@inproceedings{bastan-etal-2023-neurostructural,
title = "{NEUROSTRUCTURAL} {DECODING}: Neural Text Generation with Structural Constraints",
author = "Bastan, Mohaddeseh and
Surdeanu, Mihai and
Balasubramanian, Niranjan",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.528",
doi = "10.18653/v1/2023.acl-long.528",
pages = "9496--9510",
abstract = "Text generation often involves producing coherent and grammatically correct texts that also satisfy a given set of semantic constraints. While most approaches for conditional text generation have primarily focused on lexical constraints, they often struggle to effectively incorporate syntactic constraints, which provide a richer language for approximating semantic constraints. We address this gap by introducing NeuroStructural Decoding, a new decoding algorithm that incorporates syntactic constraints to further improve the quality of the generated text. We build NeuroStructural Decoding on the NeuroLogic Decoding (Lu etal. 2021) algorithm, which enables language generation models to produce fluent text while satisfying complex lexical constraints. Our algorithm is powerful and scalable. It tracks lexico-syntactic constraints (e.g., we need to observe dog as subject and ball as object)during decoding by parsing the partial generations at each step. To this end, we adapt a dependency parser to generate parses for incomplete sentences. Our approach is evaluated on three different language generation tasks, and the results show improved performance in both lexical and syntactic metrics compared to previous methods. The results suggest this is a promising solution for integrating fine-grained controllable generation into the conventional beam search decoding.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bastan-etal-2023-neurostructural">
<titleInfo>
<title>NEUROSTRUCTURAL DECODING: Neural Text Generation with Structural Constraints</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mohaddeseh</namePart>
<namePart type="family">Bastan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mihai</namePart>
<namePart type="family">Surdeanu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Niranjan</namePart>
<namePart type="family">Balasubramanian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Text generation often involves producing coherent and grammatically correct texts that also satisfy a given set of semantic constraints. While most approaches for conditional text generation have primarily focused on lexical constraints, they often struggle to effectively incorporate syntactic constraints, which provide a richer language for approximating semantic constraints. We address this gap by introducing NeuroStructural Decoding, a new decoding algorithm that incorporates syntactic constraints to further improve the quality of the generated text. We build NeuroStructural Decoding on the NeuroLogic Decoding (Lu etal. 2021) algorithm, which enables language generation models to produce fluent text while satisfying complex lexical constraints. Our algorithm is powerful and scalable. It tracks lexico-syntactic constraints (e.g., we need to observe dog as subject and ball as object)during decoding by parsing the partial generations at each step. To this end, we adapt a dependency parser to generate parses for incomplete sentences. Our approach is evaluated on three different language generation tasks, and the results show improved performance in both lexical and syntactic metrics compared to previous methods. The results suggest this is a promising solution for integrating fine-grained controllable generation into the conventional beam search decoding.</abstract>
<identifier type="citekey">bastan-etal-2023-neurostructural</identifier>
<identifier type="doi">10.18653/v1/2023.acl-long.528</identifier>
<location>
<url>https://aclanthology.org/2023.acl-long.528</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>9496</start>
<end>9510</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NEUROSTRUCTURAL DECODING: Neural Text Generation with Structural Constraints
%A Bastan, Mohaddeseh
%A Surdeanu, Mihai
%A Balasubramanian, Niranjan
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F bastan-etal-2023-neurostructural
%X Text generation often involves producing coherent and grammatically correct texts that also satisfy a given set of semantic constraints. While most approaches for conditional text generation have primarily focused on lexical constraints, they often struggle to effectively incorporate syntactic constraints, which provide a richer language for approximating semantic constraints. We address this gap by introducing NeuroStructural Decoding, a new decoding algorithm that incorporates syntactic constraints to further improve the quality of the generated text. We build NeuroStructural Decoding on the NeuroLogic Decoding (Lu etal. 2021) algorithm, which enables language generation models to produce fluent text while satisfying complex lexical constraints. Our algorithm is powerful and scalable. It tracks lexico-syntactic constraints (e.g., we need to observe dog as subject and ball as object)during decoding by parsing the partial generations at each step. To this end, we adapt a dependency parser to generate parses for incomplete sentences. Our approach is evaluated on three different language generation tasks, and the results show improved performance in both lexical and syntactic metrics compared to previous methods. The results suggest this is a promising solution for integrating fine-grained controllable generation into the conventional beam search decoding.
%R 10.18653/v1/2023.acl-long.528
%U https://aclanthology.org/2023.acl-long.528
%U https://doi.org/10.18653/v1/2023.acl-long.528
%P 9496-9510
Markdown (Informal)
[NEUROSTRUCTURAL DECODING: Neural Text Generation with Structural Constraints](https://aclanthology.org/2023.acl-long.528) (Bastan et al., ACL 2023)
ACL