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Abstract

Document-level event argument extraction
aims to identify event arguments beyond sen-
tence level, where a significant challenge is
to model long-range dependencies. Focusing
on this challenge, we present a new chain rea-
soning paradigm for the task, which can gen-
erate decomposable first-order logic rules for
reasoning. This paradigm naturally captures
long-range interdependence due to the chains’
compositional nature, which also improves in-
terpretability by explicitly modeling the rea-
soning process. We introduce T-norm fuzzy
logic for optimization, which permits end-to-
end learning and shows promise for integrating
the expressiveness of logical reasoning with
the generalization of neural networks. In ex-
periments, we show that our approach outper-
forms previous methods by a significant mar-
gin on two standard benchmarks (over 6 points
in F1). Moreover, it is data-efficient in low-
resource scenarios and robust enough to de-
fend against adversarial attacks.

1 Introduction

Identifying event arguments (i.e., participants of
an event) is a crucial task for document-level event
understanding (Ebner et al., 2020; Li et al., 2021).
In this task, the major challenge is to model long-
range dependencies between event triggers and ar-
guments, as an event expression can span multiple
sentences (Ebner et al., 2020; Liu et al., 2021; Li
et al., 2021). Consider the event expressed by a
trigger detonated (type=Attack) in Figure 1. To
locate its argument Tartus (semantic role=Place),
a model should capture a large context window
of three sentences and 178 words to support the
reasoning process.

Currently, it still remains an open problem for
effectively capturing such dependencies (Liu et al.,
2021, 2022c). Prior research has proposed to model
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The second explosion was a sucicde bomber 
who detonated his belt as people rushed … 
                               … 178 words are omitted … 

… The Arzunah Bridge on a double explosion 
at the entrance to the city of Tartus, at a … 

The second explosion was a sucicde bomber 
who detonated his belt as people rushed … 
                                 … 178 words are omitted… 

… The Arzunah Bridge on a double explosion 
at the entrance to the city of Tartus, at a … 

Place

r1= Target
r2= LocatedIn

Place(T=detonated, ?)

Place(T, ?)     r1(T, Ar. B.) ∧ r2(Ar. B., Tartus)

Figure 1: Illustration of the document-level EAE task
( ) and our chain-of-reasoning paradigm (�).

beyond-sentence clues by incorporating hierarchi-
cal encoding mechanisms (Du and Cardie, 2020a),
generative paradigms (Li et al., 2021; Ma et al.,
2022; Du et al., 2022), and document-level induc-
tive bias (Wei et al., 2021; Pouran Ben Veyseh et al.,
2022; Liu et al., 2022b). Nevertheless, such meth-
ods do not explicitly characterize the reasoning
patterns underlying the document context, which
potentially suffers sub-optimal performance. In ad-
dition, most previous methods are not interpretable
because they rely on black-box neural networks.

In this paper, we propose a new chain-of-
reasoning paradigm to address document-level
event argument extraction (EAE). As indicated at
the bottom of Figure 1, our method seeks to de-
scribe the global argument-finding process via a
chain of local inference steps. For example, we
may use the following chain to locate Tartus: det-

onated
Target−−−−→ Arzunah Bridge LocatedIn−−−−−−→ Tartus.

This chain-of-reasoning paradigm has three clear
benefits over previous approaches: First, it natu-
rally captures long-distance dependencies owing to
the compositional structure of the reasoning chain.
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Second, it involves only local reasoning, which is
conceptually easier than performing global reason-
ing directly. Third, it improves interpretability as
the reasoning processes are visible.

Our approach formalizes the reasoning chain
as first-order logic (FOL) rules (Cresswell and
Hughes, 1996). Concretely, let RL(T , ?) be the
query for an event argument fulfilling the semantic
role RL (e.g., Place) regarding an event trigger T .
We formalize the query as the following FOL rule:

RL(T, ?)← r1(T,B1) ∧ ... ∧ rn(Bn−1, ?)

where the body of the rule (on the right) consists of
conjunctive propositions with low-level predicates
{ri}n1 and intermediary clue entities {Bi}n−11 . We
build a model to automatically generate the rule
based on the document context, and then trans-
form the rule into a reasoning chain to locate the
event argument. Nevertheless, it is generally chal-
lenging to optimize with FOL rules owing to their
discrete nature (Qu et al., 2021a). Inspired by work
that augments neural networks with FOLs (Li and
Srikumar, 2019; Ahmed et al., 2022), we present
T-Norm fuzzy logic for relaxation (Hajek, 1998),
which leads to an end-to-end training regime.

We verify the effectiveness of our method on two
benchmarks (Ebner et al., 2020; Li et al., 2021). Ac-
cording to the results, our approach delivers promis-
ing results with this chain reasoning paradigm, such
as yielding a 6-point improvement in F1 over mod-
els trained using large-scale external resources (§
6.1). Interestingly, in addition to the performance
boost, our approach demonstrates decent robust-
ness, particularly in low-resource scenarios and
defending against adversarial noises (§ 7.2). Lastly,
we evaluate the interpretability of our methodology
using a thorough case study (§ 7.3).

In conclusion, our contributions are three-fold:

• We introduce a new chain-of-reasoning
paradigm for document-level EAE, demon-
strating clear advantages in capturing long-
range dependencies and enhancing inter-
pretability. As a seminal study, our work may
motivate more studies in this research line.

• We introduce T-Norm fuzzy logic, which re-
laxes discrete FOL rules for document-level
EAE into differentiable forms; it also demon-
strates the prospect of combining the expres-
siveness of logical reasoning with the general-
ization capabilities of neural networks.

• We report state-of-the-art performance on two
benchmarks, and we have made our code avail-
able1 for future exploration.

2 Related Work

Document-Level EAE. Extracting event argu-
ments in a document context is a vital step in
document-level event extraction (Grishman, 2019;
Ebner et al., 2020). Earlier efforts on this problem
explore the MUC-4 benchmark (Chinchor, 1991;
Huang and Riloff, 2012), also known as “template
filling” because the entire document is about one
event. Recent research has focused on events with
lexical triggers, intending to extract all arguments
for a trigger-indicated event (Ebner et al., 2020; Li
and Srikumar, 2019). For capturing the document
context effectively, prior studies have explored hi-
erarchical encoding mechanisms, generative per-
spectives (Li et al., 2021; Du et al., 2022; Ma et al.,
2022), document-level inductive biases (Wei et al.,
2021; Pouran Ben Veyseh et al., 2022), and external
resources (Du and Cardie, 2020b; Liu et al., 2020;
Xu et al., 2022; Liu et al., 2022a). Nonetheless,
such methods do not explicitly model the under-
lying reasoning process for capturing long-range
dependencies, which therefore risks achieving sub-
optimal performance. In addition, these methods
are not interpretable because they employ neural
networks with black-box architectures. In contrast
to the previous study, we investigate employing
a chain-of-reasoning paradigm to explain the rea-
soning process, which can effectively model long-
range context while retaining interpretability.

Reasoning with FOL Rules. First-order logic
(FOL) rules can encode declarative knowledge and
play a crucial role in symbolic reasoning (Cresswell
and Hughes, 1996). In the era of deep learning, sev-
eral studies have examined the integration of FOL
rules with neural networks for reasoning (termed
neural-symbolic approaches), with applications in
knowledge base inference (Qu et al., 2021b), text
entailment (Li and Srikumar, 2019), question an-
swering (Wang and Pan, 2022), and others (Medina
et al., 2021; Ahmed et al., 2022). Our approach
is inspired by the work on knowledge base infer-
ence, which, to the best of our knowledge, is the
first attempt to incorporate FOL rules for reasoning
in the context of document-level EAE. Compared
to other methods, we investigate the prospect of

1https://github.com/jianliu-ml/
logicEAE
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The second explosion was a sucicde bomber 
who detonated his belt as people rushed … The 
Arzunah Bridge on a double explosion at the 
entrance to the city of Tartus, at a … 

Place(T=detonated, ?)

Document

Query for event argument

Atomic Predicate Set

Place R1 R2 R3 R4 RM… 

Place(T, ?)     R3(T, Ar. B.)    ∧ R7(Ar. B., Tartus)

Place(T, ?)     R3(T, people)  ∧ R6(people, city)      
Place(T, ?)     R2(T, bomber) ∧ R5(bomber, entrance)

0.7
0.8
0.9

Place(T, ?)     … 

r1(detonated, b)

Place(T, ?)     R3(T, Ar. B.)  ∧ R7(Ar. B., Tartus)

Detonated           Arzunah Bridge             TartusR3 R7

Context-Dependent Predicate Generation

r2(b, a)

Role-Predicate Association Learning

Rule Generation and Ranking

Reasoning Path Generation

Figure 2: The overview of our approach, with a running example for extracting the argument of a Place role for
the event trigger detonated. b and a indicate a particular clue entity (in B) and candidate argument (in A).

generating rules using neural networks automati-
cally instead of employing expert-written rules as
in (Li and Srikumar, 2019; Wang and Pan, 2022).
Additionally, unlike those based on reinforcement
learning (Qu et al., 2021b), we use T-norms for
rule relaxation, resulting in an end-to-end training
paradigm with a more stable learning procedure.

3 Approach

Figure 2 presents the overview of our approach,
with an example for extracting the argument of a
Place role for the event detonated. Let D =
{w1, · · · , T, · · · , wN} be a document with N
words and an event trigger T , and let RL(T , ?) be a
query for the event argument of a semantic role RL.
Instead of directly performing the reasoning that
may involve high-level processes, our approach rep-
resents the query as a FOL rule with conjunctive
propositions and low-level predicates {ri}n1 :

RL(T, ?)← r1(T,B1) ∧ ... ∧ rn(Bn−1, ?)

In this way, the body of the rule suggests a rea-
soning chain: T

r1−→ B1
r2−→ · · ·Bn−1

rn−→ ?.
We utilize a two-predicate formulation, specifically
RL(T, ?) ← r1(T,B) ∧ r2(B, ?), to explain our
method, and we describe general cases in § 4.

3.1 Clue Entity Set Generation
In the first step of our method, we create a set of
entities from which one may be chosen as an inter-
mediary clue entity to form the reasoning chain (re-
garding our two-predicate structure). We broaden
the notion of “entity” to include any single word
in the document for incorporating verb-based cues.
To limit the size of the set, we give each word a

score derived from BERT representations (Devlin
et al., 2019). For example, the score for wi is:

swi =
exp(wT

s hwi + bs)∑
j exp(wT

s hwj + bs)
(1)

where hwi is the representation of wi, and ws and
bs are model parameters. We rank all words based
on the sores and select K with the highest sores to
form the set, denoted by B = {bi}Ki=1.

To facilitate training and testing, we addition-
ally generate an argument candidate set. In this
case, we do not utilize the broad definition of en-
tity because an event argument is defined to be a
noun entity (Walker and Consortium, 2005; Ahn,
2006). When ground-truth entities are available
(such as in WikiEvents (Li et al., 2021)), we con-
sider the candidate set to be the ground-truth entity
set; otherwise, we use external toolkits2 to recog-
nize entities. We denote the argument candidate set
by A = {ai}Li=1.

3.2 FOL Rule Generation
Given the entity candidate set B and the argument
candidate set A, the next step is to generate two
predicates and select related candidates in the sets
to form the rule. Here we explain our method for
generating predicates regarding a particular entity-
argument pair (B ∈ B, A ∈ A), and we show
metrics for ranking the rules generated by different
candidate pairs in § 4.

Predicate Representations. In our approach,
we assume that there are M atomic predicates with

2We use spacy (https://github.com/
explosion/spaCy) with default settings as entity
recognizer.
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indecomposable semantics, represented by a pred-
icate set R = {Ri}Mi=1. We give each predicate a
d-dimensional vectorized representation and derive
a matrix representation U ∈ RM×d forR. For the
semantic role RL, we also give it a d-dimensional
representation, indicated by rRL ∈ Rd.

Learning Role-Predicate Associations. Given
the representations, we first learn a role-to-
predicate association that indicates which predi-
cates are likely to be generated based on the role
solely and disregarding context. We employ auto-
regressive learning and generate a probability vec-
tor a(1)

RL ∈ RM indicating the distribution of the
first predicate r1 over the predicate setR:

a
(1)
RL = softmax(UW (1)

s rRL) (2)

where W
(1)
s ∈ Rd×d is a parameter. To learn the

distribution of the second predicate r2, we first
update the role’s representation by integrating the
impact of the first predicate:

r
(1)
RL = rRL + a

(1)
RL W

(1)
a U (3)

and then compute a probability vector a(2)
RL ∈ RM :

a
(2)
RL = softmax(UW (2)

s r
(1)
RL ) (4)

where W
(1)
a ∈ RM×d and W

(2)
s ∈ Rd×d are pa-

rameters to learn. We can set r1 and r2 as predi-
cates with the highest probability in a

(1)
RL and a

(2)
RL ,

respectively. However, such an approach always
generates the same predicates for a semantic role
and has a pretty poor performance (7.1). As a solu-
tion, we introduce a mechanism for re-ranking the
predicates based on contexts.

Context-Dependent Predicate Generation.
Let X and Y be two entities. We first compute
a probability vector v(X,Y ) ∈ RM denoting the
compatibility of (X ,Y ) with each predicate R ∈ R
to form a proposition R(X,Y ):

v(X,Y ) = softmax(W (hX ⊕ hY )) (5)

where hX and hY are representations of X and Y ,
⊕ is a concatenation operator, and W ∈ Rm×2d

is a model parameter. We combine integrate the
compatibility probabilities with the role-predicate
association probabilities for final predicate genera-
tion. Specifically, for an event trigger T , a certain

entity B ∈ B and argument candidate A ∈ A, we
generate the following two predicates:

r1 = arg maxR∈R(a
(1)
RL � v(T,B) · sT · sB) (6)

r2 = arg maxR∈R(a
(2)
RL � v(B,A) · sB · sA) (7)

where� is an element-wise multiplication operator
and sX indicates the score3 of an entity X selected
to be in the candidate clue entity set B (Eq. (1)).
In this way, the generated FOL rule is RL(T,A)←
r1(T,B) ∧ r2(B,A), suggesting a reasoning path
to reach the event argument A: T r1−→ B

r2−→ A.

4 Optimization and Generalization

Optimization with FOL rules is typically challeng-
ing due to their discrete nature (Qu et al., 2021a).
Here we present T-Norm fuzzy logic for relaxation,
which yields an end-to-end learning process.

T-Norm Fuzzy Logic for Relaxation. T-Norm
fuzzy logic generalizes classical two-valued logic
by admitting intermediary truth values between 1
(truth) and 0 (falsity). For our generated FOL rule
RL(T,A)← r1(T,B)∧ r2(B,A), we set the truth
values of r1(T,B) and r2(B,A) to be the corre-
sponding scores in Equation (6) and (7), denoted
by p1 and p2 respectively. Then, following the
Łukasiewicz T-Norm logic, the conjunction of two
propositions corresponds to:

p(r1(T,B) ∧ r2(B,A)) = min(p1,p2) (8)

where we re-write it as a metric4: M(T,B,A) =
p(r1(T,B) ∧ r2(B,A)) and use it for rule ranking
and optimization. Particularly, we enumerate each
entity-argument pair (B, A) ∈ B ×A, and denote
the one with the highest score by (B̂, Â). We then
derive the following loss for optimization:

J (Θ)=− log
exp(M(T, B̂, Â))∑

B∈B,A∈A exp(M(T,B,A))

(9)

where Θ indicates the overall parameter set (In the
training time, the ground-truth argument is known,
and we can directly set the optimal argument to the
ground-truth). Even though our method considers
each candidate entity and argument, we show with
parallel tensor operations, our method runs rivalry
as effectively as prior methods (see Appendix A.1).

3We set the scores of sT and sA as 1 as the trigger T and
the argument A has no relation with the clue entity set.

4Since r1 and r2 are completely dependent on T , B and
A, we do not consider them as arguments of the metric.
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Generalization to General Cases. We explain
our method using a structure two-predicate struc-
ture, but it is easy to adapt it for general
cases with any number of predicates. Now
assume a n-predicate structure. We first
learn a sequence of role-predict association vec-
tors a

(1)
RL ,a

(2)
RL , · · · ,a

(n)
RL using an auto-regressive

regime similar to E.q. (3) and (4). Then, we re-rank
and generate predicates r1, r2, · · · , rn to form the
logic rule. For optimization, we drive the following
metric, p(r1∧r2∧· · ·∧rn) = min(p1,p2, · · · , pn),
which is similar to E.q. (8) to perform rule ranking
and model training.

5 Experimental Setups

Benchmarks and Evaluations. We conduct ex-
periments using two document-level EAE bench-
marks: RAMS (Ebner et al., 2020) and WikiEvents
(Li et al., 2021). The RAMS benchmark de-
fines 139 event types and 59 semantic roles and
gives 7,329 annotated documents; The WikiEvents
benchmark defines 50 event types and 59 seman-
tic roles and provides 246 annotated documents.
The detailed data statistics are shown in Table 1.
Following (Ebner et al., 2020; Liu et al., 2021),
we adopt the type constrained decoding (TCD)
setup for evaluation, which assumes the events
triggers and their types are known. We employ
Span-F1 on RAMS and Head-F1 and Coref-F1 on
WikiEvents as evaluation metrics, where Head-F1
only examines the head word in an argument and
Coref-F1 also takes co-reference linkages between
arguments into account (Du and Cardie, 2020a; Li
et al., 2021; Wei et al., 2021; Ma et al., 2022).

Implementations. In our approach, we use
BERTbase to learn the contextualized word rep-
resentations (Devlin et al., 2019). The hyper-
parameters are tuned using the development set.
Finally, the size of the entity candidate set K is
set to 40, selected from the range [20, 30, 40, 50],
whereas the size of the argument candidate set is
determined automatically by the external entity rec-
ognizer. The number of predicates M is set to 20
out of [10, 15, 20, 25] options. For optimization,
we use the Adam optimizer (Kingma and Ba, 2015)
with a batch size of 10 from [5, 10, 15, 20] and a
learning rate of 1e-4 from [1e-3, 1e-4, 1e-5].

Baselines. For comparison, we consider the fol-
lowing four categories of methods: 1) Traditional
approaches, such as BIOLabel (Shi and Lin, 2019),

Dataset Split # Trigger # Arg. # Entity

RAMS
Train 7,329 17,026 123,127
Dev. 924 2,188 13,305
Test 871 2,023 30,345

WikiEv.
Train 3,241 4,552 64,171
Dev. 345 428 5,968
Test 365 566 7,044

Table 1: Data statistics of RAMS and WikiEvents.

which views the task as a sequential labeling prob-
lem. 2) Global encoding methods, such as QAEE
(Du and Cardie, 2020b) and DocMRC (Liu et al.,
2021), which form the task as a document-based
question-answering problem, and MemNet (Du
et al., 2022), which uses a memory to store global
event information. 3) Generative methods, such
as BART-Gen (Li et al., 2021), which proposes a
sequence-to-sequence paradigm for argument ex-
traction, and PAIE (Ma et al., 2022), which em-
ploys a set generation formulation. 4) Methods
using extra supervisions, for example, FEAE (Wei
et al., 2021), which adopts frame-related knowl-
edge, and TSAR (Xu et al., 2022), which utilizes
abstract meaning representation (AMR) resources.

6 Experimental Results

In this section, we present the key results, separated
by the overall performance and results of capturing
long-range dependencies.

6.1 Overall Performance

Table 2 and 3 display the performance of different
models on RAMS and WikiEvents, respectively.
By adopting the chain-of-reasoning paradigm, our
approach outperforms previous methods by signif-
icant margins and achieves state-of-the-art perfor-
mance — 56.1% in F1 on RAMS and 72.3% in
Head-F1 and Coref-F1 on WikiEvents. Notably,
our model uses no external resources for training,
yet it outperforms previous models trained with
extensive external resources by over 6% in F1 on
RAMS and 4% in Head-F1 (7% in Coref-F1) on
WikiEvents. In addition, we discover that the main
improvement derives from improved recall, sug-
gesting that learning the reasoning logic rule fa-
cilitates locating arguments that were difficult for
previous global reasoning methods.
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Model P R F1

BIOlabel (Shi and Lin, 2019) 39.9 40.7 40.3
QAEE (Du and Cardie, 2020b) 42.4 44.9 43.6
DocMRC (Liu et al., 2021) 43.4 48.3 45.7
MemNet (Du et al., 2022) 46.2 47.0 46.6
BART-Gen (Li et al., 2021) 42.1 47.3 44.5
PAIE (Ma et al., 2022) - - 49.5
FEAE (Wei et al., 2021) 53.1 42.7 47.4
TSAR (Xu et al., 2022) - - 48.1

Our Method 54.8 57.5 56.1∗

Table 2: Results on RAMS. ∗ indicates a significance
test at the level of p = 0.05.

Model PHead RHead F1Head F1C
BIOLabel (2019) 55.2 52.3 53.7 56.7
QAEE (2020b) 54.3 53.2 56.9 59.3
DocMRC (2021) 56.9 51.6 54.1 56.3
MemNet (2022) 57.2 51.8 54.4 58.8
BART-Gen (2021) 54.0 51.2 52.6 65.1
PAIE (2022) - - 66.5 -
TSAR (2022) - - 68.1 66.3

Our Method 73.5 71.2 72.3∗ 72.3∗
w/o GT Entity 68.8 70.4 69.6 65.6

Table 3: Results on WikiEvents. “w/o GT Entity” de-
notes the use of predicted entities rather than ground-
truth (GT) entities as argument candidates. ∗ indicates
a significance test at the level of p = 0.05.

6.2 Addressing Long-Range Dependencies

We then assess the ability of different models to
handle long-range dependencies, which is crucial
for the document-level task. Table 4 and 5 show
results on different argument-trigger distance d —
accordingly, our model achieves remarkable perfor-
mance for addressing long-range dependencies, for
example, yielding 10.9%, 15.7%, and 6.7% abso-
lute improvement in F1 for d=-1, d=1, and d=2 on
RAMS, respectively. The insight behind the effec-
tiveness is that by adopting the chain-of-reasoning
paradigm, our method can utilize clue entities to re-
duce the distance between triggers and arguments,
which therefore facilitates learning with long con-
text. Nevertheless, we also note that our method
yields relatively poor performance when the argu-
ment is two sentences prior to the trigger (d=-2).
One possible reason is that our reasoning chain al-
ways starts with the trigger and we do not define

Argument-Trig. Distance

Model -24% -18% 083% 14% 22%

BIOLabel (2019) 14.0 14.0 41.2 15.7 4.2
DocMRC (2021) 21.0 20.3 46.6 17.2 12.2
BART-Gen (2021) 17.7 16.8 44.8 16.6 9.0
PAIE (2022) 21.7 27.3 54.7 29.4 25.4
FEAE (2021) 23.7 19.3 49.2 25.0 5.4
TSAR (2022) 24.3 21.9 49.6 24.6 11.9

Our Method 15.0 38.2 59.8 45.1 32.1

Table 4: Performance (F1-score) of different models
for capturing long-range dependencies on RAMS.

Argument-Trig. Distance

Model <=-16% 088% >=12%

BIOLabel (2019) 34.4 54.6 31.5
DocMRC (2021) 31.5 56.2 40.0
BART-Gen (2021) 64.5 67.5 39.4
PAIE (2022) 68.8 69.5 41.3

Our Method 70.5 75.0 44.1

Table 5: Performance (F1-score) of different models
for capturing long-range dependencies on WikiEvents.

reverse predicates5, which may limit its flexibility.
We leave addressing these issues for further work.

7 Discussion

We conduct a series of detailed studies to further
verify the effectiveness of our model. To ease dis-
cussion, we use the RAMS benchmark as a case.

7.1 Ablation Study
We perform an ablation study to analyze the influ-
ence of different components.

Impact of Predicate Generation. Table 6 con-
trasts our method with methods employing vari-
ous predicate generation strategies: 1) “w/o Pred-
icate Generation”, which generates the reasoning
path directly without predicate generation (in other
words, it only cares if there is a relationship be-
tween two variables or not, but not the specific
relationship). 2) “w/o Role Association”, which
removes the role-predicate association learning pro-
cess in which a predicate is determined purely by
the two variables. 3) “w/o CTX Re-Rank”, which

5For example, we may define r−1 as the reverse predicate
of r if r(T,B) ⇐⇒ r−1(B, T )

9575



Model P R F1 ∆F1

Full Approach 54.8 57.5 56.1 -
w/o Predicate Gen. 42.7 25.7 32.2 23.9↓
w/o Role Asso. 39.7 41.1 40.4 15.7↓
w/o CTX Re-Rank 54.2 50.4 52.2 3.9↓

Table 6: Ablations on predicate generation mecha-
nisms.

Rule’s Length P R F1

One (Strict) 12.0 36.3 18.1
Two (Strict) 37.0 38.5 37.8
Three (Strict) 38.0 35.4 36.7

Two (Adaptive) 54.8 57.5 56.1
Three (Adaptive) 52.9 58.6 55.6

Two (Ensemble) 53.4 55.7 54.5
Three (Ensemble) 52.6 57.0 54.7

Table 7: The impact of a LOC rule’s length. N (Strict)
indicates that we adopt a rule with N predicates pre-
cisely, N (Adaptive) indicates that we adopt a rule with
N predicates at most, N (Ensemble) indicates that we
ensemble the results by marginalization.

omits the context-dependent predicate re-ranking
process in which the predicates are completely gen-
erated by the role. According to the results, predi-
cate generation is essential for reasoning; without
it, performance drops significantly (23.9% in F1).
In addition, the semantic of the role is essential for
predicate generation; without it, performance falls
by 15.7% in F1. Lastly, learning context-dependent
predicate re-ranking is advantageous, resulting in a
3.9% absolute improvement in F1.

Ablation on the Rule’s Length. Table 7 exam-
ines the effect of predicate count in a LOC rule,
where N (Strict) denotes that we adopt a rule with N
predicates precisely, N (Adaptive) denotes that we
adopt a rule with N predicates at most and consider
the prediction with the greatest score adaptively, N
(Ensemble) indicates that we ensemble the results
by summing the final score of an argument. The
results demonstrate that mandating a fixed number
of predicates leads to poor performance, whereas
providing the option to choose varying numbers of
predicates results in excellent performance. This
also implies that the argument-finding process does
involve different reasoning patterns. In addition,
we do not notice an advantage of N (Adaptive) over
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Figure 3: The impact of the amount of predicates.

N (Ensemble), indicating that FOL rules may not
facilitate ensemble.

Ablation on the Amount of Predicates. Figure
3 examines the effect of the number of predicates
on the final performance based on the RAMS de-
velopment set, as well as their joint effect with the
length of the rule (we use the Adaptive setting). Ac-
cording to the results, our method is insensitive to
the number of predicates and consistently achieves
high performance when the number of predicates
is more than 15. In addition, we demonstrate that
the number of predicates can be lowered when the
rule length is increased (e.g., from two to three).
This makes sense, as a longer rule implies a longer
reasoning chain, which already has a high degree
of intrinsic expressivity. In contrast, for a 1-length
FOL rule, the performance is always unsatisfactory
even if we increase the number of predicates to
increase their diversity.

7.2 Robustness Evaluation

Given that our approach uses FOL rules to capture
the essential reasoning pattern, it might be more
robust than previous methods to perform reasoning.
We validate this assumption by analyzing its perfor-
mance in low-resource scenarios and for defending
against adversarial attacks (Jia and Liang, 2017).

Performance in Low-Resource Scenarios. Fig-
ure 4 compares different models in low-resource
conditions, which show models training on only
partial training data (we report 5-run average to
against randomness). Clearly, our approach con-
sistently outperforms other methods, and remark-
ably, in extremely low resource settings (less than
5% training data), it outperforms PAIE based on
prompting with large pre-trained language models
and TSAR based on external resources, indicating
its effectiveness and generalizability in learning
FOL rules for reasoning. The performance im-
proves as more training data becomes available.
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Example Semantic Role LOC Rule

1) Feaver added, noting that all three countries are waging brutal
assaults on Sunni groups in [Syria] that are likely to fuel ...

Place Place(T, ?)← r7(T, S)

2) ... intends to retake [Aleppo] — the rebel stronghold. The
UN’s envoy to <Syria Staffan> warned that the battle could be
..

Place Place(T, ?)← r2(T, S) ∧ r4(S,A)

3) ... suicide bombings at [Bataclan concert hall] ... and
<ISIS> claimed responsibility for that massacre, which left ...

Place Place(T, ?)← r2(T, I) ∧ r4(I,B)

4) ... report said that the party of former <Ukraine> president ...
set aside the payments for [Manafort] as part of an illegal ...

Recipient Rec.(T, ?)← r2(T,U) ∧ r6(U,M)

5) ... government surveillance via <weblink> ... 50 words are
omitted ... Whistleblower Edward Snowden said: “[People] ...

ObservedEntity Obs.(T, ?)← r3(T,w) ∧ r5(w,P )

Table 8: Case study. The trigger is underlined, the argument is in bracketed [], and the clue entity is in <>. In the
generated FOL rule, we use T to denote the trigger and use the capital letter to indicate an entity/argument.
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Figure 4: Results in low-resource scenarios, where the
performance is based on a 5-run average.
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Figure 5: Results in defending against adversarial at-
tacks. ORG indicates the original performance. ATK1,
ATK2, and ATK3 are three types of noises.

Defending Against Adversarial Attacks. Fig-
ure 5 shows results in defending adversarial attacks
by injecting three forms of noises in a testing ex-
ample. ATK1: we randomly replace a word in the
sentence that contains the trigger with the slot sym-
bol [BLANK]; ATK2: we put the corrupted sen-
tence “The answer is [BLANK]" after the sentence
that contains the trigger. ATK3: we insert a sen-
tence “The argument of the [ROLE] is [BLANK]“
after the sentence that contains the trigger, where
[ROLE] is replaced by the semantic role on which
we focus. Two settings are considered: Attack
(Random), where the slot is filled with an argument

that fulfills the same role in other instances. Attack
(Gold), where the slot is filled with the ground-
truth argument, but we consider it an error if the
model predicts the argument in the slot to be the
answer since the injected sentence is unrelated to
the context. The results show that our approach is
excelled at defending against adversarial attacks,
especially with the Attack (Random) setting (see
Figure 5(a)). One reason is that our method forces
predicting arguments that have semantic relations
with other entities in the document context, so it
is less affected by the isolated injected arguments.
Defending the attacks with ground-truth arguments
is more challenging (Figure 5(b)), but our method
still achieves the best overall performance.

7.3 Interpretability and Case Study

Table 8 examines the interpretability of our method
using a case study. By analyzing cases 1), 2), and
3), we suggest that our method can generate spe-
cific and context-dependent reasoning rules for the
same semantic role. In addition, the reasoning pat-
terns for cases 2) and 3) are similar, where r2 may
be interpreted as an Attacker predicate and r4
as a LocatedIn predicate. Case 4) generates
the same predicate r2 as cases 2) and 3), which
may be interpreted as a Committer predicate for
the payment event; it shares a similar semantic as
Attacker to an Attack event in cases 2) and
3). Case 5) indicates that our method can capture
extremely distant dependencies.

8 Conclusion

In conclusion, we present a new chain reasoning
paradigm for document-level EAE, demonstrating
clear benefits in capturing long-range dependen-
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cies and improving interpretability. Our method
constructs a first-order logic rule to represent an
argument query, with T-Norm fuzzy logic for end-
to-end learning. With this mechanism, our ap-
proach achieves state-of-the-art performance on
two benchmarks and demonstrates decent robust-
ness for addressing low-resource scenarios and de-
fending against adversarial attacks. In future work,
we seek to extend our methodology to other tasks
requiring modeling of long-range dependencies,
such as document-level relation extraction.

9 Limitations

One limitation of our method is that when there
are rules of different lengths, the final result is
decided by ensemble, not by building a model to
generate a single rule with the best length. The
second way is more natural and important because
figuring out the length of the rule is also a key part
of symbolic reasoning. However, it requires more
parameterization (for example, the length of the
rule could be a parameter) and a more advanced
way to optimize. The investigation of the above
method is left for future works.
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A.1 Parallelization and Training Time
We show methods for parallelizing our approach to
identify the optimal entity-argument pair and com-
pare our approach to others in real training time.
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Model Time (minutes)

BIOlabel (Shi and Lin, 2019) 7.5
QAEE (Du and Cardie, 2020b) 28.0
DocMRC (Liu et al., 2021) 55.0
FEAE (Wei et al., 2021) 56.3
BART-Gen (Li et al., 2021) 14.0
PAIE (Ma et al., 2022) 11.1

Our Method 33.5

Table 9: The training time per epoch of different mod-
els on the RAMS dataset.

candidate entity set B = {bi}Ki=1 of size K, and an
argument candidate set A = {bi}Li=1 of size L, we
first compute the predicate comparability for the
event trigger T with each candidate entity in B as
follows:

V(T,B) = softmax(W (hT ⊕HB)) (10)

where the concatenation operator of the vector
hT ∈ Rd and the matrix HB ∈ RM×d is per-
formed by first broadcasting the vector to the same
dimension as the matrix, followed by an element-
wise concatenation operation. This results in a M
by K matrix: V(T,B) ∈ RM×K . To unify illus-
tration, we add an extra dimension to V(T,B) to
represent the event trigger, which thus makes it a
high-order tensor V(T,B) ∈ RM×1×K . In a similar
fashion, we compute the predicate comparability
for each entity-argument pair inB andA and obtain
a high-order tensor V(B,A) ∈ RM×K×L:

V(B,A) = softmax(W (HB ⊕HA)) (11)

where the concatenation operator of two matrices is
implemented by first broadcasting each matrix into
a dimension of K by L by d and then concatenating
each element individually.

Given V(T,B) and V(B,A), we can apply a soft-
max operator6 on their first dimension to identify
the best-fitting predicates for each trigger-entity
and entity-argument pair and only keep the max-
imum values as their scores. Suppose the results
are two matrices O1 ∈ R1×K and O2 ∈ RK×L for
V(T,B) and V(B,A) respectively. We then apply the
T-Norm relaxation for the conjunction operator as
follows:

O = min(Ô1, Ô2) (12)
6We omit the computation produces in E.q. (6) and (7)

because they have no effect on parallelization.

Noise Type Document with Noise

ATK1 (Rand.) [S1][S2][S3]: ... their homes and
Paris have been damaged, burned
or destroyed ... [S4][S5]

ATK2 (Rand.) [S1][S2][S3] The answer is
Paris. [S4][S5]

ATK3 (Rand.) [S1][S2][S3] The argument of
the place is Paris. [S4][S5]

ATK1 (Arg.) [S1][S2][S3]: ... their homes
and Aleppo have been damaged
... [S4][S5]

ATK2 (Arg.) [S1][S2][S3] The answer is
Aleppo. [S4][S5]

ATK3 (Arg.) [S1][S2][S3] The argument of
the place is Aleppo. [S4][S5]

Table 10: Cases of adversarial examples.

where Ô1 ∈ R1×K×L and Ô2 ∈ R1×K×L, which
have the same dimension, are the tensor broadcast-
ing results of O1 and O2 respectively, and min
indicates an element-wise minimization operator.
Finally, by examining the element with the high-
est value in O, the optimal entity and argument
pair can be determined. For example, if O1,4,2 is
the element with the highest values, then (B4, A2)
corresponds to the optimal entity-argument pair.

In Table 9, we compare the real training time
for each model on the RAMS dataset. All experi-
ments are conducted on a 16G-memory NVIDIA
Tesla P100-SXM2 Card to ensure a fair compari-
son. From the results, we can see that our model
maintains a comparable time to earlier methods
such as QAEE and is faster than many models such
as FEAE and DocMRC, where FEAE has two base
models for knowledge distillation and DocMRC
uses external data to pretrain the model.

A.2 Cases of Adversarial Examples

In this section, we provide a specific adversarial
example to enhance comprehension. Our original
document with annotations for the event trigger
(which is underlined) and an argument (which is in
bold) fulfilling a semantic role of Place is:

“[S1] People we meet who are displaced took
shelter in schools, in unfinished buildings and other
facilities, some of which are simply skeleton in-
frastructure. [S2] Most people with whom I spoke
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have been displaced for at least two to three years.
[S3] Many of them see no prospect of returning
home any time soon, either because fighting is still
going on, or because for many of them, their homes
and land have been damaged, burned or destroyed.
[S4] Every single family is affected, and most com-
munities in Aleppo, and beyond, have reached the
limit of their endurance. [S5] Aid workers have
said there is just enough fuel to keep generators,
bakeries, and hospitals running for a month.”

We show the generated noisy examples in Table
10, and note that if the model identifies the noisy
arguments presented in the table as the result, it
should be counted as an error.
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�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 5

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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