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Abstract

Reasoning has been a central topic in artifi-
cial intelligence from the beginning. The re-
cent progress made on distributed representa-
tion and neural networks continues to improve
the state-of-the-art performance of natural lan-
guage inference. However, it remains an open
question whether the models perform real rea-
soning to reach their conclusions or rely on
spurious correlations. Adversarial attacks have
proven to be an important tool to help evalu-
ate the Achilles’ heel of the victim models. In
this study, we explore the fundamental prob-
lem of developing attack models based on logic
formalism. We propose NatLogAttack to per-
form systematic attacks centring around nat-
ural logic, a classical logic formalism that is
traceable back to Aristotle’s syllogism and has
been closely developed for natural language
inference. The proposed framework renders
both label-preserving and label-flipping attacks.
We show that compared to the existing attack
models, NatLogAttack generates better adver-
sarial examples with fewer visits to the victim
models. The victim models are found to be
more vulnerable under the label-flipping set-
ting. NatLogAttack provides a tool to probe
the existing and future NLI models’ capacity
from a key viewpoint and we hope more logic-
based attacks will be further explored for un-
derstanding the desired property of reasoning. 1

1 Introduction

While deep neural networks have achieved the state-
of-the-art performance on a wide range of tasks, the
models are often vulnerable and easily deceived by
imposing perturbations to the original input (Good-
fellow et al., 2014; Kurakin et al., 2018), which
seriously hurts the accountability of the systems.
In depth, this pertains to model robustness, capac-
ity, and the development of models with more ad-
vanced intelligence.

1The code of NatLogAttack is available at https://
github.com/orianna-zzo/NatLogAttack.

Natural language inference (NLI), also known
as textual entailment (Dagan et al., 2005; Iftene
and Balahur-Dobrescu, 2007; MacCartney, 2009;
Bowman et al., 2015), is a fundamental problem
that models the inferential relationships between a
premise and hypothesis sentence. The models built
on distributed representation have significantly im-
proved the performance on different benchmarks
(Bowman et al., 2015; Chen et al., 2017; Williams
et al., 2018; Chen et al., 2018; Devlin et al., 2019;
Liu et al., 2019; Zhang et al., 2020; Pilault et al.,
2021). However, it is still highly desirable to con-
duct research to probe if the models possess the
desired reasoning ability rather than rely on spuri-
ous correlation to reach their conclusions (Glock-
ner et al., 2018; Poliak et al., 2018; Belinkov et al.,
2019; McCoy et al., 2019; Richardson et al., 2020).

Adversarial attacks have proven to be an impor-
tant tool to reveal the Achilles’ heel of victim mod-
els. Specifically for natural language inference,
the logic relations are easily broken if an attack
model does not properly generate the adversarial
examples following the logic relations and related
semantics. Therefore, unlike other textual attack
tasks such as those relying on semantic similarity
and relatedness, it is more challenging to create
effective attacks here.

In this study, we explore the basic problem
of developing adversarial attacks based on logic
formalism, with the aim to probe victim models
for the desired reasoning capability. Specifically,
we propose NatLogAttack, in which the adversar-
ial attacks are generated based on natural logic
(Lakoff, 1970; Van Benthem, 1995; MacCartney,
2009; Icard, 2012; Angeli et al., 2016; Hu and
Moss, 2018; Chen et al., 2021), a classical logic
formalism with a long history that has been closely
developed with natural language inference. From
a general perspective, natural language inference
provides an appropriate setup for probing the de-
velopment of distributed representation and the
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models based on that. A robust solution for the task
requires manipulation of discrete operations and
adversarial attacks can help understand whether
and how the required symbols and inference steps
emerge from the data and the learned distributed
representation. Our work has also been inspired
by recent research on exploring the complementary
strengths of neural networks and symbolic mod-
els (Garcez et al., 2015; Yang et al., 2017; Rock-
täschel and Riedel, 2017; Evans and Grefenstette,
2018; Weber et al., 2019; De Raedt et al., 2019;
Mao et al., 2019; Feng et al., 2020, 2022).

Our research contributes to the development of
logic-based adversarial attacks for natural language
understanding. Specifically, we propose a novel
attack framework, NatLogAttack, based on natu-
ral logic for natural language inference. Our ex-
periments with both human and automatic evalua-
tion show that the proposed model outperforms the
state-of-the-art attack methods. Compared to the
existing attack models, NatLogAttack generates
better adversarial examples with fewer visits to the
victim models. In addition to the commonly used
attack setting where the labels of generated exam-
ples remain the same as the original pairs, we also
propose to construct label-flipping attacks. The
victim models are found to be more vulnerable in
this setup and NatLogAttack succeeds in deceiv-
ing them with much smaller numbers of queries.
NatLogAttack provides a systematic approach to
probing the existing and future NLI models’ capac-
ity from a basic viewpoint that has a traceable his-
tory, by combining it with the recent development
of attacking models. The proposed framework is
constrained by the natural logic formalism and we
hope more logic-based attacks will be further ex-
plored for understanding the desired property of
natural language reasoning.

2 Related Work

Adversarial Attacks in NLP. White-box attacks
leverage the architecture and parameters of victim
models to craft adversarial examples (Liang et al.,
2018; Wallace et al., 2019; Ebrahimi et al., 2018).
Black-box models, however, have no such knowl-
edge. Pioneering blind models (Jia and Liang,
2017), for example, create adversarial examples
by adding distracting sentences to the input. More
recently, score-based (e.g., Zhang et al. (2019);
Jin et al. (2020)) and decision-based attack mod-
els (Zhao et al., 2018) also query the prediction

scores or the final decisions of victim models.
In terms of perturbation granularities, character-

level attacks modify characters (Ebrahimi et al.,
2018) while word-level models rely on word sub-
stitutions that can be performed based on word
embeddings (Sato et al., 2018), language mod-
els (Zhang et al., 2019), or even external knowledge
bases (Zang et al., 2020). Sentence-level attack
models add perturbation to an entire sentence by
performing paraphrasing (Iyyer et al., 2018) or at-
taching distracting sentences (Jia and Liang, 2017).

Kang et al. (2018) generated natural language
inference examples based on entailment label com-
position functions with the help of lexical knowl-
edge. Minervini and Riedel (2018) utilized a set
of first-order-logic constraints to measure the de-
gree of rule violation for natural language inference.
The efforts utilized the generated examples for data
augmentation. The focus is not on adversarial at-
tack and the adversarial examples’ quality, e.g., the
attack validity, is not evaluated.

Natural Logic. Natural logic has a long his-
tory and has been closely developed with natural
language inference (Lakoff, 1970; Van Benthem,
1995; MacCartney, 2009; Icard, 2012; Angeli et al.,
2016; Hu and Moss, 2018; Chen et al., 2021). Re-
cently, some efforts have started to consider mono-
tonicity in attacks, including creating test sets to
understand NLI models’ behaviour (Richardson
et al., 2020; Yanaka et al., 2019a,b, 2020; Geiger
et al., 2020). The existing work, however, has
not performed systematic attacks based on natural
logic. The core idea of monotonicity (e.g., down-
ward monotone) and projection has not been sys-
tematically considered. The models have not been
combined with the state-of-the-art adversarial at-
tack framework and search strategies for the gen-
eral purpose of adversarial attacks. For example,
Richardson et al. (2020) and Yanaka et al. (2020)
generate adversarial examples from a small vocab-
ulary and pre-designed sentence structures. The
effort of Yanaka et al. (2019b) is limited by only
considering one-edit distance between a premise
and hypothesis. We aim to explore principled ap-
proaches to constructing perturbations based on nat-
ural logic, and the control of the quality of attack
generation can leverage the continuing advance-
ment of language models. The proposed attack
settings, along with the breakdown of attack cate-
gories, help reveal the properties of victim models
in both label-preserving and label-flipping attacks.
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Figure 1: Overview of NatLogAttack generation and attacking process.

3 NatLogAttack: A Natural-logic-based
Attack Framework

This section introduces NatLogAttack, a system-
atic adversarial attack framework centring around
natural logic. The overview of NatLogAttack’s
generation and attack process is depicted in Fig-
ure 1. Below we will introduce the background,
attack principles, setups, and each component of
the framework.

3.1 Background
The study of natural logic can be traced back to
Aristotle’s syllogisms. Rather than performing
deduction over an abstract logical form, natural
logic models inference in natural language by op-
erating on the structure or surface form of lan-
guage (Lakoff, 1970; van Benthem, 1988; Valencia,
1991; Van Benthem, 1995; Nairn et al., 2006; Mac-
Cartney, 2009; MacCartney and Manning, 2009;
Icard, 2012; Angeli and Manning, 2014; Hu and
Moss, 2018; Chen and Gao, 2021; Chen et al.,
2021). It allows for a wide range of intuitive
inferences in a conceptually clean way that we
use daily and provides a good framework for at-
tacking inference models—we doubt that a victim
model vulnerable to such natural attacks indeed
performs reliable reasoning. Our work uses the
natural logic variant proposed by MacCartney and
Manning (2009) and MacCartney (2009), which
extends the prior formalism to model the entail-
ment relations between two spans of texts with
seven relations B = {≡,⊏,⊐,∧, | ,⌣,# }, rep-
resenting equivalence, forward entailment, reverse
entailment, negation, alternation, cover, and inde-
pendence, respectively. Through projection based
on monotonicity in context, local lexical-level en-
tailment relations between a premise and hypothe-
sis can be aggregated to determine the entailment
relations at the sentence-pair level. For complete-
ness of this paper, we highlight the key building
blocks in Appendix A.

Setups Label yg → y∗
g Strategy Nat. Logic Relations

Label-preserving
E→ E H ⊨ H∗ H ≡ H∗ or H ⊏ H∗

C→ C H∗ ⊨ H H ≡ H∗ or H ⊐ H∗

N→ N H∗ ⊨ H H ≡ H∗ or H ⊐ H∗

Label-flipping
E→ C H ⊨ ¬H∗ H ∧ H∗ or H | H∗

E→ N H ⊭ H∗ and H ⊭ ¬H∗ H ⊐ H∗ or H ⌣ H∗

C→ E ¬H∗ ⊨ H H ≡ ¬H∗ or H ⊐ ¬H∗

Table 1: Generation principles of NatLogAttack and
natural logic relations between the original hypothesis
H and the generated hypothesis H∗, where E, C and N
stand for entailment, contradiction and neutral.

3.2 NatLogAttack Setups and Principles

Formally, given a premise sentence P , its n-
word hypothesis H = (h1, h2, · · · , hn), and
the ground-truth natural language inference label
yg = L(P,H), NatLogAttack generates a hy-
pothesis H∗ that satisfies a desired target label
y∗g = L(P,H∗). The attacking pair ⟨P,H∗⟩ is
generated only if the original pair ⟨P,H⟩ is cor-
rectly classified by a victim model F. Accordingly,
we denote y = F(P,H) as the natural language
inference label predicated by the victim model F
for the original pair and denote y∗ = F(P,H∗) as
the predicted label for the attacking pair.

We propose to perform the attacks in two setups:
the label-preserving and label-flipping attacks. The
attack principles and setups are summarized in Ta-
ble 1. A label-preserving attack generates adver-
sarial examples with y∗g = yg, aiming to test the
robustness of victim models on different inputs that
have the same label—it attacks victim models un-
der perturbations that do not change the inferential
labels of the original premise-hypothesis pair.

The label-flipping attacks, on the other hand, aim
at attacking victim models with perturbations that
are key to differentiating two different logical rela-
tions where y∗g ̸= yg. Note that natural logic can
be naturally used to generate label-flipping attacks,
and our work here is among the first to explore this
type of attacks for natural language understanding,
although label-flipping attacks have been explored
in image attacks (Tramèr et al., 2020).
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The third column of the table (strategy) lists the
logic conditions between the generated hypothesis
H∗ and the original hypothesis H that satisfy the
desired properties of preserving or flipping labels
to obtain the target label y∗g . Consider the second
row of the label-preserving setup (i.e., C → C), in
which NatLogAttack generates a hypothesis H∗

with y∗g = yg = contradiction. This is achieved
by ensuring the natural language inference label
between H∗ and H to obey entailment: H∗ ⊨ H . 2

This guarantees the sentence pair ⟨P,H∗⟩ to have
a contradiction relation. In the natural logic for-
malism (MacCartney, 2009), this is implemented
with H ≡ H∗ or H ⊐ H∗. Consider another
example. In the last row of the label-flipping
setup, NatLogAttack generates a new hypothesis
H∗ with y∗g = entailment from a contradiction pair,
implemented by following the natural logic rela-
tions H ≡ ¬H∗ or H ⊐ ¬H∗.

Constraint 3.1 We constrain NatLogAttack
from generating neutral attack examples
(y∗g= neutral) using the premise-hypothesis pairs
with yg=contradiction, because two contradictory
sentences may refer to irrelevant events from which
a neutral pair cannot be reliably generated. 3

Constraint 3.2 NatLogAttack is also con-
strained from generating contradiction and
entailment attacks (y∗g= contradiction or
y∗g= entailment) from neutral pairs (yg=neutral),
as there are many ways two sentences being
neutral, including reverse entailment and diverse
semantic relations. The contradiction and
entailment pairs cannot be reliably generated.

3.3 Generation and Quality Control
3.3.1 Preparing Natural Logic Relations
As shown in the bottom-left part of Figure 1, given
a premise-hypothesis pair ⟨P,H⟩, the ground-truth
label yg, and the target label y∗g , NatLogAttack re-
trieves natural logic relations from the last column
of Table 1. Consider label-preserving attacks and
take y∗g = yg =entailment as an example. From the
last column in the first row of the label-preserving
setup, NatLogAttack finds and pushes the rela-
tions ≡ and ⊏ into the natural-logic relations set,
R∗

g = {≡,⊏}, where R∗
g includes the natural-logic

2We use the entailment notation that is same as in (Mac-
Cartney and Manning, 2009).

3For example, The SNLI (Bowman et al., 2015) and MNLI
datasets (Williams et al., 2018) were annotated under a guide-
line with a specific assumption of treating potentially irrelevant
events as contraction.

relations between H and H∗ and will be used to
generate the latter. Note that r∗g ∈ R∗

g is one of
relations in R∗

g.
We first copy H to H(1), denoted as H(1) ← H

for the convenience of notation, because the
generation-and-attack process may be performed
multiple rounds if one round of attacks fail. Then
we use the notation H(1) and H(2) to refer to the
original and a generated hypothesis sentence in
each round. Note that in the above example, as will
be discussed below, within each round of genera-
tion, NatLogAttack will provide a set of attacks to
perform multiple (iterative) attacks.

3.3.2 Candidate Generation

Algorithm 1: Candidate Generation
Input: Sentence H(1) with tokens (h(1)

1 , · · · , h(1)
n ),

target natural-logic relation set R∗
g

Output: Candidate sentence set H
1 Init H = ∅

2 L = natlog(H(1))

3 foreach h
(1)
i ∈H(1) and r∗g ∈ R∗

g do
4 R∗

local = LB[idxLi(r∗g)]
5 if ≡ ∈ R∗

local then
6 H = H ∪ PerturbSyno(H(1), h

(1)
i )

7 H = H ∪ DoubleNegation(H(1))
8 end
9 if ⊏ ∈ R∗

local then
10 H = H ∪ PerturbHyper(H(1), h

(1)
i )

11 H = H ∪ Deletion(H(1), i)
12 end
13 if ⊐ ∈ R∗

local then
14 H = H ∪ PerturbHypo(H(1), h

(1)
i )

15 H = H ∪ Insertion(H(1), i)
16 end
17 if | ∈ R∗

local then
18 H = H ∪ PerturbCoHyper(H(1), h

(1)
i )

19 H = H ∪ PerturbAnto(H(1), h
(1)
i )

20 H = H ∪ AltLM(H(1), i)
21 end
22 if ∧ ∈ R∗

local then
23 H = H ∪ AddNeg(H(1), h

(1)
i )

24 end
25 end

Return: H

Our candidate attack generation process is de-
scribed in Algorithm 1. Taking H(1) and R∗

g as
the input, the algorithm aims to generate a set
of candidate hypotheses H = {H(2)

1 , · · · , H(2)
m }

with each pair ⟨H(1), H
(2)
i ⟩ following a target re-

lation r∗g ∈ R∗
g where H

(2)
i ∈ H. For each to-

ken h
(1)
i ∈ H(1) and r∗g ∈ R∗

g, the algorithm ob-
tains the monotonicity and relation projection infor-
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mation using the Stanford natlog parser4 (line 2).
Specifically for h(1)i , suppose the parser outputs an
ordered relation list: Li = ⟨≡,⊐,⊏,∧, | ,⌣,#⟩,
this returned list actually encodes the contextual-
ized projection information, which we leverage to
substitute h

(1)
i with h′i to generate H

(2)
i that satis-

fies relation r∗g .
In natural logic, when determining the sentence-

level logical relation between a premise and hy-
pothesis sentence, projection is used to map local
lexicon-level logical relation to sentence-level rela-
tions by considering the context and monotonicity.
However, in adversarial attacks, NatLogAttack
needs to take the following reverse action:

Rlocal = LB[idx
Li(r∗g)] (1)

where r∗g is the target sentence-level natural logic
relation (in our above example, suppose r∗g=‘⊏’).
Then idxLi(.) returns the index of that relation in
Li. For ‘⊏’, the index is 3. Then the index is used
to find the lexicon-level (local) relation from the
predefined ordered list LB = ⟨≡,⊏,⊐,∧, | ,⌣,
# ⟩. In the above example we will get LB[3]=‘⊐’.
Again, Equation 1 presents a reverse process of the
regular projection process in natural logic. In other
words, the ordered relation list provided by the nat-
log parser for each word token, when used together
with the predefined (ordered) relation list LB, spec-
ifies a mapping between global (sentence-level)
natural-logic relations and local (lexicon-level) re-
lations. Note also that the output Rlocal is a set,
because Li is an ordered list that may contain the
same relation multiple times.

Basic Word Perturbation. For a word token hi,
we replace it with word h′i to ensure the local rela-
tion ⟨hi, h′i⟩ to be rlocal ∈ Rlocal. NatLogAttack
extracts natural-logic relation knowledge from
knowledge bases to obtain word candidates for the
desired relation types. The word perturbation of
NatLogAttack focused on five relations in Table 8.

Constraint 3.3 Since cover (⌣) is very rare and
independence (#) is ambiguous, NatLogAttack is
constrained to only focus on utilizing the remaining
five relations: {≡,⊏,⊐,∧, |}.

We attack the victim models using the most basic
semantic relations explicitly expressed in knowl-
edge bases and knowledge implicitly embedded in
large pretrained language models. Specifically, we

4https://stanfordnlp.github.io/CoreNLP/natlog.html.

Monotonicity Upward Downward

Syntax
adj + n ⊏ n adj + n ⊐ n
v + adv ⊏ v v + adv ⊐ v
s + PP ⊏ s s + PP ⊐ s

Table 2: Insertion and deletion operations applied in the
upward and downward context. s is short for sentence.

use WordNet (Miller, 1995) to extract the desired
lexical relations. For a word token hi, we search
candidate words h′i that has one of the following
relations with hi: {≡, ⊏,⊐,∧, |}. Synonyms are
used as h′i to substitute hi for constructing H(2)

with an equivalence relation to H(1) (line 6), hyper-
nyms are used for forward entailment (line 10), and
hyponyms for reverse entailment (line 14). Due to
the transitiveness of forward entailment (⊏) and re-
verse entailment (⊐), we centre around hi to find its
hypernyms and hyponyms but restrict the distances
within a threshold to avoid generating sentences
that are semantically unnatural, contain overgen-
eralized concepts, or are semantically implausible.
Later, we will further use a language model to con-
trol the quality.

For alternation, the perturbation candidates h′i
are words that share the common hypernym with
hi (line 18). Following MacCartney (2009), we do
not use antonyms of content words for the nega-
tion relation but instead use them to construct al-
ternation hypotheses (line 19). For the negation
(line 23), a list of negation words and phrases is
used to construct new hypotheses. Note that while
our experiments show the NatLogAttack has been
very effective and outperforms other attack models,
some of the components can be further augmented
as future work.

Enhancing Alternation. As discussed above, at-
tacks may run multi-rounds if the prior round fails.
For alternation substitution, NatLogAttack does
not replace the word token that has been substituted
before, since the alternation of alternation does not
guarantee to be the alternation relation. In addition
to constructing alternation hypotheses using Word-
Net, we further leverage DistilBert (Sanh et al.,
2019) to obtain the alternation candidates using the
function AltLM (line 20). Specifically, we mask
the target word (which is a verb, noun, adjective or
adverb) and prompt the language model to provide
candidates. The provided candidates and replaced
words are required to have the same POS tags.

Insertion and Deletion. In addition to substitu-
tion, NatLogAttack also follows natural logic and
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monotonicity to construct examples using the inser-
tion and deletion operations. As shown in Table 2,
adjectives, adverbs and prepositional phrases are
leveraged in the upward and downward context of
monotonicity to enhance the attacks for entailment
(‘⊏’) and reverse entailment (‘⊐’). We include the
details in Appendix B, which is built on Stanford
CoreNLP parser and pretrained language models.
Note that the syntactic rules do not guarantee to
generate sentences with the desired NLI labels (e.g.,
see (Partee, 1995) for the discussion on the seman-
tic composition of adjective + noun) and the pro-
cess is only for generating candidates. We will use
the pretrained language model to further identify
good adversarial examples at a later stage. Both
the insertion and deletion operations are used with
monotonicity and projection context to generate
different relations.

3.3.3 Attack Quality Control

NatLogAttack uses DistilBert (Sanh et al., 2019)
to calculate the pseudo-perplexity scores (Salazar
et al., 2020) for all generated hypotheses H =

{H(2)
1 , H

(2)
2 , · · · , H(2)

m }, and keeps only a maxi-
mum of 100 candidates with the lowest perplexity
values. In our development, we found that the qual-
ity control stage is important for ensuring the qual-
ity of attack examples, particularly for reducing
word perturbation mistakes resulting from incorrect
interpretation of the words being substituted, which
often results in unnatural hypothesis sentences, as
well as reducing other sources of low-quality at-
tacks including over-generalization of concepts and
implausible semantics caused by insertion and dele-
tion. The output of this stage is an ordered list of
candidate attacksHsqc = ⟨H(2)

r1 , H
(2)
r2 , · · · , H(2)

rk ⟩.

3.4 Iterative and Multi-rounds Attacking

As discussed above, NatLogAttack performs itera-
tive attacking within each round of generation and
then multi-round attacks if the current round fails.
Within each round, the original premise P and
each hypothesis in the ranked hypotheses listHsqc

form an attack list ⟨⟨P,H(2)
r1 ⟩, · · · , ⟨P,H(2)

rk ⟩⟩. As
shown in Figure 1, when an attack succeeds, we
output the corresponding hypothesis as H∗, which
is sent for evaluation. If an attack fails, the next pair
in the ranked attack list will be tried until the list is
exhausted. Then NatLogAttack organizes the next
round of attacks. In total NatLogAttack generates
a maximum of 500 attacks for each ⟨P,H⟩ pair.

Models SNLI MED MEDup MEDdown MNLI SICK

BERT 89.99 77.68 74.42 81.72 84.32 87.06
RoBERTa 91.53 73.37 80.97 70.72 87.11 87.79

Table 3: Victim models’ accuracy on different datasets.

When generating the next round attacks, we iden-
tify the adversarial pair for which the victim model
has the lowest confidence (indexed as jlc) over the
ground-truth class y∗g :

jlc = argmin
j∈{r1,...,rk}

{sr1 , . . . , srk} (2)

srj = o(y∗g |(P,H(2)
rj )) (3)

where o(∗) returns the corresponding softmax prob-
abilities of the output layer. We then copy H

(2)
jlc

to

H(1), denoted as H(1) ← H
(2)
jlc

. The attack con-
tinues until the victim model is deceived to make
a wrong prediction y∗ that is different from the
ground truth y∗g or the maximum number of attacks
is reached.

4 Experiments and Results

4.1 Experimental Setup

Dataset Our study uses SNLI (Bowman
et al., 2015), MNLI (Williams et al., 2018),
MED (Yanaka et al., 2019a), HELP (Yanaka et al.,
2019b), and SICK (Marelli et al., 2014; Hu et al.,
2020) datasets. The MED upward and downward
subsets are denoted as MEDup and MEDdown,
respectively. Details of the datasets and the setup
for training can be found in Appendix C.

Attack and Victim Models We compared the
proposed model to five representative attack mod-
els including the recent state-of-the-art models:
Clare (Li et al., 2021), BertAttack (Li et al.,
2020), PWWS (Ren et al., 2019), TextFooler (Jin
et al., 2020) and PSO (Zang et al., 2020). Specifi-
cally, we used the implementation made publicly
available in TextAttack.5 For victim models,
we used uncased BERT (Devlin et al., 2019) and
RoBERTa base models (Liu et al., 2019). The accu-
racy of victim models is included in Table 3, which
is comparable to the state-of-the-art performance.

Evaluation Metrics Three metrics are used to
evaluate the models from different perspectives.
The sign ↑ (↓) indicates that the higher (lower) the
values are, the better the performance is.

5https://github.com/QData/TextAttack
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Victim Attack
SNLI MED MEDup MEDdown MNLI SICK

Model Model HVASR QN PPL HVASR QN PPL HVASR QN PPL HVASR QN PPL HVASR QN PPL HVASR QN PPL
B

E
R

T

PWWS 29.9 175.8 15.96 45.9 115.3 18.18 43.1 119.1 17.98 48.3 111.6 18.38 27.8 184.2 13.87 31.0 147.1 17.75
Textfooler 34.5 58.4 15.88 47.3 51.2 17.96 47.8 51.2 17.77 46.9 51.2 18.15 37.3 74.7 13.62 30.7 50.0 17.62
PSO 20.5 91.8 16.06 38.8 81.9 18.19 37.7 83.9 18.14 39.7 79.7 18.25 32.0 103.4 13.81 22.3 115.86 17.77
BertAttack 31.6 76.4 17.07 39.9 62.3 18.86 31.1 63.2 18.7 47.4 61.5 19.02 37.4 86.5 14.47 32.2 91.7 18.18
Clare 19.9 328.3 16.87 36.7 199.7 18.31 29.9 205.5 18.30 42.8 194.8 18.33 25.2 299.8 16.87 23.1 246.9 18.60
NatLogAtt* 35.7 42.8 14.78 56.9 42.7 17.43 57.9 30.1 17.24 56.0 55.4 17.62 39.7 50.1 13.47 43.6 40.3 16.73

R
oB

E
R

Ta

PWWS 35.5 177.1 16.05 39.8 118.5 18.15 41.3 121.1 18.30 38.7 115.8 18.00 28.7 189.6 13.83 35.2 143.4 17.91
Textfooler 30.0 59.7 15.93 42.6 50.2 18.06 38.7 49.5 17.98 45.6 50.82 18.13 34.0 78.2 13.61 33.8 49.6 17.69
PSO 19.2 92.9 16.17 34.3 81.8 18.14 27.1 83.2 18.03 39.3 80.19 18.26 28.3 99.4 13.85 24.9 115.0 17.75
BertAttack 34.9 78.3 16.89 47.3 61.1 18.77 47.2 59.7 18.66 47.4 62.4 18.89 39.2 91.2 14.65 35.6 95.8 18.21
Clare 14.7 326.6 16.65 27.4 199.8 18.54 17.9 203.7 18.20 35.2 195.9 18.88 22.6 296.7 16.44 27.5 244.0 18.16
NatLogAtt* 36.5 45.0 14.69 55.5 33.9 17.37 59.7 27.5 17.34 52.3 40.2 17.40 39.7 46.1 13.53 49.3 42.9 16.61

Table 4: Performance of different attack models in label-preserving attacks. The bold font marks the best perfor-
mance under each evaluation setup. The improvements of NatLogAtt over the second-best results (marked with
underscores) are statistically significant (p < 0.05) under one-tailed paired t-test.

• Human Validated Attack Success Rate
(HVASR ↑). Most existing attacking methods
are evaluated with attack success rates that are
not validated by human subjects, assuming that
the attacking methods could generate adversarial
examples of the desired labels. This assumption
works for many NLP tasks such as sentiment anal-
ysis and text classification. However, this is not
the case in NLI, since the logical relationships
can be easily broken during the generation pro-
cess. As observed in our experiments, although
the state-of-art attacking models (BertAttack
and Clare) attain high attack success rates on
various NLP tasks, human-validated evaluation
demonstrates that they are much less effective
in attacking natural language reasoning. To re-
liably evaluate the attack performance, we use
Human Validated Attack Success Rate (HVASR).
Specifically, we used Amazon Mechanical Turk6

to validate if the generated attack examples be-
long to the desired relations. Each example was
annotated by at least three workers and the label
is determined by the majority voting. HVASR
is the percentage of successful-and-valid adver-
sarial examples that successfully deceived the
victim models to make the wrong prediction and
at the same time the majority of the annotators
think their NLI labels are the desired target labels
y∗g . While HVASR is our major evaluation met-
ric, we also use query numbers and perplexity to
provide additional perspectives for observations.

• Query number (QN ↓) refers to the average
number of times that a successful attack needs
to query the victim model (Zang et al., 2020; Li
et al., 2020). QN can reflect the efficiency (but

6https://www.mturk.com/

not effectiveness) of an attack model.
• Perplexity (PPL ↓) reflects the fluency and qual-

ity of generated examples. Same as in (Zang
et al., 2020; Li et al., 2021), it is computed with
GPT-2 (Radford et al., 2019) during evaluation.

4.2 Results and Analysis

Results on Label Preserving Attacks Table 4
shows the performance of different models on label-
preserving attacks. We can see that NatLogAttack
consistently achieves the best performance on
HVASR. The detailed results on MED also show
that NatLogAttack has a better ability to construct
adversarial examples in both upward and down-
ward monotone. NatLogAttack also shows supe-
rior performance on average QN and PPL in nearly
all setups.

We can see that NatLogAttack has a large
HVASR and small QN value in MEDup, suggest-
ing that NatLogAttack can easily generate attacks
in the upward monotone. However, in MEDdown,
NatLogAttack needs more efforts (QN). Our fur-
ther analysis reveals that this is because in the
downward monotone, the attack model relies more
on the insertion operation than deletion, and the
former is more likely to result in unsuccessful at-
tempts.

Figure 2 further compares the query numbers
(QNs) of different attack models on BERT and
RoBERTa in terms of the medians (instead of means)
and density of QN. We can see that the majority of
query numbers of NatLogAttack are rather small
and medians are less than 12 for on both SNLI and
MED, showing that NatLogAttack could attack
successfully with very limited attempts in most
cases. For each attack model, the density of QN on
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Figure 2: Query numbers (QNs) of attack models. Red
dots are the medians of QNs of different attack models.
The blue and orange shapes show the densities of query
numbers for BERT and RoBERTa, respectively.

Vict. Lab.
SNLI MED MNLI SICK

Md. Flip. HVASR QN PPL HVASR QN PPL HVASR QN PPL HVASR QN PPL

B
E

R
T E�C 37.9 1.0 14.8 48.7 1.0 16.9 33.2 1.4 13.5 31.8 10.4 16.2

E�N 57.5 2.9 14.9 50.9 2.8 17.7 50.3 4.7 13.7 55.8 6.5 16.1
C�E 33.4 1.0 14.4 - - - 34.2 1.1 13.0 37.1 1.0 16.0

R
oB

E
R

Ta E�C 43.5 1.4 14.6 49.8 2.9 16.7 36.8 5.0 13.5 32.1 13.9 16.4
E�N 56.8 2.6 14.8 52.1 3.0 17.6 50.7 4.8 13.8 57.4 4.4 16.1
C�E 36.4 1.8 14.5 - - - 35.1 1.2 13.0 37.7 1.0 16.0

Table 5: The evaluation for label-flipping attacks.

BERT and RoBERTa is close to each other and the
medians are indiscernible and are represented by
the same red dot in the figure.

Results on Label Flipping Attacks Table 5
shows the performance of NatLogAttack on the
label-flipping attacks. Note that there has been lit-
tle prior work providing systematic label-flipping
attacks for NLP tasks. This new angle of evalua-
tion is more easily implemented with logic-based
attacks and provides additional insights. Specifi-
cally, the table shows that the numbers of queries
that NatLogAttack sent to the victim models are
much smaller than those in the label-preserving
setting presented in Table 4, suggesting that the vic-
tim models are more vulnerable in label-flipping
setting. For example, we can see that most of the
query numbers are within 1-5 in Table 5. The pre-
trained victim models are capable of memorizing
the superficial features related to the original label
and have difficulty in capturing the logical rela-
tionship when we alter them between sentences by
keeping the majority of words untouched.

In both the label-preserving and label-flipping
setup, the HVASR may still be further improved,
although the proposed models have substantially
outperformed the off-the-shelf state-of-the-art at-
tack models and cautions have been exercised in
all attack generation steps, which leaves room for

more research on improving logic-based attacks as
future work.

Examples and Analysis. Table 6 provides the
generated attack examples in the label-preserving
setup (E → E), in which we can see the quality
of attacks generated by NatLogAttack is clearly
higher. The baseline attacking models generate
adversarial examples by replacing words based on
word embedding or language models, which can
easily break the logic relationships. Some exam-
ples in Table 6 show that the baselines often rely
on semantic relatedness to construct adversarial
examples, which is not detailed enough for NLI
and hence break the logic relations (e.g., the last
BertAttack example). Also, the last example of
Clare shows that the model deletes words without
considering the context (downward) monotonicity,
resulting in an invalid attack. Note that the base-
line models modify both premises and hypothe-
ses and NatLagAttack focuses only on modify-
ing hypotheses—it is straightforward to copy or
adapt the operations of NatLagAttack to modify
premises—in many applications, it is more natural
to modify the hypotheses and keep the premises
(evidences) untouched.

Table 7 shows more adversarial examples gener-
ated by NatLogAttack in the label-flipping setup.
For all the six examples, the prediction of the
victim model RoBERTa remains unchanged (i.e.,
entailment, entailment and contradiction for the
first, middle, and last two examples, respectively),
while the ground-truth labels are now contradiction,
neutral, and entailment, respectively. The victim
model had difficulty in telling the difference, which
renders an angle to challenge the models’ ability of
understanding and perform reasoning.

5 Conclusion

Towards developing logic-based attack models, we
introduce a framework NatLogAttack, which cen-
tres around the classical natural logic formalism.
The experiments with human and automatic eval-
uation show that the proposed framework outper-
forms the existing attack methods. Compared to
these models, NatLogAttack generates better ad-
versarial examples with fewer visits to the vic-
tim models. In addition to the widely used label-
preserving attacks, NatLogAttack also provides
label-flipping attacks. The victim models are
found to be more vulnerable in this setup and
NatLogAttack succeeds in deceiving them with
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Attack Model Premise Hypothesis
PWWS Betty lives in Berlin Betty lives animation in Germany

Textfooler Betty lives in Berlin Betty lives dies in Germany
PSO - -

BertAttack Betty lives in Berlin prague Betty lives in Germany
Clare Betty lives in Berlin Australia Betty lives in Germany

NatLogAttack Betty lives in Berlin Betty lives in Germany Federal Republic of Germany
PWWS A snow goose jackass is a water bird A goose is a water bird

Textfooler A snow goose is a water bird A goose is a water bird parakeets
PSO A snow goose is a water bird A goose chicken is a water bird

BertAttack A snow goose the is a water bird A goose is a water bird
Clare A snow goose cat is a water bird A goose is a water bird

NatLogAttack A snow goose is a water bird A goose is a water bird chordate
PWWS - -

Textfooler - -
PSO - -

BertAttack I can’t speak German at all I can’t cantheisland speak German confidently and never at all
Clare I can’t speak German at all I can’t speak spoke German confidently at all

NatLogAttack I can’t speak German at all I can’t speak German confidently at all on trampoline
PWWS The purple majestic alien did not throw balls The purple alien did not throw tennis balls

Textfooler The purple alien did not throw balls The purple crimson alien did not throw tennis opening balls
PSO The purple alien did not throw balls The purple alien unicorn did not throw tennis balls

BertAttack The purple blue alien did not throw balls The purple alien did not throw tennis balls
Clare The purple alien did not throw soccer balls The purple alien did not throw balls

NatLogAttack The purple alien did not throw balls The purple alien did not throw tennis balls on her cellphone

Table 6: Adversarial examples generated by different attack models on MED under the label-preserving setup
(E→ E). The victim model is RoBERTa. Insertion is marked in red, substitution in blue, and deletion is marked
with underline. The symbol ‘-’ indicates that the attack model fails to generate examples. The top two groups of
examples are upward monotone and the bottom two groups are downward monotone.

Label Flip. Premise Hypothesis

E→ C
Many aliens drank some coke Many aliens drank some soda alcohol

He lied, without hesitation He lied did not lie, without any hesitation

E→ N
She’s wearing a nice big hat She’s wearing a nice straw hat

Two formally dressed, bald older women Two bald women matriarchs

C→ E
A little boy is riding a yellow bicycle across a town square It is false that the boy’s bike is blue

Two men in orange uniforms stand before a train and do some work It is not true that nobody is working

Table 7: Adversarial examples generated by the NatLogAttack model in the label-flipping setup. The victim model
is RoBERTa. The red and blue colours highlight the insertion or substitution, respectively.

much smaller numbers of queries. NatLogAttack
provides an approach to probing the existing and
future NLI models’ capacity from a key viewpoint
and we hope more logic-based attacks will be fur-
ther explored for understanding the desired prop-
erty of reasoning.

Limitations

Our research focuses on the adversarial attack itself
and provides a framework that can be potentially
used in different adversarial training strategies. We
limit ourselves on attacks in this work, but it would
be interesting to investigate logic-based attacks in
adversarial training. We will leave that as future
work. The proposed attack approach is also limited
by the limitations of natural logic, while the latter
has been a classical logic mechanism. For exam-
ple, our proposed framework has less deductive
power than first-order logic. It cannot construct

attacks building on inference rules like modus po-
nens, modus tollens, and disjunction elimination.
As discussed in the paper, some components of
the generation and quality control process can be
further enhanced.
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A Background

Our work is based on the specific natural logic
formalism proposed by MacCartney and Manning
(2009) and MacCartney (2009). To model the en-
tailment relations between two spans of texts, Mac-
Cartney and Manning (2009) introduced seven re-
lations inspired by the set theory: B = {≡,⊏,⊐
,∧, | ,⌣,# } (see Table 8 for some examples). The
inference of natural logic is built on monotonicity,
which is a pervasive feature of natural language that
explains the impact of semantic composition on
entailment relations (Van Benthem et al., 1986; Va-
lencia, 1991; Icard and Moss, 2014). Suppose dog
⊏ animal, the upward monotone context keeps the
entailment relation when the argument “increases”

(e.g., dog ⊏ animal). Downward monotone keeps
the entailment relation when the argument “de-
creases” (e.g., in all animals ⊏ all dogs). The
system performs monotonicity inference through a
projection ρ : B→ B, which is determined by the
context and projection rules. As will be detailed, a
monotonicity-based parser can provide monotonic-
ity information for each word token in a sentence
and the projection information. For example, con-
sider the sentence All↑ the↓ kids↓ run↑, where ↑
denoted upward polarity and ↓ downward polar-
ity. If we mutate the word kids with boys, where
kids ⊐ boys, the system projects the reverse entail-
ment (‘⊐’) into forward entailment (‘⊏’) due to its
downward polarity, i.e., ρ (‘⊐’) = ‘⊏’, and thus All
the kids run ⊏ All the boys run.

With these components ready, the system ag-
gregates the projected local relations to obtain the
inferential relation between a premise and hypoth-
esis sentence. Specifically, Table 9 (MacCartney,
2009; MacCartney and Manning, 2009; Angeli and
Manning, 2014) shows the composition function
when a relation in the first column is joined with
a relation listed in the first row, yielding the rela-
tions in the corresponding table cell. MacCartney
(2009) shows that different orders of compositions
yield consistent results except in some rare artifi-
cial cases. Therefore, many works, including ours,
perform a sequential (left-to-right) composition.
Consider two edits from the premise sentence, All
the kids run, to the hypothesis, All the boys sleep.
The first edit that replaces kids in the premise with
boys yields All the kids run ⊏ All the boys run. The
second edit of replacing run with sleep yields All
the boys run | All the boys sleep. Based on Table 9,
the union of the relations resulted from these two
edits (i.e., ‘⊏’ 1 ‘|’) is ‘ | ’, where 1 is the union
operator. As a result, we obtain All the kids run |
All the boys sleep.

The seven natural logic relations at the sentence-
pair level can then be mapped to the typical three-
way NLI labels (entailment, contradiction, and
neutral), where the ‘≡ ’ or ‘⊏ ’ relation can be
mapped to entailment; the ‘∧ ’ or ‘ | ’ relation to
contradiction; the ‘⊐ ’, ‘⌣ ’, and ‘# ’ to neutral.

B Insertion and Deletion

For both insertion and deletion, the part-of-
speech (POS) tags and constituency parse tree for
H(1) are first obtained using Stanford CoreNLP
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Relation Relation Name Example Set Theoretic Definition

x ≡ y equivalence mommy ≡ mother x = y
x ⊏ y forward entailment bird ⊏ animal x ⊂ y
x ⊐ y reverse entailment animal ⊐ bird x ⊃ y
x ∧ y negation human ∧ nonhuman x ∩ y = ∅ ∧ x ∪ y = U
x | y alternation bird | dog x ∩ y = ∅ ∧ x ∪ y ̸= U
x ⌣ y cover animal ⌣ nonhuman x ∩ y ̸= ∅ ∧ x ∪ y = U
x # y independence red# weak all other cases

Table 8: Seven natural logic relations proposed by MacCartney and Manning
(2009).

1 ≡ ⊏ ⊐ ∧ | ⌣ #

≡ ≡ ⊏ ⊐ ∧ | ⌣ #
⊏ ⊏ ⊏ # | | # #
⊐ ⊐ # ⊐ ⌣ # ⌣ #
∧ ∧ ⌣ | ≡ ⊐ ⊏ #
| | # | ⊏ # ⊏ #
⌣ ⌣ ⌣ # ⊐ ⊐ # #
# # # # # # # #

Table 9: Relation union ta-
ble (Icard, 2012).

parser7, which are then used with a state-of-the-art
pretrained model to perform insertion. To insert an
adjective before a noun or an adverb after a verb,
NatLogAttack leverages DistilBert (Sanh et al.,
2019) to obtain the candidates in the corresponding
locations. The syntactic rules do not guarantee to
generate sentences with the desired NLI labels (e.g.,
see (Partee, 1995) for discussion on the semantic
composition of adjective + noun). The above pro-
cess is only for generating candidates, and we will
use pretrained language models to find good adver-
sarial examples.

In order to insert a prepositional phrase (PP), we
first collected from the SNLI training dataset all the
PPs that are the constitutes of other noun phrases
(NPs) for more than 100 times. We also collected
PPs that appear in other verb phrases (VPs) at least
100 times. During insertion, these PPs will be
added as modifiers to a noun or a verb, respectively.
We also insert assertion phrases such as "It is not
true that" to deceive the victim models. For the
deletion operation, we delete the corresponding
constituents based on the parse tree and POS tags.

C Details of Datasets and Baselines

As discussed in Section 4.1, our study uses
SNLI (Bowman et al., 2015), MNLI (Williams
et al., 2018), MED (Yanaka et al., 2019a),
HELP (Yanaka et al., 2019b), and SICK (Marelli
et al., 2014; Hu et al., 2020) to evaluate the models.
SNLI and MNLI are widely-used general-purpose
NLI datasets. Following Li et al. (2021), for MNLI,
we evaluate the performance on the matched set.
MED and HELP are designed for monotonicity-
based reasoning and hence suit for probing models’
capacity in natural logic-related behaviour. SICK is
rich in lexical, syntactic and semantic phenomena
designed for distributional semantic models includ-
ing those recognizing textual entailment. For SICK,

7https://stanfordnlp.github.io

we use the corrected labels proposed by Hu et al.
(2020). The pretrained victim models tested on
the SNLI, MNLI, and SICK test set were finetuned
on their own training set and the performances are
comparable to the state-of-the-art performances as
well as those used in the previous attack models.
Following Yanaka et al. (2019a), the models tested
on MED are finetuned on both the SNLI training
set and the entire HELP dataset. Since HELP is not
manually annotated, we do not use it as the test set.
The MED upward subset is denoted as MEDup and
downward subset as MEDdown. Following (Alzan-
tot et al., 2018; Zang et al., 2020), each test set has
1,000 sentence pairs. Also following Zeng et al.
(2021), we set the maximum query number to be
500.

For all the attack models in comparison, we used
the implementation made available by Morris et al.
(2020). Details of these attack models are as fol-
lows.

• PWWS (Ren et al., 2019) makes use of the
synonyms in WordNet (Miller, 1995) for word
substitutions and designs a greedy search algo-
rithm based on the probability-weighted word
saliency to generate adversarial samples.

• TextFooler (Jin et al., 2020) utilizes counter-
fitting word embeddings to obtain synonyms
and then performs substitution based on that.

• PSO (Zang et al., 2020) utilizes the knowl-
edge base HowNet (Dong et al., 2010) to gen-
erate word substitutions. It adopts particle
swarm optimization, another popular meta-
heuristic population-based search algorithm,
as its search strategy.

• BertAttack (Li et al., 2020) leverages the
superior performance of pretrained language
model and greedily replaces tokens with the
predictions from BERT.
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• Clare (Li et al., 2021) adds two more types
of perturbations, insert and merge, building
on BertAttack. Since Clare has a very high
query number to the victim models, we re-
duce the number of each type of perturbation
to 10 in order to make sure that Clare can at-
tack the victim model successfully within the
maximum query number in most cases.
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