP. Implementation details
and statistics on the silver data are detailed in
Appendix B.

5.2 Hierarchy Construction

We proceed to construct a KPH by determining
its semantic clusters and the hierarchical relations
between them. Intuitively, we would like to gener-
ate a KPH such that the set of pairwise key point
relations induced by its structure are consistent
with the local directional scores: high-scoring rela-
tions should be included, and low-scoring relations
should be excluded. We explored several alter-
natives for constructing a KPH, described below.
Each of these methods employs a decision thresh-
old τ over the local scores, which needs to be tuned
over some development data.

Reduced Forest. Berant et al. (2012) described
a simple transformation of a directed graph G into
a forest of clusters. In our case, we start with a
graph that includes the key points as nodes, and the
directional edges e(i, j) for pairs with local score
s(i, j) > τ .

The reduced forest is constructed as follows: (a)
the condensation of G is computed by contracting
each strongly connected component into a single
vertex that represents a cluster of nodes in G. The
resulting DAG is transformed into a forest by (b)
taking its transitive reduction, and (c) heuristically

917

selecting a single parent for each node with multi-
ple parents. We select the larger cluster as a parent,
and as a tie breaker, we use the mean over all the
pairwise scores s(i, j) such that i is in the child
cluster and j is in the parent cluster.

As defined by Berant et al., G is a Forest Re-
ducible Graph (FRG) if after applying step b above,
none of the nodes has multiple parents.

Tree Node and Component Fix (TNCF). Given
a directed graph with local edge weights that are
either positive (predicting pairwise entailment be-
tween connected nodes) or negative (predicting
non-entailment), the optimal entailment graph may
be defined as the transitive subgraph in which the
sum of the edge weights is maximized (Berant et al.,
2012). Berant et al. showed that this problem is NP-
Hard, even when further constraining the resulting
graph to be forest-reducible.

To address the computational complexity of find-
ing an exact solution, Berant et al. presented an ef-
ficient approximation algorithm, termed Tree-node-
fix (TNF) that generates forest-reducible entailment
graphs, and showed empirically that the quality
of the resulting graphs is close to the exact solu-
tion found via Integer Linear Programming (ILP).
Starting from some initial FRG, their algorithm it-
eratively improves the graph objective function by
removing and reattaching one node at a time, while
keeping the graph forest-reducible.

Berant et al. (2015) proposed an extension for
this algorithm, termed Tree-Node-and-Component-
Fix (TNCF), where in each iteration a whole cluster
may be re-attached, in addition to individual nodes.
We found this extension beneficial.

Since a KPH is also a forest of clusters, the TNF
and TNCF algorithms are directly applicable to our
setting. Following Berant et al. (2012) we defined
the edge weights as wi,j = s(i, j) − τ so that
local scores below the threshold τ are considered
negative.

One difference between the original TNF imple-
mentation and ours is the initialization: while they
used (Berant et al., 2011)’s exact solution, com-
puted via ILP for a sparse configuration, we take a
simpler approach and start with the reduced forest
described above, constructed with the same thresh-
old τ .

Greedy. As an alternative to the TNF/TNCF al-
gorithms, we also adapted the greedy algorithm
proposed by Cattan et al. (2021) for the task of hi-

erarchical cross-document coreference resolution,
which also generates a forest of clusters. First, key
point clusters are obtained by agglomerative clus-
tering with average linkage and distance threshold
of 1−τ , where the distance metric between two key
points i and j is defined as 1−min(s(i, j), s(j, i)).

Second, we define the score of the directional
edge between two clusters (C1, C2) as the average
of the s(i, j) scores between the key points in the
two clusters:

S(C1, C2) =
1

|C1| · |C2|
∑

i∈C1

∑

j∈C2
s(i, j) (2)

The KPH is constructed by repeatedly adding the
highest-scoring edge (if the score is above the τ
threshold), skipping edges that would violate the
definition of the KPH as a directed forest. The
process is terminated when no more edges can be
added.

Note that unlike the TNF/TNCF algorithms, the
Greedy algorithm does not modify existing clus-
ters and edges in each iteration, but only adds new
edges.

Greedy with Global Score (Greedy GS). One
limitation of the Greedy algorithm is that the edge
scoring function is local and hence ignores indirect
relations between clusters that would result from
adding the edge. For example, consider a KPH
with three clusters {A,B,C} such that B −→ A.
The criterion to add the edge C −→ B will consider
only S(C,B) but not S(C,A), which corresponds
to the indirect relation C ; A. To address this
issue, we modified the algorithm to consider the
relations between each cluster and all its ancestors
in the resulting KPH, as follows:

Ek+1 = Ek ∪ argmax
ϵ∈E∗\Ek

O(V, Ek ∪ ϵ) (3)

O(V, E) =
∑

Ci∈V

∑

Cj∈AV,E(Ci)
S(Ci, Cj) (4)

where Ek is the set of edges in the resulting KPH
after k iterations, E∗ is the set of all edges scoring
above τ and AV,E(C) denotes the set of ancestors
of C in H(V, E).

6 Evaluation

Predicting Local Pairwise Relations. Figure 2
compares the performance of the different local
scoring methods (§5.1). For each domain, we con-
sider all the key point pairs in the dataset, and show

918

Figure 2: Precision-Recall curves of local scoring methods on RESTAURANT, HOTEL and PC.

the Precision/Recall curve and the Area Under the
Curve (AUC) for each method. AUC results are
also summarized in Table 3.

We first observe that applying the KPA-match
model indirectly via the distributional methods (AP-
inc and BinInc) outperforms its direct application
in two out of the three domains, and increases the
average AUC from 0.237 to 0.277/0.288, respec-
tively. The NLI model has a clear advantage over
the distributional methods in the RESTAURANTS

domain, but is much worse for HOTEL and PC.
Both NLI+BinInc-Avg and NLI+BinInc-WL models
are able to combine the complementary strengths of
NLI and BinInc and outperform all the stand-alone
models. Model combination via weak labeling
(NLI+BinInc-WL) achieves the best performance
in all three domains by a large margin (+0.11 aver-
age AUC improvement over the best stand-alone
method).

To further assess the contribution of model com-
bination in the weak labeling setting, we also tested
a configuration in which the silver data is labeled
by the NLI model (denoted NLI-WL). The results
are shown on the last row of Table 3. While the
performance is better than NLI alone (demonstrat-
ing the value of weak labeling), it is still far be-
low NLI+BinInc-WL. Overalll, the results affirm
the importance of both model combination and the
weakly-labeled data for local scoring performance.

Hierarchy Construction. Next, we compare dif-
ferent methods for constructing a KPH from the
set of local pairwise scores (§5.2). We use the
scores from the best performing local method,
NLI+BinInc-WL, as found in the previous experi-
ment.

We use the F1 measure as defined in Sec-
tion 4.2.3 as our evaluation metric, similar to

Kotlerman et al. (2015). Since THINKP has no
development set (§4.3), we employ a leave-one-out
scheme to tune the threshold τ . Specifically, for
each KPA summary S, we find the threshold that
maximizes the F1 score of the three other KPHs in
the same domain and predict a KPH for S using
this threshold. We then compute the F1 score for
the predicted KPHs in each domain.

The results are summarized in Table 4. TNCF
achieves the best overall performance on THINKP
with an average F1 of 0.526, substantially improv-
ing the Reduced Forest baseline. The Greedy GS
algorithm is the top performer in the Restaurants
domain (F1=0.641). Adding a global scoring func-
tion to the greedy algorithm improves the perfor-
mance by 0.059 (from 0.45 to 0.509).

We also evaluated the quality of the predicted
relations using only the local scores, with a thresh-
old determined via leave-one-out, as before (last
row in Table 4). While the resulting set of relations
may not represent a valid hierarchy, it still provides
an interesting reference point for comparison with
the various KPH construction algorithms. We can
see that both Greedy GS and TNCF improve the
local results by a substantial margin (+0.028 and
+0.045, resp.). These two global methods not only
satisfy the constraints of generating a valid KPH,
but also improve the pairwise relation prediction of
the local scorer.

7 Conclusion

We introduced Key Point Hierarchies as a novel
representation for structured, expressive opinion
summaries. We explored several approaches for au-
tomatic hierarchy construction from a given set of
key points, which were evaluated on a new bench-
mark dataset we developed for this task. We also

919

REST HOTEL PC Avg.

NLI 0.428 0.172 0.232 0.277
KPA-Match 0.331 0.173 0.207 0.237
APinc 0.279 0.256 0.297 0.277
BinInc 0.304 0.286 0.274 0.288

NLI+BinInc-Avg 0.472 0.320 0.316 0.369
NLI+BinInc-WL 0.486 0.364 0.345 0.398

NLI-WL 0.466 0.243 0.233 0.314

Table 3: Evaluation of local scoring methods (AUC for
Recall ≥ 0.1)

REST HOTEL PC Avg.

Reduced Forest 0.597 0.335 0.396 0.443
TNCF 0.614 0.460 0.505 0.526
Greedy 0.512 0.424 0.416 0.450
Greedy GS 0.641 0.433 0.451 0.509

Local (no tree) 0.568 0.437 0.439 0.481

Table 4: Evaluation of hierarchy construction algorithms
(F1 scores). All methods use the NLI+BinInc-WL local
scores.

proposed a novel distributional representation for
key points, which we leveraged via weak super-
vision to achieve substantial improvement on the
subtask of predicting pairwise key point relations.
While our initial results are promising, there is still
much room for improvement, and we hope that
releasing our dataset would encourage the commu-
nity to further promote this line of research.

Limitations

Key Point Hierarchies may be valuable for sum-
marizing opinions and views in multiple domains,
including reviews, survey responses, customer feed-
back, political debates etc. However, in this work,
we only demonstrated their value for business and
product reviews, leaving other types of data to fu-
ture work. Also, we only attempted to create KPHs
for English reviews, for which an abundance of
resources is available, including a huge number
of written reviews and high-quality trained mod-
els, e.g. for NLI and key point matching. Apply-
ing these methods to low-resource languages is
expected to be far more challenging. Finally, the
quality of the resulting KPHs depends on the qual-
ity of the extracted key points provided as input,
which may vary across different domains. To alle-
viate this problem in THINKP, we manually filtered
out problematic key points from the dataset (§4.2).

Acknowledgments

The first author is partially supported by the PBC
fellowship for outstanding PhD candidates in data
science.

References
Stefanos Angelidis, Reinald Kim Amplayo, Yoshihiko

Suhara, Xiaolan Wang, and Mirella Lapata. 2021.
Extractive opinion summarization in quantized trans-
former spaces. Transactions of the Association for
Computational Linguistics, 9:277–293.

Roy Bar-Haim, Lilach Eden, Roni Friedman, Yoav Kan-
tor, Dan Lahav, and Noam Slonim. 2020a. From ar-
guments to key points: Towards automatic argument
summarization. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4029–4039, Online. Association for
Computational Linguistics.

Roy Bar-Haim, Lilach Eden, Yoav Kantor, Roni Fried-
man, and Noam Slonim. 2021. Every bite is an ex-
perience: Key Point Analysis of business reviews.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
3376–3386, Online. Association for Computational
Linguistics.

Roy Bar-Haim, Yoav Kantor, Lilach Eden, Roni Fried-
man, Dan Lahav, and Noam Slonim. 2020b. Quanti-
tative argument summarization and beyond: Cross-
domain key point analysis. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 39–49, On-
line. Association for Computational Linguistics.

Jonathan Berant, Noga Alon, Ido Dagan, and Jacob
Goldberger. 2015. Efficient global learning of entail-
ment graphs. Computational Linguistics, 41(2):249–
291.

Jonathan Berant, Ido Dagan, Meni Adler, and Jacob
Goldberger. 2012. Efficient tree-based approxima-
tion for entailment graph learning. In Proceedings
of the 50th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 117–125, Jeju Island, Korea. Association for
Computational Linguistics.

Jonathan Berant, Ido Dagan, and Jacob Goldberger.
2010. Global learning of focused entailment graphs.
In Proceedings of the 48th Annual Meeting of the As-
sociation for Computational Linguistics, pages 1220–
1229, Uppsala, Sweden. Association for Computa-
tional Linguistics.

Jonathan Berant, Ido Dagan, and Jacob Goldberger.
2011. Global learning of typed entailment rules.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human

920

https://doi.org/10.1162/tacl_a_00366
https://doi.org/10.1162/tacl_a_00366
https://doi.org/10.18653/v1/2020.acl-main.371
https://doi.org/10.18653/v1/2020.acl-main.371
https://doi.org/10.18653/v1/2020.acl-main.371
https://doi.org/10.18653/v1/2021.acl-long.262
https://doi.org/10.18653/v1/2021.acl-long.262
https://doi.org/10.18653/v1/2020.emnlp-main.3
https://doi.org/10.18653/v1/2020.emnlp-main.3
https://doi.org/10.18653/v1/2020.emnlp-main.3
https://aclanthology.org/P12-1013
https://aclanthology.org/P12-1013
https://aclanthology.org/P10-1124
https://aclanthology.org/P11-1062

Language Technologies, pages 610–619, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Ari Bornstein, Arie Cattan, and Ido Dagan. 2020.
CoRefi: A crowd sourcing suite for coreference an-
notation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 205–215, Online.
Association for Computational Linguistics.

Arthur Bražinskas, Mirella Lapata, and Ivan Titov.
2020a. Few-shot learning for opinion summarization.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4119–4135, Online. Association for Computa-
tional Linguistics.

Arthur Bražinskas, Mirella Lapata, and Ivan Titov.
2020b. Unsupervised opinion summarization as
copycat-review generation. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5151–5169, Online. Asso-
ciation for Computational Linguistics.

Arie Cattan, Sophie Johnson, Daniel S Weld, Ido Da-
gan, Iz Beltagy, Doug Downey, and Tom Hope. 2021.
Scico: Hierarchical cross-document coreference for
scientific concepts. In 3rd Conference on Automated
Knowledge Base Construction.

Zhibin Chen, Yansong Feng, and Dongyan Zhao. 2022.
Entailment graph learning with textual entailment
and soft transitivity. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 5899–
5910, Dublin, Ireland. Association for Computational
Linguistics.

Eric Chu and Peter Liu. 2019. MeanSum: A neural
model for unsupervised multi-document abstractive
summarization. In Proceedings of the 36th Interna-
tional Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pages
1223–1232. PMLR.

Daoud Clarke. 2009. Context-theoretic semantics for
natural language: an overview. In Proceedings of the
Workshop on Geometrical Models of Natural Lan-
guage Semantics, pages 112–119, Athens, Greece.
Association for Computational Linguistics.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2007. The pascal recognising textual entailment chal-
lenge. In Machine Learning Challenges Workshop.

William Falcon et al. 2019. Pytorch lightning. GitHub.
Note: https://github.com/PyTorchLightning/pytorch-
lightning, 3.

Maayan Geffet and Ido Dagan. 2004. Feature vector
quality and distributional similarity. In COLING
2004: Proceedings of the 20th International Confer-
ence on Computational Linguistics, pages 247–253,
Geneva, Switzerland. COLING.

Maayan Geffet and Ido Dagan. 2005. The distribu-
tional inclusion hypotheses and lexical entailment.
In Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics (ACL’05),
pages 107–114, Ann Arbor, Michigan. Association
for Computational Linguistics.

Kazi Saidul Hasan and Vincent Ng. 2014. Automatic
keyphrase extraction: A survey of the state of the art.
In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1262–1273, Baltimore, Mary-
land. Association for Computational Linguistics.

Florian Heimerl, Steffen Lohmann, Simon Lange, and
Thomas Ertl. 2014. Word cloud explorer: Text ana-
lytics based on word clouds. In 2014 47th Hawaii
International Conference on System Sciences, pages
1833–1842.

Mohammad Javad Hosseini, Nathanael Chambers, Siva
Reddy, Xavier R. Holt, Shay B. Cohen, Mark John-
son, and Mark Steedman. 2018. Learning typed en-
tailment graphs with global soft constraints. Transac-
tions of the Association for Computational Linguis-
tics, 6:703–717.

Lili Kotlerman, Ido Dagan, Bernardo Magnini, and
Luisa Bentivogli. 2015. Textual entailment graphs.
Natural Language Engineering, 21:699 – 724.

Lili Kotlerman, Ido Dagan, Idan Szpektor, and Maayan
Zhitomirsky-Geffet. 2009. Directional distributional
similarity for lexical expansion. In Proceedings of
the ACL-IJCNLP 2009 Conference Short Papers,
pages 69–72, Suntec, Singapore. Association for
Computational Linguistics.

Omer Levy, Ido Dagan, and Jacob Goldberger. 2014.
Focused entailment graphs for open IE propositions.
In Proceedings of the Eighteenth Conference on Com-
putational Natural Language Learning, pages 87–97,
Ann Arbor, Michigan. Association for Computational
Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv, abs/1907.11692.

Annie Louis and Joshua Maynez. 2022. Opinesum:
Entailment-based self-training for abstractive opinion
summarization. ArXiv, abs/2212.10791.

Zakariae Alami Merrouni, Bouchra Frikh, and Brahim
Ouhbi. 2019. Automatic keyphrase extraction: a
survey and trends. Journal of Intelligent Information
Systems, 54:391 – 424.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,

921

https://doi.org/10.18653/v1/2020.emnlp-demos.27
https://doi.org/10.18653/v1/2020.emnlp-demos.27
https://doi.org/10.18653/v1/2020.emnlp-main.337
https://doi.org/10.18653/v1/2020.acl-main.461
https://doi.org/10.18653/v1/2020.acl-main.461
https://openreview.net/forum?id=OFLbgUP04nC
https://openreview.net/forum?id=OFLbgUP04nC
https://doi.org/10.18653/v1/2022.acl-long.406
https://doi.org/10.18653/v1/2022.acl-long.406
http://proceedings.mlr.press/v97/chu19b.html
http://proceedings.mlr.press/v97/chu19b.html
http://proceedings.mlr.press/v97/chu19b.html
https://aclanthology.org/W09-0215
https://aclanthology.org/W09-0215
https://aclanthology.org/C04-1036
https://aclanthology.org/C04-1036
https://doi.org/10.3115/1219840.1219854
https://doi.org/10.3115/1219840.1219854
https://doi.org/10.3115/v1/P14-1119
https://doi.org/10.3115/v1/P14-1119
https://doi.org/10.1109/HICSS.2014.231
https://doi.org/10.1109/HICSS.2014.231
https://doi.org/10.1162/tacl_a_00250
https://doi.org/10.1162/tacl_a_00250
https://aclanthology.org/P09-2018
https://aclanthology.org/P09-2018
https://doi.org/10.3115/v1/W14-1610

Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc.

Idan Szpektor and Ido Dagan. 2008. Learning entail-
ment rules for unary templates. In Proceedings of
the 22nd International Conference on Computational
Linguistics (Coling 2008), pages 849–856, Manch-
ester, UK. Coling 2008 Organizing Committee.

Julie Weeds and David Weir. 2003. A general frame-
work for distributional similarity. In Proceedings
of the 2003 Conference on Empirical Methods in
Natural Language Processing, pages 81–88.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

A Data Collection

A.1 Annotation Guidelines

We began the annotation process of THINKP by
drafting guidelines in which we describe the KPH
structure (§3) and define the annotation task as
follows. “Given two key points A and B, (1) if A
and B roughly convey the same idea or opinion,
they should be clustered together in the same node
(e.g. Friendly service all around vs. Staff was
nice and helpful) and (2) if B elaborates on A and
supports it, then B should be placed under A in the
hierarchy (e.g., the rooms are comfortable←− The
bed was very comfy)”. Importantly, as key points
are automatically extracted from human reviews
written by different people in their own vocabulary,
we advise to ignore subtle differences because they
do not reflect different opinions. For example, “Not
much choice of fruits and desserts” and “Dessert

selection was below average as well” should be
considered equivalent because “Dessert” usually
includes fruits.

A.2 Annotation
Figure 3 shows the COREFI interface that we use to
annotate THINKP. For each key point, annotators
decide whether to add it to an existing cluster or to
create a new node in the hierarchy.

A.3 Consolidation
As described in the paper (§4.2.2), we split the
consolidation stage into two subsequent steps: clus-
tering and hierarchy, illustrated in Figures 4 and 5.

For the clustering step (Figure 4), we extend the
reviewer algorithm in COREFI (Bornstein et al.,
2020) with the ability to review multiple annota-
tions for the same input. In case of disagreement,
we display a red thumb-down at the bottom left of
the annotation interface and the annotators discuss
to reach a joint decision.

Each clustering decision automatically modifies
their original KPHs. Considering the example in
Figure 4 with a clustering disagreement for the
key point “The directions also leave a lot to be
desired (KP1)”: annotator A1 grouped it together
with “The device itself is so difficult to use (KP2)”
whereas annotator A2 left it as a standalone node
in the KPH (indicated by the + button in purple).
Now, if A1 and A2 decide to follow A1’s decision,
A2’s original KPH will be automatically modified
to include a grouped node {The device itself is so
difficult to use, The directions also leave a lot to be
desired} (instead of two separated nodes) whose
children will be the concatenation of the initial
children of KP1 and KP2. On the other hand, if A1
and A2 decide to follow A2’s decision, a new node

“The directions also leave a lot to be desired” will
be added in A1’s KPH. In this case, the children
of the initial grouped node will stay under “The
device itself is so difficult to use”. This automatic
process ensures that the original KPHs will include
the exact same nodes.

In the second step, as shown in Figure 5, as the
nodes in the two KPHs are identical, a disagree-
ment will occur when a cluster C ∈ V has a dif-
ferent direct parent in each KPH. To identify the
next disagreement, annotators can click on the “Go
To Next Disagreement” button to highlight the key
point in blue and its direct parent in violet on both
KPHs. Once all hierarchical disagreements have
been resolved, the structure of both KPHs will be

922

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://aclanthology.org/C08-1107
https://aclanthology.org/C08-1107
https://aclanthology.org/W03-1011
https://aclanthology.org/W03-1011
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

Figure 3: COREFI annotation interface adapted to annotate THINKP.

identical and the annotators can submit their con-
solidated KPH.

A.4 Annotators Training

To assess the quality of THINKP (§4.2.3), we pro-
vided a team of in-house annotators with the same
annotation guidelines (§A.1), while explicitly men-
tioning the purpose of the data collection. Follow-
ing (Bornstein et al., 2020), we also provided them
an automated walk-through tutorial to get famil-
iar with the tool functionalities (§A.2). As part of
the training, we asked the annotators to construct
a KPH for 2 different businesses and gave them
detailed feedback. Finally, we gave them a test and
proceeded with the annotators who passed the test.

B Implementation Details

As described in Section 5.1, our best local scorer is
obtained by fine-tuning an NLI model on weakly-
labeled data, automatically collected as follows.
We first applied KPA to reviews from 152 YELP

businesses. The resulting KPA summaries included
38 key points on average. We then ran the BinInc
method on all possible key point pairs in each KPA

summary. After fixing the decision threshold to
0.5, we obtained 5,379 positive pairs and 295K
negative pairs. In the final dataset that was used
to train the model, we downsampled the negative
examples so that the ratio between positive and
negative examples was 1:5.7

We train our model using PyTorch (Paszke et al.,
2019), PytorchLightning (Falcon et al., 2019) and
the Transformers library (Wolf et al., 2020) for 5
epochs with a batch size of 64 and a learning rate
of 1e-7.

C Analysis

Figure 6 shows the Spearman correlation coeffi-
cients between the output scores of the different lo-
cal methods that we define in Section 5.1. NLI has
a low correlation with the distributional methods
(APinc and BinInc) in each of the three domains.
This indicates that NLI and the distributional meth-
ods rank the key point pairs quite differently.

7We experimented with multiple ratios (1:1, 1:2, 1:3, 1:5,
1:10) as well as considering all the pairs and found that the
1:5 ratio achieves the best performance.

923

Figure 4: Clustering step. The thumb-down at the bottom left of the screen indicates a clustering disagreement
between the annotators for Key Point 3: “The directions also leave a lot to be desired”. Annotator A1 assigned it to

“The device itself is so difficult to use” while annotator A2 created a new cluster, as indicated in purple.

D Datasets

• The Yelp and Amazon datasets used in this
work have been released for academic use,
and accordingly, we have only used them for
academic research.

• The authors have reviewed the THINKP
dataset and verified that it does not contain
any personal information or offensive content.

924

Figure 5: Consolidation of hierarchical relations. The cluster “Keyboard lacks expected keys for functionality.” is
highlighted in blue in both KPHs because the two annotators placed it under different parents (colored in violet in
both KPHs).

925

Figure 6: Spearman correlations between the scores of the local methods

926

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

The last section (unnumbered), immediately following the conclusion

�7 A2. Did you discuss any potential risks of your work?
We carefully reviewed the guidelines and could not think of potential risks worth mentioning in the
paper.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
See abstract and the first section (Introduction).

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 4

�3 B1. Did you cite the creators of artifacts you used?
Section 4.1

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
See Appendix D. The exact terms of use and licensing information for the dataset we release will be
provided upon its release.

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
See Appendix D. The exact terms of use and licensing information for the dataset we intend to release
will be provided upon its release.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Section 4

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 4.3

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

927

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

C �3 Did you run computational experiments?
Section 6

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 5 (we specified the model we used, RoBERTa-large)

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 6 and Appendix B

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 6

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Appendix B

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Section 4.2 and Appendix A

�3 D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Appendix A

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

�3 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Appendix A, in particular A.4

�7 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not relevant for this annotation task

�7 D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not relevant, only two annotators

928

