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Abstract

The keyphrase extraction task refers to the au-
tomatic selection of phrases from a given doc-
ument to summarize its core content. State-
of-the-art (SOTA) performance has recently
been achieved by embedding-based algorithms,
which rank candidates according to how simi-
lar their embeddings are to document embed-
dings. However, such solutions either strug-
gle with the document and candidate length
discrepancies or fail to fully utilize the pre-
trained language model (PLM) without further
fine-tuning. To this end, in this paper, we pro-
pose a simple yet effective unsupervised ap-
proach, PromptRank, based on the PLM with
an encoder-decoder architecture. Specifically,
PromptRank feeds the document into the en-
coder and calculates the probability of generat-
ing the candidate with a designed prompt by the
decoder. We extensively evaluate the proposed
PromptRank on six widely used benchmarks.
PromptRank outperforms the SOTA approach
MDERank, improving the F1 score relatively
by 34.18%, 24.87%, and 17.57% for 5, 10, and
15 returned results, respectively. This demon-
strates the great potential of using prompt for
unsupervised keyphrase extraction. We release
our code at this url.

1 Introduction

Keyphrase extraction aims to automatically select
phrases from a given document that serve as a suc-
cinct summary of the main topics, assisting read-
ers in quickly comprehending the key information,
and facilitating numerous downstream tasks like
information retrieval, text mining, summarization,
etc. Existing keyphrase extraction work can be di-
vided into two categories: supervised and unsuper-
vised approaches. With the development of deep
learning, supervised keyphrase extraction methods
have achieved great success by using advanced ar-
chitectures, such as LSTM (Alzaidy et al., 2019;

∗Qicheng Li is the corresponding author.

Sahrawat et al., 2020) and Transformer (Santosh
et al., 2020; Nikzad-Khasmakhi et al., 2021; Mart-
inc et al., 2022). However, supervised methods re-
quire large-scale labeled training data and may gen-
eralize poorly to new domains. Therefore, unsuper-
vised keyphrase extraction methods, mainly includ-
ing statistics-based (Florescu and Caragea, 2017a;
Campos et al., 2020b), graph-based (Bougouin
et al., 2013; Boudin, 2018), and embedding-based
methods (Bennani-Smires et al., 2018; Zhang et al.,
2022), are more popular in industry scenarios.

Recent advancements in embedding-based ap-
proaches have led to SOTA performances that can
be further divided into two groups. The first group
of methods, such as EmbedRank (Bennani-Smires
et al., 2018) and SIFRank (Sun et al., 2020), embed
the document and keyphrase candidates into a la-
tent space, calculate the similarity between the em-
beddings of the document and candidates, then se-
lect the top-K most similar keyphrases. Due to the
discrepancy in length between the document and
its candidates, these approaches perform less than
optimal and are even worse for long documents.
To mitigate such an issue, the second kind of ap-
proach is proposed. By leveraging a pre-trained
language model (PLM), MDERank (Zhang et al.,
2022) replaces the candidate’s embedding with that
of the masked document, in which the candidate
is masked from the original document. With the
similar length of the masked document and the
original document, their distance is measured, and
the greater the distance, the more significant the
masked candidate as a keyphrase. Though MDER-
ank solves the problem of length discrepancy, it
faces another challenge: PLMs are not specifically
optimized for measuring such distances so con-
trastive fine-tuning is required to further improve
the performance. This places an additional burden
on training and deploying keyphrase extraction sys-
tems. Furthermore, it hinders the rapid adoption of
large language models when more powerful PLMs
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emerge.
Inspired by the work CLIP (Radford et al., 2021),

in this paper, we propose to expand the candidate
length by putting them into a well-designed tem-
plate (i.e., prompt). Then to compare the docu-
ment and the corresponding prompts, we adopt
the encoder-decoder architecture to map the input
(i.e., the original document) and the output (i.e., the
prompt) into a shared latent space. The encoder-
decoder architecture has been widely adopted and
has achieved great success in many fields by align-
ing the input and output spaces, including machine
translation (Vaswani et al., 2017), image caption-
ing (Xu et al., 2015), etc. Our prompt-based un-
supervised keyphrase extraction method, dubbed
PromptRank, can address the aforementioned
problems of existing embedding-based approaches
simultaneously: on the one hand, the increased
length of the prompt can mitigate the discrepancy
between the document and the candidate. On the
other hand, we can directly leverage PLMs with
an encoder-decoder architecture (e.g., T5 (Raffel
et al., 2020)) for measuring the similarity with-
out any fine-tuning. Specifically, after selecting
keyphrase candidates, we feed the given document
into the encoder and calculate the probability of
generating the candidate with a designed prompt by
the decoder. The higher the probability, the more
important the candidate.

To the best of our knowledge, PromptRank is
the first to use prompt for unsupervised keyphrase
extraction. It only requires the document itself
and no more information is needed. Exhaus-
tive experiments demonstrate the effectiveness of
PromptRank on both short and long texts. We be-
lieve that our work will encourage more study in
this direction.

The main contributions of this paper are summa-
rized as follows:

• We propose PromptRank, a simple yet effec-
tive method for unsupervised keyphrase extrac-
tion which ranks candidates using a PLM with
an encoder-decoder architecture. According to
our knowledge, this method is the first to extract
keyphrases using prompt without supervision.

• We further investigate the factors that influence
the ranking performance, including the candidate
position information, the prompt length, and the
prompt content.

• PromptRank is extensively evaluated on six
widely used benchmarks. The results show that

PromptRank outperforms the SOTA approach
MDERank by a large margin, demonstrating the
great potential of using prompt for unsupervised
keyphrase extraction.

2 Related Work

Unsupervised Keyphrase Extraction. Main-
stream unsupervised keyphrase extraction meth-
ods are divided into three categories (Papa-
giannopoulou and Tsoumakas, 2020): statistics-
based, graph-based, and embedding-based meth-
ods. Statistics-based methods (Won et al., 2019;
Campos et al., 2020a) rank candidates by compre-
hensively considering their statistical characteris-
tics such as frequency, position, capitalization, and
other features that capture the context information.
The graph-based method is first proposed by Tex-
tRank (Mihalcea and Tarau, 2004), which takes
candidates as vertices, constructs edges according
to the co-occurrence of candidates, and determines
the weight of vertices through PageRank. Subse-
quent works, such as SingleRank (Wan and Xiao,
2008), TopicRank (Bougouin et al., 2013), Position-
Rank (Florescu and Caragea, 2017b), and Multipar-
titeRank (Boudin, 2018), are improvements on Tex-
tRank. Recently, embedding-based methods have
achieved SOTA performance. To name a few, Em-
bedRank (Bennani-Smires et al., 2018) ranks candi-
dates by the similarity of embeddings between the
document and the candidate. SIFRank (Sun et al.,
2020) follows the idea of EmbedRank and com-
bines sentence embedding model SIF (Arora et al.,
2017) and pre-trained language model ELMo (Pe-
ters et al., 2018) to get better embedding represen-
tations. However, these algorithms perform poorly
on long texts due to the length mismatch between
the document and the candidate. MDERank (Zhang
et al., 2022) solves the problem by replacing the
embedding of the candidate with that of the masked
document but fails to fully utilize the PLMs with-
out fine-tuning. To address such problems, in this
paper, we propose PromptRank which uses prompt
learning for unsupervised keyphrase extraction.
In addition to statistics-based, graph-based, and
embedding-based methods, AttentionRank (Ding
and Luo, 2021) calculates self-attention and cross-
attention using a pre-trained language model to
determine the importance and semantic relevance
of a candidate within the document.

Prompt Learning. In the field of NLP, prompt
learning is considered a new paradigm to replace
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Figure 1: The core architecture of the proposed PromptRank.

fine-tuning pre-trained language models on down-
stream tasks (Liu et al., 2021). Compared with
fine-tuning, prompt, the form of natural language,
is more consistent with the pre-training task of
models. Prompt-based learning has been widely
used in many NLP tasks such as text classification
(Gao et al., 2021; Schick and Schütze, 2021), re-
lation extraction (Chen et al., 2022), named entity
recognition (Cui et al., 2021), text generation (Li
and Liang, 2021), and so on. In this paper, we are
the first to use prompt learning for unsupervised
keyphrase extraction, leveraging the capability of
PLMs with an encoder-decoder architecture, like
BART (Lewis et al., 2020) and T5 (Raffel et al.,
2020). Our work is also inspired by CLIP (Radford
et al., 2021), using the prompt to increase the length
of candidates and alleviate the length mismatch.

3 PromptRank

In this section, we introduce the proposed
PromptRank in detail. The core architecture of our
method is shown in Figure 1. PromptRank consists
of four main steps as follows: (1) Given a document
d, generate a candidate set C = {c1, c2, . . . , cn}
based on part-of-speech sequences. (2) After feed-
ing the document into the encoder, for each candi-
date c ∈ C, calculate the probability of generating
the candidate with a designed prompt by the de-
coder, denoted as pc. (3) Use position information
to calculate the position penalty of c, denoted as
rc. (4) Calculate the final score sc based on the
probability and the position penalty, and then rank

candidates by their sc in descending order.

3.1 Candidates Generation

We follow the common practice (Bennani-Smires
et al., 2018; Sun et al., 2020; Zhang et al., 2022) to
extract noun phrases as keyphrase candidates using
the regular expression <NN. *|JJ> * <NN.*> after
tokenization and POS tagging.

3.2 Probability Calculation

In order to address the limitations of embedding-
based methods as mentioned in Section 1, we em-
ploy an encoder-decoder architecture to transform
the original document and candidate-filled tem-
plates into a shared latent space. The similarity
between the document and template is determined
by the probability of the decoder generating the
filled template. The higher the probability, the
more closely the filled template aligns with the doc-
ument, and the more significant the candidate is
deemed to be. To simplify the computation, we
choose to place the candidate at the end of the tem-
plate, so only the candidate’s probability needs to
be calculated to determine its rank.

A sample prompt is shown in Figure 1. In Sec-
tion 4.4, we investigate how the length and content
of the prompt affect the performance. Specifically,
we fill the encoder template with the original docu-
ment and fill the decoder template with one candi-
date at a time. Then we obtain the sequence proba-
bility p(yi | y<i) of the decoder template with the
candidate based on PLM. The length-normalized
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Dataset Domain Ndoc Ldoc Scan Sgk
Gold Keyphrase Distribution

1 2 3 4 ≥5

Inspec Science 500 122 15841 4912 13.5 52.7 24.9 6.7 2.2
SemEval2017 Science 493 170 21264 8387 25.7 34.4 17.5 8.8 13.6
SemEval2010 Science 243 190 4355 1506 20.5 53.6 18.9 4.9 2.1
DUC2001 News 308 725 35926 2479 17.3 61.3 17.8 2.5 1.1
NUS Science 211 7702 25494 2453 26.9 50.6 15.7 4.6 2.2
Krapivin Science 460 8545 55875 2641 17.8 62.2 16.4 2.9 0.7

Table 1: Statistics of six datasets. Ndoc denotes the number of documents in each dataset. Ldoc denotes the average
length of documents. Scan and Sgk denote the total number of candidates and gold keyphrases in each dataset,
respectively. Gold Keyphrase Distribution denotes the percentage of keyphrase with different lengths in each dataset.

log-likelihood has been widely used due to its su-
perior performance (Mao et al., 2019; Brown et al.,
2020; Oluwatobi and Mueller, 2020). Hence we
calculate the probability for one candidate as fol-
lows:

pc =
1

(lc)α

j+lc−1∑

i=j

log p(yi | y<i), (1)

where j is the start index of the candidate c, lc is the
length of the candidate c, and α is a hyperparame-
ter used to regulate the propensity of PromptRank
towards candidate length. We use pc whose value
is negative to evaluate the importance of candidates
in descending order.

3.3 Position Penalty Calculation
When writing an article, it is common practice to
begin with the main points of the article. Research
has demonstrated that the position of candidates
within a document can serve as an effective statisti-
cal feature for keyphrase extraction (Florescu and
Caragea, 2017b; Bennani-Smires et al., 2018; Sun
et al., 2020).

In this paper, we use a position penalty to modu-
late the log probability of the candidate (as shown
in Equation 1) by multiplication. The log probabil-
ities are negative, so a larger value of the position
penalty is assigned to unimportant positions. This
results in a lower overall score for candidates in
unimportant positions, reducing their likelihood
of being selected as keyphrases. Specifically, for
a candidate c, PromptRank calculates its position
penalty as follows:

rc =
pos

len
+ β, (2)

where pos is the position of the first occurrence
of c, len is the length of the document, and β is a

parameter with a positive value to adjust the influ-
ence of position information. The larger the value
of β, the smaller the role of position information
in the calculation of the position penalty. That is,
when β is large, the difference in contribution to
the position penalty rc between two positions will
decrease. Therefore, we use different β values to
control the sensitivity of the candidate position.

We also observe that the effectiveness of the
position information correlates with the document
length. The longer the article, the more effective
the position information (discussed in Section 4.4).
Therefore, we assign smaller value to β for longer
documents. Empirically, we formulate β which
depends on the length of the document as follows:

β =
γ

len3 , (3)

where γ is a hyperparameter that needs to be deter-
mined experimentally.

3.4 Candidates Ranking
After obtaining the position penalty rc,
PromptRank calculates the final score as fol-
lows:

sc = rc × pc. (4)

The position penalty is used to adjust the log prob-
ability of the candidate, reducing the likelihood
of candidates far from the beginning of the article
being selected as keyphrases. We rank candidates
by the final score in descending order. Finally, the
top-K candidates are chosen as keyphrases.

4 Experiments

4.1 Datasets and Evaluation Metrics
For a comprehensive and accurate evaluation, we
evaluate PromptRank on six widely used datasets,
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in line with the current SOTA method MDERank
(Zhang et al., 2022). These datasets are Inspec
(Hulth, 2003), SemEval-2010 (Kim et al., 2010),
SemEval-2017 (Augenstein et al., 2017), DUC2001
(Wan and Xiao, 2008), NUS (Nguyen and Kan,
2007), and Krapivin (Krapivin et al., 2009), which
are also used in previous works (Bennani-Smires
et al., 2018; Sun et al., 2020; Saxena et al., 2020;
Ding and Luo, 2021). The statistics of the datasets
are summarized in Table 1. Following previ-
ous works, we use F1 on the top 5, 10, and 15
ranked candidates to evaluate the performance of
keyphrase extraction. When calculating F1, dupli-
cate candidates will be removed, and stemming is
applied.

4.2 Baselines and Implementation Details
We choose the same baselines as MDERank. These
baselines include graph-based methods such as
TextRank (Mihalcea and Tarau, 2004), SingleR-
ank (Wan and Xiao, 2008), TopicRank (Bougouin
et al., 2013), and MultipartiteRank (Boudin, 2018),
statistics-based methods such as YAKE (Cam-
pos et al., 2020a), and embedding-based methods
such as EmbedRank (Bennani-Smires et al., 2018),
SIFRank (Sun et al., 2020), and MDERank(Zhang
et al., 2022) itself. We directly use the results of the
baselines from MDERank. For a fair comparison,
we ensure consistency in both pre-processing and
post-processing of PromptRank with MDERank.
We also use T5-base (220 million parameters) as
our model, which has a similar scale to BERT-base
(Devlin et al., 2019) used in MDERank. Addition-
ally, to match the settings of BERT, the maximum
length for the inputs of the encoder is set to 512.

PromptRank is an unsupervised algorithm with
only two hyperparameters to set: α and γ.
PromptRank is designed to have out-of-the-box
generalization ability rather than fitting to a single
dataset. Hence we use the same hyperparameters
to evaluate PromptRank on six datasets. We set
α to 0.6 and γ to 1.2 × 108. The effects of these
hyperparameters are discussed in Section 4.4.

4.3 Overall Results
Table 2 presents the results of the F1@5, F1@10,
and F1@15 scores for PromptRank and the base-
line models on the six datasets. The results show
that PromptRank achieves the best performance
on almost all evaluation metrics across all six
datasets, demonstrating the effectiveness of the
proposed method. Specifically, PromptRank out-
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Figure 2: Performance comparison of EmbedRank,
MDERank, and PromptRank as the document length
increases.

performs the SOTA approach MDERank, achiev-
ing an average relative improvement of 34.18%,
24.87%, and 17.57% for F1@5, F1@10, and
F1@15, respectively. It is worth noting that while
MDERank mainly improves the performance on
two super-long datasets (Krapivin, NUS) com-
pared to EmbedRank and SIFRank, our approach,
PromptRank, achieves the best performance on al-
most all datasets. This highlights the generalization
ability of our approach, which can work well on dif-
ferent datasets with different length of documents.

As the document length increases, the length
discrepancy between documents and candidates be-
comes more severe. To further investigate the abil-
ity of PromptRank to address this issue, we com-
pare its performance with EmbedRank and MDER-
ank on the average of F1@5, F1@10, F1@15
across the six datasets. As the length of the docu-
ment increases, the number of candidates increases
rapidly, and the performance of keyphrase extrac-
tion deteriorates. As shown in Figure 2, Em-
bedRank is particularly affected by the length dis-
crepancy and its performance drops quickly. Both
MDERank and PromptRank mitigate this decline.
However, the masked document embedding used in
MDERank does not work as well as expected. This
is due to the fact that BERT is not trained to guaran-
tee that the more important phrases are masked, the
more drastically the embedding changes. BERT
is just trained to restore the masked token. By
leveraging a PLM of the encoder-decoder struc-
ture and using prompt, PromptRank not only more
effectively solves the performance degradation of
EmbedRank on long texts compared to MDERank
but also performs better on short texts than both of
them.
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F1@K Method
Dataset

AVG
Inspec SemEval2017 SemEval2010 DUC2001 NUS Krapivin

5

TextRank 21.58 16.43 7.42 11.02 1.80 6.04 10.72
SingleRank 14.88 18.23 8.69 19.14 2.98 8.12 12.01
TopicRank 12.20 17.10 9.93 19.97 4.54 8.94 12.11
MultipartiteRank 13.41 17.39 10.13 21.70 6.17 9.29 13.02
YAKE 8.02 11.84 6.82 11.99 7.85 8.09 9.10
EmbedRank(BERT) 28.92 20.03 10.46 8.12 3.75 4.05 12.56
SIFRank(ELMo) 29.38 22.38 11.16 24.30 3.01 1.62 15.31
MDERank(BERT) 26.17 22.81 12.95 13.05 15.24 11.78 17.00

PromptRank(T5) 31.73 27.14 17.24 27.39 17.24 16.11 22.81

10

TextRank 27.53 25.83 11.27 17.45 3.02 9.43 15.76
SingleRank 21.50 27.73 12.94 23.86 4.51 10.53 16.85
TopicRank 17.24 22.62 12.52 21.73 7.93 9.01 15.18
MultipartiteRank 18.18 23.73 12.91 24.10 8.57 9.35 16.14
YAKE 11.47 18.14 11.01 14.18 11.05 9.35 12.53
EmbedRank(BERT) 38.55 31.01 16.35 11.62 6.34 6.60 18.41
SIFRank(ELMo) 39.12 32.60 16.03 27.60 5.34 2.52 20.54
MDERank(BERT) 33.81 32.51 17.07 17.31 18.33 12.93 21.99

PromptRank(T5) 37.88 37.76 20.66 31.59 20.13 16.71 27.46

15

TextRank 27.62 30.50 13.47 18.84 3.53 9.95 17.32
SingleRank 24.13 31.73 14.4 23.43 4.92 10.42 18.17
TopicRank 19.33 24.87 12.26 20.97 9.37 8.30 15.85
MultipartiteRank 20.52 26.87 13.24 23.62 10.82 9.16 17.37
YAKE 13.65 20.55 12.55 14.28 13.09 9.12 13.87
EmbedRank(BERT) 39.77 36.72 19.35 13.58 8.11 7.84 20.90
SIFRank(ELMo) 39.82 37.25 18.42 27.96 5.86 3.00 22.05
MDERank(BERT) 36.17 37.18 20.09 19.13 17.95 12.58 23.85

PromptRank(T5) 38.17 41.57 21.35 31.01 20.12 16.02 28.04

Table 2: The performance of keyphrase extraction as F1@K, K ∈ {5, 10, 15} on six datasets.

4.4 Ablation Study

Effects of Position Penalty To evaluate the contri-
bution of the position penalty to the overall perfor-
mance of PromptRank, we conducted experiments
in which candidates were ranked solely based on
their prompt-based probability. The results are
shown in Table 3. PromptRank without the po-
sition penalty outperforms MDERank significantly.
When the position penalty is included, the perfor-
mance is further improved, particularly on long-
text datasets. This suggests that prompt-based prob-
ability is at the core of PromptRank, and position
information can provide further benefits.

Effects of Template Length PromptRank ad-
dresses the length discrepancy of EmbedRank by
filling candidates into the template. To study how
long the template can avoid the drawback of Em-
bedRank, we conduct experiments using templates
of different lengths, namely 0, 2, 5, 10, and 20.

Each length contains 4 hand-crafted templates (see
details in Appendix A.2), except for the group with
length 0, and the position information is not used.
To exclude the impact of template content, for each
template, we calculate the ratio of the performance
of each dataset compared to the dataset Inspec
(short text) to measure the degradation caused by
an increase in text length. As shown in Figure 3, the
higher the polyline is, the smaller the degradation
is. Templates with lengths of 0 and 2 degenerate
severely, facing the same problem as EmbedRank,
making it difficult to exploit prompt. Templates
with lengths greater than or equal to 5 better solve
the length discrepancy, providing guidance for tem-
plate selection.

Effects of Template Content The content of the
template has a direct impact on the performance of
keyphrase extraction. Some typical templates and
their results are shown in Table 4 (no position in-
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F1@K Method
Dataset

AVG
Inspec SemEval2017 SemEval2010 DUC2001 NUS Krapivin

5
PromptRankpt 31.79 27.07 16.74 23.71 15.81 14.98 21.68
PromptRankpt+pos 31.73 27.14 17.24 27.39 17.24 16.11 22.81

10
PromptRankpt 37.84 37.83 20.82 28.38 18.99 16.35 26.70
PromptRankpt+pos 37.88 37.76 20.66 31.59 20.13 16.71 27.46

15
PromptRankpt 38.17 41.82 21.15 28.43 19.59 15.47 27.44
PromptRankpt+pos 38.17 41.57 21.35 31.01 20.12 16.02 28.04

Table 3: The ablation study of position penalty. pt represents the use of prompt-based probability. pos represents
the use of the position information.

Number Encoder Decoder
F1@K

5 10 15

1 Book:"[D]" [C] 14.40 14.41 14.99
2 Book:"[D]" Keywords of this book are [C] 14.74 20.02 21.81
3 Book:"[D]" This book mainly focuses on [C] 21.40 26.35 27.06
4 Book:"[D]" This book mainly talks about [C] 21.69 26.70 27.44
5 Passage:"[D]" This passage mainly talks about [C] 21.27 26.15 27.25

Table 4: The performance of different templates. [D] is filled with the document and [C] is filled with the candidate.
F1 here is the average of six datasets.

Ratio

0

0.2

0.4

0.6

0.8

1

Inspec SemEval2017 SemEval2010 DUC2001 NUS Krapivin

0 2 5 10 25Template Length:

Figure 3: Comparison of the performance decay for
different template lengths as the document length in-
creases.

formation used). Template 1 is empty and gets the
worst results. Templates 2-5 are of the same length
5 and outperform Template 1. Template 4 achieves
the best performance on all metrics. Therefore, we
conclude that well-designed prompts are beneficial.
Note that all templates are manually designed and
we leave the automation of template construction
to future work.

Effects of Hyperparameter α The propensity of
PromptRank for candidate length is controlled by
α. The higher α is, the more PromptRank tends to
select long candidates. To explore the effects of dif-
ferent α values, we conduct experiments where the
position information is not used. We adjust α from

0.2 to 1, with a step size of 0.1. The optimal values
of α on six datasets are shown in Table 5. Lgk is the
average number of words in gold keyphrases. Intu-
itively, the smaller Lgk of the dataset, the smaller
the optimal value of α. Results show that most
datasets fit this conjecture. Note that SemEval2017
with the highest Lgk is not sensitive to α. The rea-
son is that the distribution of gold keyphrases in the
SemEval2017 dataset is relatively more balanced
(see table 1). To maintain the generalization abil-
ity of PromptRank, it is recommended to select α
that performs well on each benchmark rather than
pursuing the best average F1 across all datasets.
Therefore, we recommend setting the value of α to
0.6 for PromptRank.

Effects of Hyperparameter γ The influence of
position information is controlled by β in Equa-
tion 2. The larger the β, the smaller the impact
of the position information on ranking. Previous
works (Bennani-Smires et al., 2018; Sun et al.,
2020) show that the inclusion of position infor-
mation can lead to a decrease in performance on
short texts while improving performance on long
texts. To address this, we dynamically adjust β
based on the document length through the hyper-
parameter γ as shown in Equation 3, aiming to
minimize the impact on short texts by a large β
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Dataset Lgk α βγ

Inspec 2.31 1 66.08
SemEval2010 2.11 0.5 17.50
SemEval2017 3.00 0.2−1 24.42
DUC2001 2.07 0.4 0.89
NUS 2.03 0.2 0.89
Krapivin 2.07 0.5 0.89

Table 5: Information of hyperparameter setting. 0.2− 1
means the dataset is not sensitive to α. βγ represents
the average values of beta calculated by γ on various
datasets and the last three datasets have the same value
because of truncation.

Model
F1@K

5 10 15

T5-small 21.33 25.93 26.52
T5-base 22.81 27.46 28.04
T5-large 22.18 27.11 27.77
BART-base 21.49 25.85 26.63
BART-large 21.86 26.69 27.48

Table 6: The performance using different PLMs. F1
here is the average of six datasets.

while maximizing the benefits on long texts by a
small β. Through experimentation, we determine
the optimal value of γ to be 1.2 × 108. The av-
erage values of β calculated via γ on six datasets
are shown in Table 5. As shown in Table 3, the
performance of PromptRank on short texts remains
unchanged while performance on long texts im-
proves significantly.
Effects of the PLM PromptRank uses T5-base as
the default PLM, but to explore whether the mech-
anism of PromptRank is limited to a specific PLM,
we conduct experiments with models of different
sizes and types, such as BART (Lewis et al., 2020).
The results, shown in Table 6, indicate that even
when the hyperparameters and the prompt are opti-
mized for T5-base, the performance of all models
is better than the current SOTA method MDER-
ank. This demonstrates that PromptRank is not
limited to a specific PLM and has strong versatility
for different PLMs of encoder-decoder structure.
Our approach enables rapid adoption of new PLMs
when more powerful ones become available.

4.5 Case Study
To demonstrate the effectiveness of PromptRank,
we randomly select a document from the Inspec

dataset and compare the difference between the
scores produced by MDERank and PromptRank
in Figure 4. We normalize the original scores and
present them in the form of a heat map, where the
warmer the color, the higher the score, and the more
important the candidate is. Gold keyphrases are
underlined in bold italics. The comparison shows
that compared to MDERank, PromptRank gives
high scores to gold keyphrases more accurately and
better distinguishes irrelevant candidates. This il-
lustrates the improved performance of PromptRank
over the SOTA method MDERank.

General	 solution of a density functionally gradient	 piezoelectric	
cantilever and its applications. We have used the plane	 strain	
theory of transversely isotropic	 bodies to study a piezoelectric
cantilever. In order to find the general	 solution of a density
functionally gradient	 piezoelectric	 cantilever, we have used the
inverse method (i.e. the Airy	 stress	 function	 method). We have
obtained the stress and induction functions in the form of
polynomials as well as the general	solution of the beam. Based on
this general 	 solution, we have deduced the solutions of the
cantilever under different	 loading	 conditions. Furthermore, as
applications of this general	 solution in engineering, we have
studied the tip	 deflection and blocking force of a piezoelectric	
cantilever	 actuator. Finally, we have addressed a method to
determine the density distribution profile for a given
piezoelectric	material.

(a) MDERank

General	 solution of a density functionally gradient	 piezoelectric	
cantilever and its applications. We have used the plane	 strain	
theory of transversely isotropic	 bodies to study a piezoelectric
cantilever. In order to find the general	 solution of a density
functionally gradient	 piezoelectric	 cantilever, we have used the
inverse	method (i.e. the Airy	 stress	 function	 method). We have
obtained the stress and induction	 functions in the form of
polynomials as well as the general	solution of the beam. Based on
this general 	 solution, we have deduced the solutions of the
cantilever under different loading conditions. Furthermore, as
applications of this general	 solution in engineering, we have
studied the tip	 deflection and blocking force of a piezoelectric	
cantilever	 actuator. Finally, we have addressed a method to
determine the density distribution profile for a given
piezoelectric	material.

(b) PromptRank

Figure 4: Heat maps of candidate keyphrases by MDER-
ank and PromptRank.

5 Conclusion

In this paper, we propose a prompt-based unsuper-
vised keyphrase extraction method, PromptRank,
using a PLM of encoder-decoder architecture. The
probability of generating the candidate with a de-
signed prompt by the decoder is calculated to rank
candidates. Extensive experiments on six widely-
used benchmarks demonstrate the effectiveness of
our approach, which outperforms strong baselines
by a significant margin. We thoroughly examine
various factors that influence the performance of
PromptRank and gain valuable insights. Addition-
ally, our method does not require any modification
to the architecture of PLMs and does not introduce
any additional parameters, making it a simple yet
powerful approach for keyphrase extraction.
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Limitations

The core of PromptRank lies in calculating the
probability of generating the candidate with a de-
signed prompt by the decoder, which is used to
rank the candidates. Our experiments have shown
that the design of the prompt plays a crucial role in
determining the performance of the method. While
we have manually designed and selected some
prompts to achieve state-of-the-art results, the pro-
cess is time-consuming and may not guarantee an
optimal result. To address this limitation, future
research could focus on finding ways to automati-
cally search for optimal prompts.
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A Appendix

A.1 Effects of the Noun Word
We also design experiments to study the impact
of the noun word representing the document (no
position information used). We consistently use the
best-performing template, and only vary the noun
word. A total of five different words were tested.
As illustrated in Table 7, the choice of noun word
does affect the performance of the template, with
"Book" achieving the highest results.

A.2 Templates for the Length Study
We use five groups of templates of different lengths
to explore the effect of template length. All the
templates are shown in Table 8 and F1 here is the
average of six datasets.

Number Encoder Decoder
F1@K

5 10 15

1 Book:"[D]" This book mainly talks about [C] 21.69 26.70 27.44
2 Passage:"[D]" This passage mainly talks about [C] 21.27 26.15 27.25
3 News:"[D]" This news mainly talks about [C] 20.94 26.09 27.07
4 Text:"[D]" This text mainly talks about [C] 19.88 25.26 26.43
5 Paper:"[D]" This paper mainly talks about [C] 21.37 26.43 27.33

Table 7: Templates we design to study the impact of the noun word representing the document.

Length Encoder Decoder
F1@K

5 10 15

0 Book:"[D]" [C] 14.40 14.41 14.99
2 Book:"[D]" Book about [C] 15.38 20.88 22.84
2 Book:"[D]" It is [C] 17.48 23.13 24.87
2 Book:"[D]" Keywords are [C] 17.48 23.26 24.97
2 Book:"[D]" Talk about [C] 15.38 20.88 22.84

5 Book:"[D]" This book are mainly about [C] 21.23 26.28 27.00
5 Book:"[D]" This book mainly focuses on [C] 21.40 26.35 27.06
5 Book:"[D]" This book mainly talks about [C] 21.69 26.70 27.44
5 Book:"[D]" This book pays attention to [C] 19.33 24.39 25.95

10 Book:"[D]" All in all, the core of this book is [C] 20.21 25.18 26.27
10 Book:"[D]" Read this book and tell me that it is about [C] 20.25 25.00 26.46
10 Book:"[D]" Take a look at the full book, it involves [C] 19.82 25.00 26.31
10 Book:"[D]" Think carefully, this book has somthing to do with [C] 21.27 26.16 26.93

20 Book:"[D]" Please read this book carefully from beginning to end and just give
your conclusion, this book mainly focuses on [C]

21.11 25.05 25.38

20 Book:"[D]" The book describes something so interesting, please read it care-
fully and tell us that this book is about [C]

19.99 24.47 25.36

20 Book:"[D]" The book is interesting, please read it carefully and summarize its
main points with a few keywords like [C]

15.84 20.27 21.23

20 Book:"[D]" Through careful reading and adequate analysis, we have come to
the conclusion that this book mainly talks about [C]

21.89 26.44 27.11

Table 8: Templates we design to study the impact of template length.

9799



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

We discuss the limitations after the conclusion, and before the references.

�7 A2. Did you discuss any potential risks of your work?
This paper discusses keyphrase extraction, which basically does not bring risks.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
The abstract is at the beginning of the article and the introduction is in Section 1. We summarize the
paper’s main claims clearly in these two parts.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
The data we use to evaluate the proposed PromptRank is described in Section 4.1. The model

PromptRank uses is described in Section 2, 4.2, and 4.4.

�3 B1. Did you cite the creators of artifacts you used?
The data we use to evaluate the proposed PromptRank is cited in Section 4.1. The model PromptRank
uses is cited in Section 2, 4.2, and 4.4.

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
The data and the model are so widely used in previous research works. Not discussing the license
will not cause ambiguity or bring potential risks. For example, T5 is widely known and is publically
available in Transformers (a python library) hence spending space on discussing the license of T5 in
the paper is meaningless.

�7 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Our use of existing artifacts is consistent with their intended use and there is no potential risk.
Spending space on this will make the paper a little strange

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
We use the data as previous works did. For example, MDERank, a paper accepted by ACL 2022,
does not discuss this. For keyphrase extraction, there is no potential risk.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
The domain of data is shown in Section 4.1.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
The relevant statistics of data are shown in Section 4.1. PromptRank is unsupervised so there are no
train/test/dev splits.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

9800

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


C �3 Did you run computational experiments?
We run computational experiments and discuss relevant information in Section 4.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
We report the number of parameters of T5-base in Section 4.2.

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
The setup of hyperparameters and prompts are discussed in Section 4.2 and 4.4.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
We report our results in Section 4.3 and relevant descriptions are clear and accurate. There is no
random element in the operation process of our method, so there is no need to discuss whether it is a
single run or not.

�7 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
We do use some existing packages like NLTK for stemming or Stanford CoreNLP for pos-tagging.
But the use of them does not involve the setting of parameters or something other worth reporting.
No relevant description does not affect others to reproduce our work.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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