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Abstract

There has been a surge of interest in utilizing
Knowledge Graphs (KGs) for various natural
language processing/understanding tasks. The
conventional mechanism to retrieve facts in
KGs usually involves three steps: entity span
detection, entity disambiguation, and relation
classification. However, this approach requires
additional labels for training each of the three
subcomponents in addition to pairs of input
texts and facts, and also may accumulate errors
propagated from failures in previous steps. To
tackle these limitations, we propose a simple
knowledge retrieval framework, which directly
retrieves facts from the KGs given the input
text based on their representational similarities,
which we refer to as Direct Fact Retrieval (Di-
FaR). Specifically, we first embed all facts in
KGs onto a dense embedding space by using a
language model trained by only pairs of input
texts and facts, and then provide the nearest
facts in response to the input text. Since the
fact, consisting of only two entities and one re-
lation, has little context to encode, we propose
to further refine ranks of top-k retrieved facts
with a reranker that contextualizes the input
text and the fact jointly. We validate our Di-
FaR framework on multiple fact retrieval tasks,
showing that it significantly outperforms rele-
vant baselines that use the three-step approach.

1 Introduction

Knowledge graphs (KGs) (Bollacker et al., 2008;
Vrandecic and Krötzsch, 2014; Lehmann et al.,
2015), which consist of a set of facts represented
in the form of a (head entity, relation, tail entity)
triplet, can store a large amount of world knowl-
edge. In natural language applications, language
models (LMs) (Devlin et al., 2019; Brown et al.,
2020) are commonly used; however, their knowl-
edge internalized in parameters is often incomplete,
inaccurate, and outdated. Therefore, several recent
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Figure 1: (a) A conventional fact retrieval from KGs involves
three sequential steps: 1) entity mention detection to identify
entities in queries; 2) entity disambiguation to match entities in
input texts to KGs; 3) relation classification to select relevant
relations. (b) Our fact retrieval directly retrieves relevant facts
with their representational similarities to input queries.

works suggest augmenting LMs with facts from
KGs, for example, in question answering (Oguz
et al., 2022; Ma et al., 2022) and dialogue genera-
tion (Galetzka et al., 2021; Kang et al., 2022b).

However, despite the broad applications of the
KGs, the existing mechanism for retrieving facts
from them are, in many cases, unnecessarily com-
plex. In particular, to retrieve facts from KGs, ex-
isting work (Fu et al., 2020; Lan et al., 2021; Wang
et al., 2021) relies on three sequential steps, con-
sisting of span detection, entity disambiguation,
and relation classification, as illustrated in Fig-
ure 1a. For example, given an input text: "Where
was Michael Phelps born?", they first detect a span
of an entity within the input, which corresponds to
"Michael Phelps". Then, they match the entity men-
tion in the input to an entity id in the KG. Those
two steps are often called entity linking. Finally,
among 91 relations associated with the entity of
Michael Phelps, they select one relation relevant to
the input, namely "place of birth".

The aforementioned approach has a couple of
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drawbacks. First, all three sub-modules in the ex-
isting pipeline require module-specific labels in
addition to query-triplet pairs for training. How-
ever, in real-world, high-quality training data is
limited, and annotating them requires significant
costs. Second, such a pipeline approach is prone to
error propagation across steps (Singh et al., 2020;
Han et al., 2020). For example, if the span detection
fails, the subsequent steps, such as relation classifi-
cation, are likely to make incorrect predictions as
well. Third, certain modules, that match entities in
queries to KGs or predict relations over KGs, are
usually not generalizable to emerging entities and
relations and cannot be applied to different KGs. It
would be preferable to have a method that does not
require KG-specific training and inference.

To tackle these limitations, we propose to di-
rectly retrieve the relevant triplets related to a natu-
ral language query by computing their similarities
over a shared representation space (see Figure 1b).
The design of our direct retrieval framework is
motivated by a pioneering work of open-domain
question answering with documents (Karpukhin
et al., 2020), which showed the possibility of dense
retrieval with simple vector similarities between
the question and document embeddings. However,
in contrast to the document retrieval scenario where
documents have sufficient contexts to embed, it is
unclear whether the LM can still effectively em-
bed facts represented in the short triplet form for
retrieval. Also, compared to the document retrieval
which additionally requires a reader to extract only
the relevant piece of knowledge, our fact retriever
itself can directly provide the relevant knowledge.

To realize our fact retriever, we train it by maxi-
mizing similarities between representations of rel-
evant pairs of input texts and triplets while min-
imizing irrelevant pairs, where we use LMs for
encoding them. We note that this process requires
only text-triplet pairs without using extra labels,
unlike the conventional pipeline approach for fact
retrieval. After training, we index all triplets in the
KG with the trained encoder in an offline manner,
and, given the input query, we return the nearest
triplets over the embedding space. This procedure
simplifies the conventional three steps for retriev-
ing facts from KGs into one. To further efficiently
search the relevant triplets, we approximate the
similarity calculation with vector quantization and
hierarchical search based on clustering (Johnson
et al., 2021). We further note that, since we embed

triplets using the LM, our retriever can generalize
to different KGs without any modification, unlike
some conventional retrieval systems that require
additional training to learn new KG schema about
distinct entities and relations types. We refer to our
framework as Direct Fact Retrieval (DiFaR).

We experimentally demonstrate that our direct
retrieval on KGs works well; however, the fact
represented in the triplet form has a limited con-
text, since it consists of only two entities and one
relation. Also, similarity calculation with the in-
dependently represented input text and triplets is
arguably simple, and might be less effective. There-
fore, to further improve the retriever performance,
we additionally use a reranker, whose goal is to
calibrate the ranks of retrieved triplets for the input
text. In particular, we first retrieve k nearest facts
with the direct retriever, and then use another LM
which directly measures the similarity by encoding
the input text and the triplet simultaneously. More-
over, another objective of the reranker is to filter
out irrlevant triplets, which are the most confusing
ones in the embedding space of the direct retriever.
Therefore, to effectively filter them, we train the
reranker to minimize similarities between the input
text and the most nearest yet irrelevant triplets.

We evaluate our DiFaR framework on fact re-
trieval tasks across two different domains of ques-
tion answering and dialogue, whose goals are to
retrieve relevant triplets in response to the given
query. The experimental results show that our Di-
FaR framework outperforms relevant baselines that
use conventional pipeline approaches to retrieve
facts on KGs, and also show that our reranking strat-
egy significantly improves retrieval performances.
The detailed analyses further support the efficacy
of our DiFaR framework, with its great simplicity.

Our contributions in this work are as follows:

• We present a novel direct fact retrieval (Di-
FaR) framework from KGs, which leverages
only the representational similarities between
the query and triplets, simplifying the con-
ventional three steps: entity detection, disam-
biguation, and relation classification, into one.

• We further propose a reranking strategy, to
tackle a limitation of little context in facts, for
direct knowledge retrieval, which is trained
with samples confused by the direct retriever.

• We validate our DiFaR on fact retrieval tasks,
showing that it significantly outperforms base-
lines on unsupervised and supervised setups.
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2 Background and Related Work

Knowledge Graphs Knowledge Graphs (KGs)
are factual knowledge sources (Bollacker et al.,
2008; Vrandecic and Krötzsch, 2014), containing
a large number of facts, represented in a sym-
bolic triplet form: (head entity, relation, tail entity).
Since some natural language applications require
factual knowledge (Schneider et al., 2022), existing
literature proposes to use knowledge in KGs, and
sometimes along with language models (LMs) (De-
vlin et al., 2019). To mention a few, in question
answering domains, facts in KGs can directly be
answers for knowledge graph question answering
tasks (Lukovnikov et al., 2017; Chakraborty et al.,
2019), but also they are often augmented to LMs
to generate knowledge-grounded answers (Zhang
et al., 2019; Kang et al., 2022a). Similarly, in di-
alogue generation, some existing work augments
LMs with facts from KGs (Galetzka et al., 2021;
Kang et al., 2022b). However, prior to utilizing
facts in KGs, fact retrieval – selection of facts
relevant to the input context – should be done in
advance, whose results substantially affect down-
stream performances. In this work, we propose a
conceptually simple yet effective framework for
fact retrieval, motivated by information retrieval.

Information Retrieval The goal of most infor-
mation retrieval work is to retrieve relevant docu-
ments in response to a query (e.g., question). Early
work relies on term-based matching algorithms,
which count lexical overlaps between the query and
documents, such as TF-IDF and BM25 (Robertson
et al., 1994; Robertson and Zaragoza, 2009). How-
ever, they are vulnerable to a vocabulary mismatch
problem, where semantically relevant documents
are lexically different from queries (Nogueira et al.,
2019; Jeong et al., 2021). Due to such the issue,
recently proposed work instead uses LMs (Devlin
et al., 2019; Liu et al., 2019) to encode queries and
documents, and uses their representational similar-
ities over a latent space (Karpukhin et al., 2020;
Xiong et al., 2021; Qu et al., 2021). They suggest
their huge successes are due to the effectiveness of
LMs in embedding documents. However, they fo-
cus on lengthy documents having extensive context,
and it is unclear whether LMs can still effectively
represent each fact, succinctly represented with two
entities and one relation in the triplet form, for its
retrieval. In this work, we explore this new direc-
tion by formulating the fact retrieval problem as the
information retrieval problem done for documents.

Knowledge Retrieval from KGs Since KGs
have a large number of facts, it is important to
bring only the relevant piece of knowledge given
an input query. To do so, one traditional approach
uses neural semantic parsing-based methods (Yih
et al., 2015; Dong and Lapata, 2016; Bao et al.,
2016; Luo et al., 2018) aiming to translate natural
language inputs into logical query languages, such
as SPARQL1 and λ-DCS (Liang, 2013), executable
over KGs. However, they have limitations in re-
quiring additional labels and an understanding of
logical forms of queries. Another approach is to
use a pipeline (Bordes et al., 2014; Hao et al., 2017;
Mohammed et al., 2018; Chen et al., 2019; Wang
et al., 2021) consisting of three subtasks: entity
span detection, entity disambiguation, and relation
classification. However, they similarly require ad-
ditional labels on training each subcomponent, and
this pipeline approach suffers from errors that are
propagated from previous steps (Singh et al., 2020;
Han et al., 2020). While recent work (Oguz et al.,
2022) proposes to retrieve textual triplets from KGs
based on their representational similarities to the in-
put text with the information retrieval mechanism,
they still rely on entity linking (e.g., span detection
and entity disambiguation) first, thus identically
having limitations of the pipeline approach. An-
other recent work (Ma et al., 2022) merges a set of
facts associated with each entity into a document
and performs document-level retrieval. However,
the document retrieval itself can be regarded as en-
tity linking, and also the overall pipeline requires
an additional reader to extract only the relevant en-
tity in retrieved documents. In contrast to them, we
directly retrieve facts from the input query based
on their representational similarities, which simpli-
fies the conventional three-step approach including
entity linking into one single retrieval step.

3 DiFaR: Direct Fact Retrieval

3.1 Preliminaries

We formally define a KG and introduce a conven-
tional mechanism for retrieving facts from the KG.

Knowledge Graphs Let E be a set of entities and
R be a set of relations. Then, one particular fact is
defined as a triplet: t = (eh, r, et) ∈ E × R × E ,
where eh and et are head and tail entities, respec-
tively, and r is a relation between them. Also, a
knowledge graph (KG) G is defined as a set of fac-

1https://www.w3.org/TR/rdf-sparql-query/
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tual triplets: G = {(eh, r, et)} ⊆ E ×R×E . Note
that this KG is widely used as a useful knowledge
source for many natural language applications, in-
cluding question answering and dialogue genera-
tion (Oguz et al., 2022; Ma et al., 2022; Galetzka
et al., 2021; Kang et al., 2022b). However, the
conventional mechanism to access facts in KGs is
largely complex, which may hinder its broad appli-
cations, which we describe in the next paragraph.

Existing Knowledge Graph Retrieval The in-
put of most natural language tasks is represented
as a sequence of tokens: x = [w1, w2, . . . , w|x|].
Suppose that, given the input x, t+ is a target triplet
to retrieve2. Then, the objective of the conventional
fact retrieval process for the KG G (Bordes et al.,
2014; Wang et al., 2021) is, in many cases, formal-
ized as the following three sequential tasks:

t+ = argmax
t∈G

pθ(t|e,x,G)pφ(e|m,x)pψ(m|x), (1)

where pψ(m|x) is the model for mention detec-
tion with m as the detected entity mention within
the input x, pφ(e|m,x) is the model for entity dis-
ambiguation, and pθ(t|e,x,G) is the model for re-
lation classification, all of which are individually
parameterized by φ, ψ, and θ, respectively.

However, there is a couple of limitations in such
the three-step approaches. First, they are vulnera-
ble to the accumulation of errors, since, for exam-
ple, if the first two steps consisting of span detec-
tion and entity disambiguation are wrong and we
are ending up with the incorrect entity irrelevant to
the given query, we cannot find the relevant triplet
in the final relation prediction stage. Second, due
to their decomposed structures, three sub-modules
are difficult to train in an end-to-end fashion, while
requiring labels for training each sub-module. For
example, to train pψ(m|x) that aims to predict the
mention boundary of the entity within the input text,
they additionally require annotated pairs of the in-
put text and its entity mentions: {(x,m)}. Finally,
certain modules are usually limited to predicting
entities E and relations R specific to the particular
KG schema, observed during training. Therefore,
they are not directly applicable to unseen entities
and relations, but also to different KGs.

3.2 Direct Knowledge Graph Retrieval
To tackle the aforementioned challenges of the ex-
isting fact retrieval approaches on KGs, we present

2For the sake of simplicity, we consider one triplet t+ for
each input; the retrieval target can be a set of triplets

{
t+

}
.

the direct knowledge retrieval framework. In par-
ticular, our objective is simply formulated with the
single sentence encoder model Eθ without intro-
ducing extra variables (e.g., m and e), as follows:

t+ = argmax
t∈G

f(Eθ(x), Eθ(t)), (2)

where f is a non-parametric scoring function that
calculates the similarity between the input text
representation Eθ(x) and the triplet representa-
tion Eθ(t), for example, by using the dot product.
Note that, in Equation 2, we use the sentence en-
coder Eθ to represent the triplet t. To do so, we
first symbolize the triplet as a sequence of tokens:
t = [w1, w2, . . . , w|t|], which is constructed by en-
tity and relation tokens, and the separation token
(i.e., a special token, [SEP]) between them. Then,
we simply forward the triplet tokens to Eθ to ob-
tain the triplet representation. While we use the
single model for encoding both input queries and
triplets, we might alternatively represent them with
different encoders, which we leave as future work.

Training After formalizing the goal of our direct
knowledge retrieval framework in Equation 2, the
next step is to construct the training samples and the
optimization objective to train the model (i.e., Eθ).
According to Equation 2, the goal of our model is
to minimize distances between the input text and
its relevant triplets over an embedding space, while
minimizing distances of irrelevant pairs. There-
fore, following the existing dense retrieval work
for documents (Karpukhin et al., 2020), we use a
contrastive loss as our objective to generate an ef-
fective representation space, formalized as follows:

min
θ

− log
exp(f(Eθ(x), Eθ(t

+)))∑
(x,t)∈τ exp(f(Eθ(x), Eθ(t)))

, (3)

where τ contains a set of pairs between the input
text and all triplets in the same batch. In other
words, (x, t+) ∈ τ is the positive pair to maximize
the similarity, whereas, others are negative pairs to
minimize. Also, exp(·) is an exponential function.

Inference During the inference stage, given the
input text x, the model should return the relevant
triplets, whose embeddings are closest to the input
text embedding. Note that, since Eθ(x) and Eθ(t)
in Equation 2 are decomposable, to efficiently do
that, we represent and index all triplets in an offline
manner. Note that, we use the FAISS library (John-
son et al., 2021) for triplet indexing and similarity
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calculation, since it provides the extremely efficient
search logic, also known to be applicable to billions
of dense vectors; therefore, suitable for our fact re-
trieval from KGs. Moreover, to further reduce the
search cost, we use the approximated neighborhood
search algorithm, namely Hierarchical Navigable
Small World Search with Scalar Quantizer. This
mechanism not only quantizes the dense vectors to
reduce the memory footprint, but also builds the
hierarchical graph structures to efficiently find the
nearest neighborhoods with few explorations. We
term our Direct Fact Retrieval method as DiFaR.

3.3 Reranking for Accurate Fact Retrieval

The fact retrieval framework outlined in Section 3.2
simplifies the conventional three subtasks used to
access the knowledge into the single retrieval step.
However, contrary to the document retrieval case,
the fact is represented with the most compact triplet
form, which consists of only two entities and one
relation. Therefore, it might be suboptimal to rely
on the similarity, calculated by the independently
represented input text and triplets as in Equation 2.
Also, it is significantly important to find the correct
triplet within the small k (e.g., k = 1) of the top-k
retrieved triplets, since, considering the scenario
of augmenting LMs with facts, forwarding several
triplets to LMs yields huge computational costs.

To tackle such challenges, we propose to further
calibrate the ranks of the retrieved triplets from our
DiFaR framework. Specifically, we first obtain the
k nearest facts in response to the input query over
the embedding space, by using the direct retrieval
mechanism defined in Section 3.2. Then, we use
another LM, Eφ, that returns the similarity score
of the pair of the input text and the retrieved triplet
by encoding them simultaneously, unlike the fact
retrieval in Equation 2. In other words, we first con-
catenate the token sequences of the input text and
the triplet: [x, t], where [·] is the concatenation op-
eration, and then forward it to Eφ([x, t]). By doing
so, the reranking modelEφ can effectively consider
token-level relationships between two inputs (i.e.,
input queries and triplets), which leads to accurate
calibration of the ranks of retrieved triplets from
DiFaR, especially for the top-k ranks with small k.

For training, similar to the objective of DiFaR
defined in Section 3.2, we aim to maximize the
similarities of positive pairs: {(x, t+)}, while mini-
mizing the similarities of irrelevant pairs: {(x, t)}\
{(x, t+)}. To do so, we use a binary cross-entropy

loss. However, contrary to the previous negative
sampling strategy defined in Section 3.2 where we
randomly sample the negative pairs, in this reranker
training, we additionally manipulate them by using
the initial retrieval results from our DiFaR. The
intuition here is that the irrelevant triplets, included
in the k nearest neighbors to the input query, are
the most confusing examples, which are yet not
filtered by the DiFaR model. Hereat, the goal of
the reranking strategy is to further filter them by re-
fining the ranks of the k retrieved triplets; therefore,
to achieve this goal, we include them as the nega-
tive samples during reranker training. Formally, let
τ̃ =

{
(x, t̃)

}
is a set of pairs of the input query x

and its k nearest facts retrieved from DiFaR. Then,
the negative samples for the reranker are defined by
excluding the positive pairs, formalized as follows:
τ̃ \ {(x, t+)}. Note that constructing the negative
samples with retrieval at every training iteration is
costly; therefore, we create them at intervals of sev-
eral epochs (e.g., ten), but also we use only a subset
of triplets in KGs during retrieval. Our framework
with the reranking strategy is referred to as Direct
Fact Retrieval with Reranking (DiFaR2).

4 Experimental Setups

We explain datasets, models, metrics, and imple-
mentations. For additional details, see Appendix A.

4.1 Datasets

We validate our Direct Fact Retrieval (DiFaR) on
fact retrieval tasks, whose goal is to retrieve rele-
vant triplets over KGs given the query. We use four
datasets on question answering and dialogue tasks.

Question Answering The goal of KG-based
question answering (QA) tasks is to predict factual
triplets in response to the given question, where pre-
dicted triplets are direct answers. For this task, we
use three datasets, namely SimpleQuestions (Bor-
des et al., 2015), WebQuestionsSP (WebQSP) (Be-
rant et al., 2013; Yih et al., 2016), and Mintaka (Sen
et al., 2022). Note that SimpleQuestions and We-
bQSP are designed with the Freebase KG (Bol-
lacker et al., 2008), ad Mintaka is designed with
the Wikidata KG (Vrandecic and Krötzsch, 2014).

Dialogue In addition to QA, we evaluate our Di-
FaR on KG-based dialogue generation, whose one
subtask is to retrieve relevant triplets on the KG
that provides factual knowledge to respond to a
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Table 1: Main results on the question answering domain for SimpleQuestions, WebQSP, and Mintaka datasets. We emphasize
the best scores in bold, except for the incomparable model: Retrieval with Gold Entities, which uses labeled entities in inputs.

SimpleQuestions WebQSP Mintaka

Types Methods MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

Unsupervised

Retrieval with Gold Entities 0.7213 0.5991 0.9486 0.5324 0.4355 0.7402 0.1626 0.0978 0.2969

Retrieval with spaCy 0.3454 0.2917 0.4437 0.3530 0.2856 0.4863 0.0914 0.0585 0.1622
Retrieval with GENRE 0.1662 0.1350 0.2234 0.3099 0.2498 0.4363 0.0935 0.0640 0.1540
Retrieval with BLINK 0.5142 0.4276 0.6766 0.4853 0.3938 0.6694 0.1350 0.0850 0.2430
Retrieval with ReFinED 0.4841 0.4047 0.6283 0.5008 0.4055 0.6953 0.1312 0.0831 0.2325
Factoid QA by Retrieval 0.7835 0.6953 0.9304 0.3933 0.3089 0.5470 0.1350 0.0836 0.2344

DiFaR (Ours) 0.7070 0.5872 0.9259 0.5196 0.4130 0.7352 0.1590 0.0895 0.3043
DiFaR2 (Ours) 0.8361 0.7629 0.9470 0.5441 0.4321 0.7602 0.2077 0.1348 0.3595

Supervised

Retrieval with Gold Entities 0.8007 0.7094 0.9477 0.6048 0.5079 0.7794 0.2705 0.1987 0.4070

Retrieval with spaCy 0.3789 0.3380 0.4453 0.3963 0.3272 0.5162 0.1367 0.1019 0.2019
Retrieval with GENRE 0.1921 0.1718 0.2255 0.3617 0.3014 0.4696 0.1346 0.1005 0.1964
Retrieval with BLINK 0.5679 0.5008 0.6766 0.5483 0.4571 0.7052 0.2075 0.1530 0.3157
Retrieval with ReFinED 0.5349 0.4765 0.6279 0.5707 0.4754 0.7377 0.2106 0.1562 0.3166
Factoid QA by Retrieval 0.8590 0.8051 0.9293 0.5253 0.4546 0.6486 0.1548 0.1179 0.2179

DiFaR (Ours) 0.7904 0.6986 0.9382 0.6102 0.5071 0.7927 0.3049 0.2138 0.4856
DiFaR2 (Ours) 0.8992 0.8583 0.9576 0.7189 0.6528 0.8385 0.4189 0.3367 0.5847

user’s conversation query. We use the OpenDialKG
data (Moon et al., 2019), designed with Freebase.

Knowledge Graphs Following Diefenbach et al.
(2017) and Saffari et al. (2021), we use the Wiki-
data KG (Vrandecic and Krötzsch, 2014) for our
experiments on QA, and use their dataset process-
ing settings. For OpenDialKG, we use Freebase.

4.2 Baselines and Our Models
We compare our DiFaR framework against other
relevant baselines that involve subtasks, such as
entity detection, disambiguation, and relation pre-
diction. Note that most existing fact retrieval work
either uses labeled entities in queries, or uses addi-
tional labels for training subcomponents; therefore,
they are not comparable to DiFAR that uses only
pairs of input texts and relevant triplets. For evalu-
ations, we include models categorized as follows:

Retrieval with Entity Linking: It predicts rela-
tions over candidate triplets associated with identi-
fied entities by the entity linking methods, namely
spaCy (Honnibal et al., 2020), GENRE (De Cao
et al., 2021), BLINK (Wu et al., 2020; Li et al.,
2020), and ReFinED (Ayoola et al., 2022) for Wiki-
data; GrailQA (Gu et al., 2021) for Freebase.

Factoid QA by Retrieval: It retrieves entities
and relations independently based on their similari-
ties with the input query (Lukovnikov et al., 2017).

Our Models: Our Direct Knowledge Retrieval
(DiFaR) directly retrieves the nearest triplets to
the input text on the latent space. DiFaR with
Reranking (DiFaR2) is also ours, which includes
a reranker to calibrate retrieved results.

Retrieval with Gold Entities: It uses labeled
entities in inputs and retrieves triplets based on their
associated triplets. It is incomparable to others.

4.3 Evaluation Metrics

We measure the retrieval performances of models
with standard ranking metrics, which are calculated
by ranks of correctly retrieved triplets. In particular,
we use Hits@K which measures whether retrieved
Top-K triplets include a correct answer or not, and
Mean Reciprocal Rank (MRR) which measures
the rank of the first correct triplet for each input
text and then computes the average of reciprocal
ranks of all results. Following exiting document
retrieval work (Xiong et al., 2021; Jeong et al.,
2022), we consider top-1000 retrieved triplets when
calculating MRR, since considering ranks of all
triplets in KGs are computationally prohibitive.

4.4 Implementation Details

We use a distilbert3 as a retriever for all models,
and a lightweight MiniLM model4 as a reranker,
both of which are pre-trained with the MSMARCO
dataset (Nguyen et al., 2016). During reranking, we
sample top-100 triplets retrieved from DiFaR. We
use off-the-shelf models for unsupervised settings,
and further train them for supervised settings.

5 Experimental Results and Analyses

Main Results We first conduct experiments on
question answering domains, and report the results
in Table 1. As shown in Table 1, our DiFaR with

3
https://huggingface.co/sentence-transformers/msmarco-distilbert-base-v3

4
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2
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Table 2: Main results on the dialogue domain for the Open-
DialKG dataset. We emphasize the best scores in bold except
for Retrieval with Gold Entities, which uses labeled entities.

OpenDialKG

Types Methods MRR Hits@1 Hits@10

Unsupervised

Retrieval with Gold Entities 0.2511 0.1560 0.4683

Retrieval with GrailQA 0.2051 0.1271 0.3745
Factoid QA by Retrieval 0.1977 0.0892 0.4231

DiFaR (Ours) 0.2396 0.1395 0.4424
DiFaR2 (Ours) 0.2637 0.1603 0.4744

Supervised

Retrieval with Gold Entities 0.2750 0.1495 0.5745

Retrieval with GrailQA 0.2217 0.1198 0.4436
Factoid QA by Retrieval 0.2042 0.1266 0.3587

DiFaR (Ours) 0.2755 0.1405 0.5547
DiFaR2 (Ours) 0.4784 0.3535 0.7380

Reranking (DiFaR2) framework significantly out-
performs all baselines on all datasets across both
unsupervised and supervised experimental settings
with large margins. Also, we further experiment
on dialogue domain, and report results in Table 2.
As shown in Table 2, similar to the results on QA
domains, our DiFaR2 framework outperforms the
relevant baselines substantially. These results on
two different domains demonstrate that our DiFaR2

framework is highly effective in fact retrieval tasks.
To see the performance gains from our reranking

strategy, we compare the performances between
our model variants: DiFaR and DiFaR2. As shown
in Table 1 and Table 2, compared to DiFaR, DiFaR2

including the reranker brings huge performance im-
provements, especially on the challenging datasets:
Mintaka and OpenDialKG. However, we consis-
tently observe that our DiFaR itself can also show
superior performances against all baselines except
for the model of Factoid QA by Retrieval on the
SimpleQuestions dataset. The inferior performance
of our DiFaR on this SimpleQuestions dataset is
because, its samples are automatically constructed
from facts in KGs; therefore, it is extremely simple
to extract entities and predict relations in response
to the input query. On the other hand, our DiFaR
framework sometimes outperforms the incompa-
rable model: Retrieval with Gold Entities, which
uses the labeled entities in the input queries. This
is because this model is restricted to retrieve the
facts that should be associated with entities in input
queries; meanwhile, our DiFaR is not limited to
query entities thanks to the direct retrieval scheme.

Analyses on Zero-Shot Generalization Our Di-
FaR can be generalizable to different datasets with
the same KG, but also to ones with other KGs
without any modifications. This is because it re-
trieves triplets based on their text-level similarities
to input queries and does not leverage particular

Table 3: Zero-shot transfer learning results. We use models
trained on the WebQSP dataset with the Wikidata KG not only
for SimpleQuestions and Mintaka datasets with the same KG,
but also for the WebQSP dataset with the different Freebase
KG. We use MRR as a metric, and N/A denotes not available.

Wikidata Freebase

Methods SimpleQuestions Mintaka WebQSP

Retrieval with Gold Entities 0.7994 0.1950 0.6000

Retrieval with BLINK 0.5704 0.1617 N/A
Retrieval with ReFinED 0.5389 0.1591 N/A
Factoid QA by Retrieval 0.8014 0.1431 0.4239

DiFaR (Ours) 0.7812 0.2063 0.5913
DiFaR2 (Ours) 0.8244 0.2769 0.6324
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Figure 2: Breakdown results by single and multi-hops. We
report ratios of single and multi-hops samples on the left side
of each subfigure, and Hits@1 of DiFaR and DiFaR2 across
single and multi-hops on the middle and right. We exclude the
SimpleQuestions dataset that consists of single-hop questions.

schema of entities and relations, unlike the existing
entity linking methods. To demonstrate them, we
perform experiments on zero-shot transfer learn-
ing, where we use the model, trained on the We-
bQSP dataset with the Wikidata KG, to different
datasets with the same KG and also to ones with
the different Freebase KG. As shown in Table 3,
our DiFaR frameworks are effectively generaliz-
able to different datasets and KGs; meanwhile, the
pipeline approaches involving entity linking are not
generalizable to different KGs, and inferior to ours.

Analyses on Single- and Multi-Hops To see
whether our DiFaR frameworks can also perform
challenging multi-hop retrieval that requires select-
ing triplets not directly associated with entities in
input queries, we breakdown the performances by
single- and multi-hop type queries. As shown in
Figure 2, our DiFaR can directly retrieve relevant
triplets regardless of whether they are associated
with entities in input queries (single-hop) or not
(multi-hop), since it does not rely on entities in
queries for fact retrieval. Also, we observe that our
reranking strategy brings huge performance gains,
especially on multi-hop type queries. However, due
to the intrinsic complexity of multi-hop retrieval,
its performances are relatively lower than perfor-
mances in single-hop cases. Therefore, despite the
fact that the majority of queries are answerable with
single-hop retrieval and that our DiFaR can handle
multi-hop queries, it is valuable to further extend
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Table 4: Retrieval examples for complex questions, on the
challenging Mintaka dataset. We highlight the related phrases
across the question and the triplet in yellow and green colors.

Question: What religion was the us president in 1963?
Retrieved Triplet: (Robert F. Kennedy, religion, Catholicism)
Answer: Catholicism
Question: Who commanded the allied invasion of western Europe at Normandy
and was an American president?
Retrieved Triplet: (Normandy landings, participant, Dwight D. Eisenhower)
Answer: Dwight D. Eisenhower
Question: Which former Chicago Bull shooting guard was also selected to play
on the 1992 US basketball team?
Retrieved Triplet: (1992 US men’s basketball team, has part, Michael Jordan)
Answer: Michael Jordan

13510 30 50 100
Top-K Retrieved Facts

0

10

20

30

40

50

60

R
el

at
iv

e 
Im

pr
ov

em
en

t (
%

)

MRR

13510 30 50 100
Top-K Retrieved Facts

0

10

20

30

40

50

60
Hits@1

13510 30 50 100
Top-K Retrieved Facts

0

25

50

75

100

125

150
Time

SimpleQuestions WebQSP Mintaka

Figure 3: Performances and efficiencies of DiFaR2 with
varying K, where we change the number of Top-K retrieved
triplets when leveraging the reranking strategy. We report re-
sults with the relative improvement (%) to our DiFaR without
reranking. We report the time with average over 30 runs.

the model for multi-hop, which we leave as future
work. We also provide examples of facts retrieved
by our DiFaR framework in Table 4. As shown in
Table 4, since LMs, that is used for encoding both
the question and the triplets for retrieval, might
learn background knowledge about them during
pre-trainnig, our DiFaR framework can directly re-
trieve relevant triplets even for complex questions.
For instance, in the first example of Table 4, the LM
already knows who was the us president in 1963,
and directly retrieves whose religion. Additionally,
we provide more retrieval examples of our DiFaR
framework in Appendix B.2 with Table 6 for both
single- and multi-hop questions.

Analyses on Reranking with Varying K While
we show huge performance improvements with our
reranking strategy in Table 1 and Table 2, its perfor-
mances and efficiencies depend on the number of
retrieved Top-K triplets. Therefore, to further ana-
lyze it, we vary the number of K, and report the per-
formances and efficiencies in Figure 3. As shown
in Figure 3, the performances are rapidly increas-
ing until Top-10 and saturated after it. Also, the
time for reranking is linearly increasing when we
increase the K values, and, in Top-10, the reranking
mechanism takes only less than 20% time required
for the initial retrieval. These results suggest that it
might be beneficial to set the K value as around 10.

Sensitivity Analyses on Architectures To see
different architectures of retrievers and rerankers
make how many differences in performances, we

Table 5: Sensitivity analyses on architectures, where we
change the backbones of retriever and reranker in our DiFaR2.
MSMARCO in the model name indicates it is pre-trained by
the MSMARCO dataset, and we report results on the WebQSP.

Types Models MRR Hits@1 Hits@10

Retriever
DistilBERT 0.5983 0.4963 0.7810
MSMARCO-TAS-B 0.6051 0.4963 0.7844
MSMARCO-Distil 0.6102 0.5071 0.7927

Reranker
MiniLM 0.6675 0.5945 0.7927
MSMARCO-TinyBERT 0.7068 0.6420 0.8177
MSMARCO-MiniLM 0.7189 0.6528 0.8385
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Figure 4: Entity linking results, where we measure the per-
formances on benchmark datasets with Wikidata and Freebase
KGs. Note that entity mentions of the SimpleQuestions dataset
are not available; therefore, we cannot fine-tune existing entity
linkers, which additionally require mention labels, unlike ours.

perform sensitivity analyses by varying their back-
bones. We use available models in the huggingface
model library5. As shown in Table 5, we observe
that the pre-trained backbones by the MSMARCO
dataset (Nguyen et al., 2016) show superior per-
formances compared to using the naive backbones,
namely DistilBERT and MiniLM, on both retriev-
ers and rerankers. Also, performance differences
between models with the same pre-trained dataset
(e.g., MSMARCO-TAS-B and MSMARCO-Distil)
are marginal. These two results suggest that the
knowledge required for document retrieval is also
beneficial to fact retrieval, and that DiFaR frame-
works are robust across different backbones.

Analyses on Entity Linking While our DiFaR
framework is not explicitly trained to predict entity
mentions in the input query and their ids in the KG,
during the training of our DiFaR, it might learn the
knowledge on matching the input text to its entities.
To demonstrate it, we measure entity linking perfor-
mances by checking whether the retrieved triplets
contain the labeled entities in the input query. As
shown in Figure 4, our DiFaR surprisingly outper-
forms entity linking models. This might be because
there are no accumulation of errors in entity linking
steps, which are previously done with mention de-
tection and entity disambiguation, thanks to direct
retrieval with end-to-end learning; but also the fact
in the triplet form has more beneficial information
to retrieve contrary to the entity retrieval.

5https://huggingface.co/models
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6 Conclusion

In this work, we focused on the limitations of the
conventional fact retrieval pipeline, usually con-
sisting of entity mention detection, entity disam-
biguation and relation classification, which not only
requires additional labels for training each subcom-
ponent but also is vulnerable to the error propaga-
tion across submodules. To this end, we proposed
the extremely simple Direct Fact Retrieval (DiFaR)
framework. During training, it requires only pairs
of input texts and relevant triplets, while, in infer-
ence, it directly retrieves relevant triplets based on
their representational similarities to the given query.
Further, to calibrate the ranks of retrieved triplets,
we proposed to use a reranker. We demonstrated
that our DiFaR outperforms existing fact retrieval
baselines despite its great simplicity, but also ours
with the reranking strategy significantly improves
the performances; for the first time, we revealed
that fact retrieval can be easily yet effectively done.
We believe our work paves new avenues for fact
retrieval, which leads to various follow-up work.

Limitations

In this section, we faithfully discuss the current lim-
itations and potential avenues for future research.

First of all, while one advantage of our Direct
Fact Retrieval (DiFaR) is its simplicity, this model
architecture is arguably simple and might be less
effective in handling very complex queries (Sen
et al., 2022). For example, as shown in Figure 2,
even though our DiFaR framework can handle the
input queries demanding multi-hop retrieval, the
performances on such queries are far from perfect.
Therefore, future work may improve DiFaR by in-
cluding more advanced techniques, for example,
further traversing over the KG based on the re-
trieved facts from our DiFaR. Also, while we use
only the text-based similarities between queries
and triplets with LMs, it is interesting to model
triplets over KGs based on their graph structures
and blend their representations with representations
from LMs to generate more effective search space.

Also, we focus on retrieval datasets in English.
Here we would like to note that, in fact retrieval,
most datasets are annotated in English, and, based
on this, most existing work evaluates model per-
formances on English samples. However, handling
samples in various languages is an important yet
challenging problem, and, as future work, one may
extend our DiFaR to multilingual settings.

Ethics Statement

For an input query, our Direct Fact Retrieval (Di-
FaR) framework enables the direct retrieval of the
factual knowledge from knowledge graphs (KGs),
simplifying the conventional pipeline approach con-
sisting of entity detection, entity disambiguation,
and relation classification. However, the perfor-
mance of our DiFaR framework is still not perfect,
and it may retrieve incorrect triplets in response
to given queries. Therefore, for the high-risk do-
mains, such as biomedicine, our DiFaR should be
carefully used, and it might be required to analyze
retrieved facts before making the critical decision.
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A Additional Experimental Setups

Here we provide additional experimental setups.

A.1 Datasets

Question Answering In KG-based question an-
swering datasets, there exist pairs of questions and
their relevant triplets, and we use them for train-
ing and evaluating models. We use the follow-
ing three datasets: SimpleQuestions (Bordes et al.,
2015), WebQuestionsSP (WebQSP) (Berant et al.,
2013; Yih et al., 2016), and Mintaka (Sen et al.,
2022), and here we describe them in details. First
of all, the SimpleQuestions dataset is designed with
the Freebase KG (Bollacker et al., 2008), which
consists of 19,481, 2,821, and 5,622 samples on
training, validation, and test sets. Similarly, the
WebQSP dataset, which is a refined from the We-
bQuestions dataset by filtering out samples with
invalid annotations, is annotated with the Freebase
KG, consisting of 2,612 and 1,375 samples on train-
ing and test sets, and we further sample 20% of
training samples for validation. Lastly, the Mintaka
dataset is recently designed for complex question
answering, which is collected from crowdsourcing
and annotated with the Wikidata KG (Vrandecic
and Krötzsch, 2014). Among eight different lan-
guages, we use questions in English, which consist
of 14,000, 2,000, and 4,000 samples for training,
validation, and test sets, respectively.

Dialogue Similar to the KG-based question an-
swering datasets, the dataset on KG-based dialogue
generation domain has pairs of the input query and
its relevant triplets, where the input query consists
of the user’s utterance and dialogue history, and
the annotated triplets are the useful knowledge
source to answer the query. For this dialogue do-
main, we use the OpenDialKG dataset (Moon et al.,
2019), which is collected with two parallel corpora
of open-ended dialogues and a Freebase KG. We
randomly split the dataset into training, validation,
and test sets with ratios of 70%, 15%, and 15%,
respectively, and preprocess it following Kang et al.
(2022b), which results in 31,145, 6,722, and 6,711
samples on training, validation, and test sets.

Knowledge Graphs Following experimental se-
tups of Diefenbach et al. (2017) and Saffari et al.
(2021), we use the Wikidata KG (Vrandecic and
Krötzsch, 2014) for our experiments on question
answering, since the Freebase KG (Bollacker et al.,
2008) is outdated, and the recently proposed entity

linking models are implemented with the Wiki-
data, i.e., they are not suitable for the Freebase KG.
Specifically, to use the Wikidata KG for datasets
designed with the Freebase KG (e.g., SimpleQues-
tions and WebQSP), we use available mappings
from the Freebase KG to the Wikidata KG (Diefen-
bach et al., 2017). Also, we use the wikidata dump
of Mar. 07, 2022, and follow the dataset prepro-
cessing setting from Saffari et al. (2021). For the
OpenDialKG dataset, since it does not provide the
Freebase entity ids, we cannot map them to the
Wikidata entity ids using the available entity map-
pings. Therefore, for this dataset, we use original
samples annotated with the Freebase KG.

A.2 Baselines and Our Model

In this subsection, we provide the detailed expla-
nation of models that we use for baselines. Note
that entity linking models are further coupled with
the relation classification module to predict triplets
based on identified entities in input queries. We
begin with the explanations of entity linkers.

spaCy This model (Honnibal et al., 2020) sequen-
tially predicts spans and KG ids of entities based
on the named entity recognition and entity disam-
biguation modules. We use the spaCy v3.46.

GENRE This model (De Cao et al., 2021) first
predicts the entity spans and then generates the
unique entities in an autoregressive manner. Note
that this model is trained for long texts; therefore,
it may not be suitable for handling short queries.

BLINK This model (Wu et al., 2020) retrieves
the entities based on their representational similari-
ties with the input queries, and, before that, entity
mentions in the input should be provided. We use a
model further tuned for questions (Li et al., 2020).

ReFinED This model (Ayoola et al., 2022) per-
forms the entity mention detection and the entity
disambiguation in a single forward pass. We use a
model further fine-tuned for questions.

GrailQA Unlike the above entity linkers that are
trained for the Wikidata KG, this model (Gu et al.,
2021) is trained to predict entities in the Freebase
KG. This model performs the entity detection and
the disambiguation sequentially, which is similar
to the entity linking mechanism of spaCy.

6https://spacy.io/api/entitylinker
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Factoid QA by Retrieval This model is a base-
line (Lukovnikov et al., 2017) that individually
retrieves the entities and relations based on their
embedding-level similarities to input queries. Then,
it merges the retrieved entities and relations with
the KG-specific schema to construct the triplets.

DiFaR This is our fact retrieval framework that
directly retrieves the facts on KGs based on their
representational similarities to the input queries.

DiFaR2 This is our fact retrieval framework with
the proposed reranking strategy, where we further
calibrate the retrieved results from DiFaR.

Retrieval with Gold Entities This is an incom-
parble model to others, which uses labeled entities
in input queries to predict relations based on them.

A.3 Implementation Details
In this subsection, we provide additional imple-
mentation details that are not discussed in Sec-
tion 4.4. In particular, we use the distilbert (Sanh
et al., 2019)7 as the retriever, and it consists of the
66M parameters. Also, for the reranker, we use
the MiniLM model (Wang et al., 2020)8, which
consists of the 22M parameters. For supervised
learning experiments, we train all models for 30
epochs, with a batch size of 512 for question an-
swering and 32 for dialogue, and a learning rate
of 2e-5. Also, we optimize all models using an
AdamW optimizer (Loshchilov and Hutter, 2019).
We implement all models based on the following
deep learning libraries: PyTorch (Paszke et al.,
2019), Transformers (Wolf et al., 2020), Sentence-
Transformers (Reimers and Gurevych, 2019), and
BEIR (Thakur et al., 2021). For computing re-
sources, we train and run all models with four
GeForce RTX 2080 Ti GPUs and with Intel(R)
Xeon(R) Gold 6240 CPU @ 2.60GHz having 72
processors. Also, training of our DiFaR framework
takes less than one day. Note that we report all
results with the single run, since our DiFaR frame-
work significantly outperforms all baselines, but
also it is costly to conduct multiple run experiments
in the information retrieval experiment setting.

7https://huggingface.co/sentence-transformers/msmarco-
distilbert-base-v3

8https://huggingface.co/cross-encoder/ms-marco-
MiniLM-L-6-v2

B Additional Experimental Results

Here we provide additional experimental results.

B.1 Running Time Efficiency
Note that, while we provide running time compar-
isons between our DiFaR and DiFaR2 in Figure 3,
it might be interesting to see more detailed running
costs required for our dense fact retriever. As de-
scribed in the Inference paragraph of Section 3.2,
we index dense vectors with the Faiss library (John-
son et al., 2021) that supports vector quantization
and clustering for highly efficient search. Specifi-
cally, following the common vector index setting in
previous document retrieval work (Karpukhin et al.,
2020; Lee et al., 2021), we use the HNSW index
type. Please refer to the documentation of the Faiss
library910, if you want to further explore different
index types and their benchmark performances.

We report running time efficiencies on the Open-
DialKG dataset, which are measured on the server
with Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz
having 72 processors (See Section A.3). First of all,
during inference, we can process about 174 queries
per second where we return the top 1,000 facts for
each query. Also, the average time for encoding
and indexing one fact takes about 1 ms, which can
be not only boosted further with more paralleliza-
tion but also done in an online manner. Lastly, the
performance drop of the approximation search with
Faiss from the exact search is only 0.0098 on MRR.

B.2 Additional Retrieval Examples
In this subsection, on top of the retrieval exam-
ples provided in Table 4, we provide the additional
examples of our DiFaR framework in Table 6.

9https://github.com/facebookresearch/faiss
10https://github.com/facebookresearch/faiss/wiki/Indexing-

1M-vectors
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Table 6: Retrieval examples of our DiFaR2 on the Mintaka dataset for both single- and multi-hop questions.

Index Question Question Entities Retrieved Fact Answer Entity
1 Which a series of unfortu-

nate events books were not
published in the 2000s?

A Series of Unfor-
tunate Events

(A Series of Unfortunate
Events, has part, The Bad
Beginning)

The Bad Beginnin

2 Who was the last leader of
the soviet union?

Soviet Union (Soviet Union, head of
state, Mikhail Gorbachev)

Mikhail Gor-
bachev

3 Who was the only u.s. vice
president who is not male?

U.S. vice presi-
dent

(Vice President of the
United States, officeholder,
Kamala Harris)

Kamala Harris

4 Which author has won the
most national book awards
for fiction?

National Book
Awards for Fic-
tion

(National Book Award for
Fiction, winner, Saul Bel-
low)

Saul Bellow

5 Angkor wat can be found in
which country?

Angkor Wat (Angkor Wat, country,
Cambodia)

Cambodia

6 Albany is the capital of
what state?

Albany (Albany, capital of, New
York)

New York

7 Which u.s. president served
the longest in office?

U.S. (United States of Amer-
ica, head of government,
Franklin Delano Roosevelt)

Franklin Delano
Roosevelt

8 Which state has the four
largest cities in the united
states and also does not
share any borders with any
other u.s. states?

United States (United States of America,
contains administrative ter-
ritorial entity, Alaska)

Alaska

9 What man was a famous
american author and also a
steamboat pilot on the mis-
sissippi river?

Mississippi River,
American

(Life on the Mississippi, au-
thor, Mark Twain)

Mark Twain

10 What country participated
in ww ii and also used nu-
clear weapons in combat?

WW II (Allies of the Second World
War, has part, United States
of America)

United States of
America
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(e.g., GPU hours), and computing infrastructure used?
Yes, we report them in Section 4, and Appendix A.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.
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�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Yes, we describe them in Section 4 and Appendix A.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Yes, we clearly provide them in Table 1 and Table 2, as well as in Appendix A.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Yes, we report them in Section 4 and Appendix A.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.
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