
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 983–1001

July 9-14, 2023 ©2023 Association for Computational Linguistics

UniLG: A Unified Structure-aware Framework for Lyrics Generation

Tao Qian1,2, Fan Lou2, Jiatong Shi3, Yuning Wu1, Shuai Guo1, Xiang Yin2, Qin Jin1∗
1Renmin University of China, P.R.China

2ByteDance AI Lab
3Carnegie Mellon University, U.S.A

{qiantao, yuningwu, shuaiguo, qjin}@ruc.edu.cn, tianzhong.t, yinxiang.stephen}@bytedance.com, jiatongs@cs.cmu.edu

Abstract

As a special task of natural language gener-
ation, conditional lyrics generation needs to
consider the structure of generated lyrics1 and
the relationship between lyrics and music. Due
to various forms of conditions, a lyrics gen-
eration system is expected to generate lyrics
conditioned on different signals, such as music
scores, music audio, or partially-finished lyrics,
etc. However, most of the previous works have
ignored the musical attributes hidden behind
the lyrics and the structure of the lyrics. Addi-
tionally, most works only handle limited lyrics
generation conditions, such as lyrics genera-
tion based on music score or partial lyrics, they
can not be easily extended to other generation
conditions with the same framework. In this pa-
per, we propose a unified structure-aware lyrics
generation framework named UniLG. Specif-
ically, we design compound templates that in-
corporate textual and musical information to
improve structure modeling and unify the dif-
ferent lyrics generation conditions. Extensive
experiments demonstrate the effectiveness of
our framework. Both objective and subjective
evaluations show significant improvements in
generating structural lyrics.

1 Introduction

Great progress has been made in natural language
generation (NLG) with pre-trained language mod-
els in recent years (Lewis et al., 2020; Radford
et al., 2019; Brown et al., 2020). Lyrics gener-
ation is also a special task of NLG (Chen and
Lerch, 2020; Gill et al., 2020). Different from gen-
eral natural language, lyrics eventually need to be
presented with music after the composition. This
requires the lyrics to follow song-writing rules (i.e.,
the structure of lyrics), such as clear paragraphs
with chorus and verse concepts. However, most

∗*Corresponding Author.
1The structure of lyrics in our work means that lyrics have

the chorus and verse parts among the sentences.

Figure 1: Example chorus parts of a song. We use different
colors for different beats2 within the bar3 and rhythm patterns
are shown in 4/4 time signatures4. The same melody and
rhythm pattern may repeat several times when meeting the
chorus parts of the song. The melody and rhythm patterns
can hint the correspondences between lyric sentences, e.g. the
same or similar sentences.

previous works ignore the musical concepts be-
hind the lyrics and do not consider the structure
of lyrics (Sheng et al., 2021; Qian et al., 2022).
To explicitly model the structure of lyrics, some
works introduce additional structural labels (e.g.,
sentence-level chorus and verse label), which in-
evitably require much effort for additional human
annotation (Potash et al., 2015; Lu et al., 2019). To
avoid the huge annotation cost, other works either
adopt predefined formats (e.g., the number of sylla-
bles in each sentence) or linguistic tags (e.g., PoS,
Part-of-Speech) to inject structural information (Li
et al., 2020; Castro and Attarian, 2018). Never-
theless, given that those methods cannot directly
indicate the structure of lyrics, the generated lyrics
are still difficult to realize the musical concepts
(e.g., chorus and verse). Moreover, most works
only focus on certain lyrics generation conditions,
such as generating lyrics given music scores or
partially-finished lyrics etc., which hinders the ap-
plication of a lyrics generation model in various
scenarios.

To mitigate the issues in previous works, we
propose a unified structure-aware lyrics genera-

2https://en.wikipedia.org/wiki/Beat_(music)
3https://en.wikipedia.org/wiki/Bar_(music)
44/4 denotes that each beat is a 1/4 note and each bar has

4 beats. To simplify the description, we state our method with
a 4/4 time signature, for it’s widely used in songwriting. The
English version is provided in Appendix I due to space issues.

983

https://en.wikipedia.org/wiki/Beat_(music)
https://en.wikipedia.org/wiki/Bar_(music)

{𝑏!, 𝑏" , … , 𝑏#}

Beat Music Score

Lyric Polished
Lyric

Music Score
with Lyric

Audio

Audio with
Lyric

爱真的需要勇气
来面对流言蜚语
…………

Lyric

UniLG

(Masked) Lyric Bar Beat Segment Intro-position

Compound
Template M/L A			 B			 S			 P			= + + + +

Figure 2: A general overview of our proposed framework.
UniLG establishes relationships between various inputs and
lyrics with the compound template, which enable our frame-
work to generate lyrics conditioned on different signals (e.g.,
audio, music score, etc.).

tion framework named UniLG. As illustrated in
Figure 1, the chorus parts of the songs share the
same melody, so that the corresponding lyrics fol-
low a similar pattern. Such a phenomenon inspires
us that shared musical signals indicate the struc-
ture of lyrics and can be used to infer the relation
across lyrics. Therefore, we design a compound
template (i.e., a sequence of tuples) that incorpo-
rates both textual and musical information to model
the structure of lyrics. The template is designed
with rhythmic concepts in mind, and it can be ex-
tracted from different sources (e.g., audio, music
score, etc.). As shown in Figure 2, the general in-
terface in the template enables UniLG to generate
lyrics based on various conditional signals without
re-training the model. Additionally, we propose
a cycle-consistency loss to enforce the reconstruc-
tion of the musical information from the generated
lyrics to further improves the performance. To
verify our proposed framework, we collect a test
dataset named Song8k with chorus and verse labels
for each sentence. Both objective and subjective
evaluations on the test dataset demonstrate the ef-
fectiveness of our framework.

In summary, the main contributions of this work
are as follows:

• we propose a unified structure-aware lyrics
generation framework named UniLG;

• we design a compound template that incor-
porates textual and musical information to
achieve structure modeling and enable lyrics
generation in various conditions;

• we introduce a cycle-consistency loss to val-
idate the impact of musical information and
further boost the performance;

• extensive experiments demonstrate the effec-
tiveness of our method that achieves better
structural modeling in lyrics generation.

2 Related Work

The existing lyrics generation approaches can be
categorized into two types: 1) free lyrics genera-
tion, which generates lyrics either from scratch or
based on some prefix prompts (Radford et al., 2019;
Brown et al., 2020); and 2) conditional lyrics gen-
eration, which generates lyrics conditioned on con-
trol signals (e.g., music score, audio, etc.) (Saeed
et al., 2019; Fan et al., 2019). In this work, we
focus on conditional lyrics generation.

Recent works have shown the effectiveness of
pre-trained language models in NLG (Lewis et al.,
2020; Brown et al., 2020; Radford et al., 2019). As
a special task of NLG, lyrics generation also fol-
lows the trend of using pre-trained language mod-
els. However, the pre-trained language models are
trained with general text corpus and fail to consider
the structure of lyrics (e.g., chorus and verse parts
of the song), which is a salient feature for lyrics.
Several works adopt pre-trained Transformer vari-
ants, such as GPT-2, as the backbone to improve
the performance of lyrics generation but ignore the
structure of lyrics as well (Zhang et al., 2020; Lee
et al., 2019; Bao et al., 2019; Sheng et al., 2021;
Qian et al., 2022). To achieve structural model-
ing, some works attempt to annotate the structural
information of lyrics, however, this requires addi-
tional expensive human annotation (Potash et al.,
2015; Lu et al., 2019). To avoid human labeling,
SongNet chooses corpus with pre-defined formats
(e.g., Ci5 and Sonnet), while some works regard
the linguistic tags of lyrics as the structure informa-
tion of lyrics (Li et al., 2020; Castro and Attarian,
2018). However, SongNet can not provide diverse
representations for sentences, and the construction
of linguistic tags is inconvenient and not human-
friendly. In addition, these methods cannot repre-
sent the structure of lyrics explicitly. Moreover,
most previous lyrics generation works ignore the
musical properties hidden behind the lyrics, that
is, the lyrics will eventually be presented together
with the music. To overcome all the above limi-
tations, we propose a compound template in our
framework that can be conveniently constructed.
It provides discriminative representations and in-
corporates both textual and musical information to

5https://en.wikipedia.org/wiki/CI

984

https://en.wikipedia.org/wiki/CI

Decoder

Em
bedding

Encoder

Ð

Language Model

Decoder
Mask

𝑚!……𝑚"𝑚#

𝑏!……𝑏"𝑏#

𝑎!……𝑎"𝑎#

𝑠!……𝑠"𝑠#

𝑝!……𝑝"𝑝#

𝐴

𝑆

𝑀

𝐵

𝑃

𝑙!……𝑙"𝑙#𝐿

Masked Lyric
有没有那么一种永远

永远不改变
…

Input-to-Template Module Template-to-Lyric Module

Lyric’Add&Norm

Add&Norm

𝑙!……𝑙"𝑙#

𝑚!……𝑚"𝑚#

𝐻!"

𝐻!#

𝐻$"

Bar
Segment

Intro-Position

2,3,3,0,0,1,1,2,2,
2,0,1,1,2,
……

有没有那么一种永远
永远不改变
……

Lyric

Beat Tokenizer

Figure 3: Illustration of the proposed two-stage pipeline of UniLG. In training, we construct a compound template with Masked
Lyric (or Lyric) and Beat as the dotted blue (or green) box as described in Section 3.1 and 3.2. The character tokenizer is used in
UniLG.

achieve structural modeling.

3 Method

Our proposed unified framework for lyrics gener-
ation (UniLG) contains two highlights: 1) it con-
siders the structure of lyrics in the generation; 2)
it can handle different lyrics generation conditions
with different control signals, such as the music
score, or music audio, or partial lyrics, etc.

For the structure of lyrics, as illustrated in Fig-
ure 1, the melody implies the structure of lyrics,
which can be leveraged for lyrics structure model-
ing. However, large-scale (melody, lyrics) parallel
data is generally difficult to obtain. We, therefore,
propose using rhythm patterns6 that preserves the
inter-correlation of lyrics as musical information to
explicitly represent the structure of lyrics. As ex-
plored in previous works (Ju et al., 2021; McAuliffe
et al., 2017), the defined rhythm patterns can be
efficiently extracted from lyrics and different rhyth-
mic sources (e.g., music score, music audio, etc.)
without extra human annotation.

For handling various control signals of different

6The rhythm patterns usually indicate when a note happens
and how long it lasts. In this paper, the rhythm patterns only
indicate when a note happens.

lyrics generation conditions, the model should have
the capacity to process different types of inputs,
such as music score, music audio, rhythm patterns,
partially-finished lyrics, etc. Therefore, we design
a compound template (i.e., a sequence of tuples)
that can incorporate both textual and musical in-
formation. So any type of input can be converted
into a compound template, and then lyrics can be
generated based on the compound template.

Figure 2 illustrates the overview of our proposed
lyrics generation framework UniLG. We propose
an intermediate compound template as a bridge
between the rhythmic sources (e.g., audio, music
score, etc.) and lyrics in UniLG. Specifically, the
lyrics generation is decomposed into a two-stage
pipeline consisting of an Input-to-Template stage
and a Template-to-Lyric stage. In this section, we
first describe the compound template in detail. We
then present the two stages during training respec-
tively. Finally, we discuss the inference procedure
of UniLG to illustrate how to handle various con-
trol signals in different lyrics generation conditions
with our unified framework.

3.1 Compound Template
To model the structure of the lyrics, the compound
templates are designed to incorporate both musical

985

and textual information. As shown in Figure 3, a
compound template consists of five components,
Masked Lyric M (or Lyric L), Bar A, Beat B, Seg-
ment S, and Intro-position P . These components
can be categorized into three aspects: semantic
information, musical information, and textual in-
formation. The details of these aspects with corre-
sponding components are as follows:

Semantic Information Aspect We introduce
Lyric Symbols and Masked Lyric Symbols to lever-
age the pre-trained language model and achieve
semantic control.

Lyric Symbols: We denote the Lyric, a se-
quence of Chinese character tokens, as L =
(l1, l2, ..., ln) = (li)

n
i=1, where li stands for the

ith element of L, li ∈ C ∪ E , n is the length of L. C
refers to the set of Chinese characters and E = {
⟨/s⟩, ⟨bos⟩, ⟨eos⟩ } is a set of special tokens, in-
cluding the separation token between sentences
⟨/s⟩, the start of sequence token ⟨bos⟩, and end of
sequence token ⟨eos⟩.

Masked Lyric Symbols: We denote the Masked
Lyric as M = (mi)

n
i=1, where mi stands for the

ith element of M , and mi ∈ C ∪ E ∪ {⟨m⟩}, where
⟨m⟩ stands for mask token, which is widely used in
masked language modeling (MLM) (Kenton and
Toutanova, 2019; Lewis et al., 2020).

Musical Information Aspect As illustrated in
Figure 3, the inter-correlation of lyrics can be pre-
served in the musical information, and two kinds of
musical symbols, Beat Symbols and Bar Symbols,
are designed to represent the musical information
at a different level.

Beat Symbols: The Beat B = (bi)
n
i=1 denotes

the local musical information, where bi (the ith

element of B, bi ∈ B∪E), denotes the local musical
information of mi and li. B = {Beati}3i=0, and
Beat0, Beat1, Beat2, and Beat3 stand for 1st, 2nd,
3rd, and 4th beat in a bar.

Bar Symbols: The Bar A = (ai)
n
i=1 denotes the

global musical information, where ai (the ith ele-
ment of A, ai ∈ A∪E) denotes the bar information
of the bi. A = {Bari}511i=0, and token Barj stands
for the jth bar7. And ai also indicates that the word
mi and li are supposed to be sung at bar ai.

Textual Information Aspect Similar to SongNet,
the Intro-position and segment symbols are adopted
to model the textual information at word and sen-

7the number of bars is no more than 512 from our data.

tence level (Li et al., 2020). In the following sec-
tions, we name the sub-sequence of any component
between special symbols in E as a sentence.

Segment Symbols: The segment symbols provide
global textual information to the compound tem-
plate. We denote Segment as S = (si)

n
i=1, where

si (the ith element of S, si ∈ S ∪ E) denotes the
sentence position of the mi and li. S = {Segi}255i=0

and Segj stands for the jth sentence. For example,
the lyrics shown in Figure 3 is the 10th and 11th

sentences (Seg10 and Seg11) .
Intro-Position Symbols: The Intro-Position P =

(pi)
n
i=1 denotes the local textual information, where

pi (the ith element of P , pi ∈ P ∪ E) denotes the
local position within the sentence of the mi and
li. P = {Posi}31i=0 and the token Posi stands for
the ith reversed local position within the sentence
or the distance to the end of token of the sentence.
For example, in Figure 3, the Pos8 means this po-
sition is 8 tokens away from the last token of the
corresponding segment (Pos0 in Seg10).

The compound template is a tuple sequence con-
sisting of five components, including Masked Lyric
M (or Lyric L), Beat B, Bar A, Segment S, and
Intro-Position P . As shown in the blue and green
dotted box in the bottom of Figure 3, we can con-
struct the template based on these components.

3.2 Input-to-Template Module

In this subsection, we discuss the construction pro-
cedure of the compound template given the lyrics
L = (li)

n
i=1 in length n during training. To be

specific, we first extract symbols (defined in Sec-
tion 3.1) from lyrics L. Then, we combine them to
construct the compound template:

(1) Masked Lyric M = (mi)
n
i=1. Similar to

MLM, the M is constructed by randomly masking
85% of elements that are not in E of lyrics L.

(2) Bar A = (ai)
n
i=1 and Beat B = (bi)

n
i=1.

According to the time signatures, the bar infor-
mation A can be obtained given beat information
B. And the Beat B is extracted from lyrics L
through a Lyric-to-Beat model (details in Appendix
A), which predicts rhythm patterns in B for given
lyrics L.

(3) Segment S = (si)
n
i=1, and Intro-poistion

P = (pi)
n
i=1. As shown in Figure 3, the special to-

kens of E appear in the position for all components,
in other words, they have the same format informa-
tion, and the S and P can be extracted from either
M , B, A, or L. For a sequence Q ∈ {M,B,A,L},

986

S can be construct by counting the number of ⟨/s⟩
(if the number is c) before each position i and re-
place Segc with the corresponding ith token not in
E . Similarly, for a sequence Q ∈ {M,B,A,L}, P
can be constructed by counting the distance away
from the nearest ⟨/s⟩ in the right (if the distance
is c) for each position i and replace Posc with the
corresponding ith token not in E .

As shown in the blue dotted box in the bottom
of Figure 3, the compound template T, a tuple se-
quence including Masked Lyric M , Beat B, Bar
A, Segment S, and Intro-Position P , can be formu-
lated as T = (ti)

n
i=1 = (<mi, bi, ai, si, pi>)ni=1.

3.3 Template-to-Lyric Module
Through the Input-to-Template module, we con-
struct the template T and obtain paired lyric-
template data. With such data, we adopt a pre-
trained encoder-decoder Transformer language
model MT5 as backbone (Xue et al., 2021b). Fig-
ure 3 illustrates the procedure of the Template-to-
Lyric module and the details are as follows:

Encoder Inputs and Decoder Inputs We define
H0

E and H0
D as the inputs of the Encoder and the

Decoder respectively and their formulations are:

H0
E =ET = LN(EM + EB + EA + ES + EP)

H0
D =EL = LN(EL + EB + EA + ES + EP),

(1)

where LN(∗) denotes the layer normalization and
E∗ stands for token embedding sequences of ∗.
Similar to the definition of the T in Section 3.2, the
L denote the compound template that is a sequence
of tuples: L = (li)

n
i=1 = (<li, bi, ai, si, pi>)ni=1,

where the M is replaced by L in the T to obtain
the L as shown in Figure 3.

Encoder and Decoder The Encoder and De-
coder each consist of N Transformer layers. Ht

E

and Ht
D denote the output of the tth encoder layer

and decoder layer respectively. As shown in Figure
3, the output of Encoder and Decoder HN

E and HN
D

are:

HN
E =Encoder(H0

E)

HN
D =Decoder(HN

E , H0
D ∗ MaskD),

(2)

where MaskD denotes a causal decoder mask. And
there is a projection layer for HN

D to get the final
distribution of the predicted lyrics.

Training with Cycle-consistency Loss The
main training loss is to minimize the negative log-
likelihood over the lyrics L = (li)

n
i=1 given the

Beat

Masked Lyric

Lyric

Input-to-Template Module

DecoderEncoder

Language Model

Beat’

Lyric-to-Beat
Model

Lyric’

Template-to-Lyric Module

Figure 4: Illustration of the training loss in the Template-
to-Lyric module. As described in Section 3.2, we simplify
the inputs for Bar B. Segment S and Intro-position P can be
constructed with Masked Lyric M , Lyric L, and Beat B. The
Lyric-to-Beat model is a pre-trained model and details can be
found in Appendix A.

template T = (ti)
n
i=1 as shown in the gray dotted

line in Figure 4:

LT2L =− logP (L|L,T)

=− Σn
i=1 logP (li|l<i; t1, ..., tn),

(3)

where L = (li)
n
i=1 denote the compound template.

The l<i stands for sequence (l1,l2,...,li−1).
As illustrated by the orange dotted line in Figure

4, we introduce the cycle-consistency loss (CCL)
to enhance the impact of musical information. The
Lyric-to-Beat model reconstructs the beat sequence
from the predicted lyrics of the language model.
The formulation of CCL is as follows:

L′
L2B = − logP (B|L′)

= −Σn
i=1 logP (bi|b<i; l

′
1, ..., l

′
n),

(4)

where L′ = (l′i)
n
i=1 denotes the predicted lyrics by

the language model, and B = (bi)
n
i=1 denotes the

Beat of input template T as in Figure 4.
Finally, the training objective of Template-to-

Lyric model is to minimize the loss Ltot:

Ltot = LT2L + α ∗ L′
L2B, (5)

where α is a hyper-parameter to weigh CCL.

3.4 Inference Procedure
In this subsection, we describe the inference proce-
dure of UniLG for various lyrics generation condi-
tions. The major steps are shown in Algorithm 1,

987

including "Beat Construction", "Masked Lyric Con-
struction", and "Components Construction". Given
the template T by Algorithm 1, the Template-to-
Lyric module generates the Lyric L and the L auto-
regressively.

"Beat Construction" is a method to construct the
Beat B from raw input X (e.g., beat, lyric, mu-
sic score, audio, etc.)8. "Beat Construction" con-
sists of "Sentence Length Generation" and "Beat
Generation". "Sentence Length Generation" gen-
erates a sequence of numbers with each number
denoting the length of one sentence9. "Beat Gen-
eration" generates the Beat based on the outputs
from "Sentence Length Generation". For exam-
ple, if "Sentence Length Generation" generate a
sequence S = [3, 2], "Beat Generation" may re-
turn B = [⟨bos⟩, Beat1, Beat3, Beat0, ⟨/s⟩, Beat0,
Beat1, ⟨/s⟩, ⟨eos⟩].

To achieve content controllable generation, we
use keywords K to construct the Masked Lyrics
M . Based on the keyword 10, the model generates
the lyrics in the MLM manner. The keywords can
be either user-specified or sampled from the train-
ing corpus, which should appear in the generated
lyrics. "Masked Lyric Construction" is a method to
construct the masked lyrics M condition on Beat
B and keywords K. Similar to the construction of
P and S in Section 3.2, given Beat B, M can be
constructed by replacing the token that is not in E
with the mask token or keywords in K randomly.

"Components Construction" is a method to ob-
tain the other components given M and B as de-
scribed in Section 3.2, and organize all components
for the template.

4 Experimental Settings

4.1 Dataset

We collect lyrics of 249,007 Chinese pop songs
from Internet as the base of our experiments.

Lyric-Template Dataset. We use the pre-trained
Lyric-to-Beat model to extract the lyric-template
dataset from 249,007 lyrics. We randomly select
8000 songs for the validation and test set respec-
tively, and the remaining songs are used for training.
The data statistics are shown in Appendix B.

8The details of the Lyric-to-Beat, MIDI-to-Beat, and
Audio-to-Beat modules are discussed in Appendix D.

9The sentence means the sub-sequence between special
symbols.

10If keywords are empty, we will randomly select some
popular words as keywords.

Algorithm 1 Template Construction In Inference
Input: X: the raw input;K: keywords.
Output: T, generated compound template.
Def Beat Construction(X):
Case of X:

a beat sequence : B = X
a lyric sequence: B = Lyric-to-Beat(X)
a MIDI file: B = MIDI-to-Beat(X)
a audio file: B = Audio-to-Beat(X)
None: S = Sentence Length Generation()

B = Beat Generation(S)
end Case
return B
B = Beat Construction(X)
M = Masked Lyric Construction(B, K)
return T = Components Construction(B, M)

Additional Dataset: Song8k. We also annotate
8,000 songs with structure labels (sentence-level
chorus and verse label) for evaluation and we name
this dataset Song8k. For dataset settings, we use all
8,000 songs for further evaluation in the Template-
to-Lyric module.

4.2 Baselines in Model Comparison

We compare with two baselines in the experi-
ments: 1) MT5, a pre-trained Transformer lan-
guage model (Xue et al., 2021b); 2) SongNet, a
format-controlled text generation model (Li et al.,
2020). MT5 and SongNet construct their inputs
with the same corpus as the lyric-template dataset.
MT5, SongNet, and UniLG have similar parame-
ters and all models use the same pre-trained model
as initialization for a fair comparison. The details
of the model configuration, training, and decoding
settings are reported in Appendix E and G.

4.3 Objective Evaluation Metrics

We use three kinds of objective evaluation metrics:
general level, low level, and high level (more de-
tails can be found in Appendix F).

General Level: Besides perplexity (PPL), we use
Integrity metric to evaluate the sentence integrity
(Li et al., 2020), which calculates the average proba-
bility of the separation token given previous tokens.

Low Level: We use Format F1 and Beat F1 to
evaluate the degree of consistency between the gen-
erated lyrics and the given textual format (Segment
and Intro-Position) and rhythm patterns (Beat) in
the template.

988

High Level: We use Song8k and a pre-trained
model (details are in Appendix C) to evaluate the
quality of the structure of generated lyrics. Specifi-
cally, the model predicts a chorus or verse label for
each sentence in generated lyrics and compares it
with the human annotations to obtain Structure F1.

4.4 Subjective Evaluation Metrics
As illustrated in Section ??, the Beat is important
for the compound template and may have a big im-
pact on our framework. We conduct subjective ex-
periments for "Beat Construction", including "Sen-
tence Length Generation" and "Beat Generation".
Besides, we also conduct subjective experiments
for model comparison. For each subjective experi-
ment, we invite 43 annotators to evaluate the gen-
erated lyrics. Each annotator is required to score
lyrics concerning four aspects. Each aspect is rated
with an opinion score from 1 to 5 (from bad to
excellent). The four aspects are as follows: 1) Co-
herence: the overall consistency of the topic of the
entire song; 2) Fluency: the fluency of the semantic
correlation within a sentence and between the sen-
tence; 3) Correlation: the structural or semantic
similarity among sentences, such as the distribution
of words and corresponding relationships of sen-
tences; 4) Fascination: the degree of fascinating
sentences in annotators’ opinion.

5 Experiments Results

In this section, we report and analyze both objective
and subjective experimental results. We also show
some cases in Appendix H to verify the ability of
UniLG to handle different generation conditions.

5.1 Objective Results
Model Comparison We compare MT5,
SongNet, and UniLG on the Song8k and the test
set of the lyric-template dataset. The results of
the model comparison (in Table 1) show that MT5
achieves the best results in PPL and Integrity.
Our UniLG outperforms baselines in Format F1,
Beat F1, and Structure F1.The Structure F1 shows
that our framework does generate the lyrics with
better structure, which indicates that the musical
information improves the structural modeling.

Ablation Study We further ablate our UniLG to
verify the impact of musical and textual informa-
tion as well as the CCL. From the results shown
in Table 2, we see that the textual information
(Seg&Pos), musical information (Bar&Beat), and

CCL play crucial roles in the overall performance.
These modules of our framework show significant
improvement, especially on the metrics of Beat
F1 and Structure F1. The CCL may enhance the
musical information to boost performance in For-
mat F1, Beat F1, and Structure F1, but at the same
time may introduce noise and cause degradation
in general metrics (PPL and Integrity). The effec-
tiveness of the CCL further proves that the musi-
cal information behind the lyrics does benefit the
structure-aware lyric generation. We notice that the
musical information (Bar&Beat) degrades the per-
formance of the framework more than the textual
information and CCL. This may be due to there
being extra position embeddings for input data in
MT5 model. When it comes to music information,
missing Bar&Beat leads to a complete loss of infor-
mation, while missing the Seg&Pos only partially
loses position information.

5.2 Subjective Results

Template Construction As the template directly
affects the Template-to-Lyric module, we perform
the subjective evaluation on different settings of
"Sentence Length Generation" and "Beat Genera-
tion" in Algorithm 1 to investigate the impact of
the compound template.

For "Sentence Length Generation", we have 2
candidate settings: 1) Random, the length of the
sentence is randomly chosen from 6 to 12; 2) 2-
gram, the next sentence length is generated condi-
tioned on the length of the previous sentence. We
generate 40 songs in 6 to 16 sentences for each
setting. Given two number sequences generated
by "Sentence Length Generation" of two settings,
the two Beat can be generated by the same method
of "Beat Generation", whose setting is chosen ran-
domly. The results in Table 3 show that Random
and 2-gram strategies achieve comparable perfor-
mance and different sentence length generation
strategies have little influence on models.

For "Beat Generation", we have 3 candidate set-
tings: 1) Random, the beat information for each
character is randomly chosen from B; 2) Rule, the
beat is non-decreasing than the previous one; 3)
Sample, we compute the statistics of the beat se-
quence of each length in the lyric-template dataset
and sample the beat sequence conditioned on the
sequence length. We generate 40 songs in 6 to 16
sentences for each setting ("Sentence Lengths Gen-
eration" uses 2-gram). The result in Table 4 shows

989

Table 1: Model comparison with objective metrics on the test set of lyric-template dataset and Song8k. T-L and S8
stand for lyric-template dataset and Song8k respectively.

Dataset PPL(↓) Intergrity(↓) Format F1(%, ↑) Beat F1(%, ↑) Structure F1(%, ↑)

MT5 T-L 1.96 1.92 77.08 14.63 -
SongNet T-L 2.62 2.39 86.36 31.19 -
UniLG T-L 2.41 2.11 87.39 32.88 -

MT5 S8 1.99 2.10 76.11 14.37 50.02
SongNet S8 2.68 2.66 85.79 31.56 50.68
UniLG S8 2.19 2.14 88.91 34.25 53.71

Table 2: Ablation experiments on the test set of lyric-template dataset and Song8k. T-L and S8 stand for lyric-
template dataset and Song8k respectively. CCL denotes the cycle-consistency loss in Section ??.

Dataset PPL(↓) Integrity(↓) Format F1(%, ↑) Beat F1(%, ↑) Structure F1(%, ↑)

UniLG T-L 2.41 2.23 87.39 31.82 -
- Bar&Beat 2.62 2.43 83.52 21.35 -
- Seg&Pos 2.44 2.22 85.67 31.62 -
- CCL 2.45 2.21 85.84 30.42 -

UniLG S8 2.19 2.14 88.91 34.25 53.71
- Bar&Beat 2.58 2.61 86.72 31.65 51.08
- Seg&Pos 2.23 2.22 86.68 31.52 50.98
- CCL 2.19 2.12 88.04 32.42 52.34

that musical information does influence the lyric
generation, and the Sample method, which leads
to more natural rhythm patterns, achieves the best
performance on all metrics.

Table 3: The MOS score of different settings in "Sen-
tence Length Generation".

Random 2-gram

Coherence 3.31 ± 0.07 3.31 ± 0.08
Fluency 3.26 ± 0.07 3.27 ± 0.07
Correlation 3.11 ± 0.08 3.11 ± 0.08
Fascination 2.98 ± 0.08 3.06 ± 0.07

Table 4: The MOS score of different settings in "Beat
Generation".

Random Rule Sample

Coherence 3.19 ± 0.08 3.25 ± 0.08 3.32 ± 0.08
Fluency 3.03 ± 0.07 3.24 ± 0.07 3.30 ± 0.07
Correlation 2.94 ± 0.09 3.06 ± 0.09 3.11 ± 0.08
Fascination 2.96 ± 0.08 2.99 ± 0.09 3.09 ± 0.09

Model Comparison We also conduct the sub-
jective comparison of UniLG with two baselines:
MT5 and SongNet. We adapt 2-gram for "Sentence
Length Generation" and Sample for Beat Genera-
tion in model comparison. We generate 120 songs
in 6 to 16 sentences by each model with the same
Masked Lyrics. The results in Table 5 show that our
UniLG outperforms the baselines, which further

Table 5: The MOS score of model comparison.

MT5 SongNet UniLG

Coherence 3.25 ± 0.05 3.33 ± 0.04 3.40 ± 0.04
Fluency 3.08 ± 0.05 3.16 ± 0.05 3.25 ± 0.04
Correlation 3.03 ± 0.05 3.11 ± 0.04 3.19 ± 0.04
Fascination 2.99 ± 0.06 3.07 ± 0.05 3.15 ± 0.06

validates the effectiveness of our framework. Table
1 and 5 prove that our compound template enables
a stronger structure modeling ability than SongNet.
This may be because that the compound template
provides discriminative representations for lyrics
under the guidance of musical information. The
MT5 achieves better PPL and Integrity in Table 1
but gets lower MOS results in Fluency in Table 5.
This indicates that MT5 may pay too much atten-
tion to the fluency of the text but lacking the logical
correlation between sentences.

5.3 Case Studies

We also show some cases in Appendix H to verify
the ability of UniLG to handle different genera-
tion conditions. Although lyrics generated condi-
tioned on the templates constructed by automatic
method Template Construction are less satisfying
(cases in Figure 5), the handcrafted template or
template extracted by other resources achieves sat-
isfying results as shown in Figure 6 and 7. These
cases demonstrate that the template is human-

990

understandable and can be manipulated by users
directly as in Section 3.1. The results in Figure 8
and 9 indicate that the template acts as a bridge
between lyrics and the rhythmic sources (e.g., au-
dio, music score, etc.), which enables our UniLG
to generate lyrics conditioned on different signals.

6 Conclusion

In this paper, we propose UniLG, a unified
structure-aware lyric generation framework. With
our designed compound template to indicate the
structure of lyrics with textual and musical infor-
mation, which acts as a bridge between the rhyth-
mic sources and lyrics, UniLG can handle different
lyrics generation conditions. We also introduce
a cycle-consistency loss to enhance the impact of
musical information to improve performance. Ex-
tensive experiments demonstrate the effectiveness
of our framework, achieving significant improve-
ment in both objective and subjective evaluations.
We will explore topic-driven lyrics generation in
our future work.

Limitations

The limitations of our work include: 1) In our work,
the structure of lyrics is the chorus and verse parts
of songs, and it is learned in a data-driven man-
ner, which highly relies on data quality. 2) The
settings of the Lyric-to-Beat model will limit the
effect of our model. For this work, we make an
assumption that all songs are with 4/4 time sig-
natures for the Lyric-to-Beat model. If the time
signature is not 4/4, we need to re-train the Lyric-
to-Beat model.3) Better ”Beat Construction” can
be investigated, such as using a language model to
generate the beat sequence. We only explore the
simple method and achieve satisfying results. 4)
The model trained from scratch may not achieve
satisfying results. And a GPU with at least 20G
memory may be needed to use the pre-trained lan-
guage model (MT5) to reproduce our work.

Ethics Statement

Under the review of the company’s legal team, the
data collected for research is under legally cor-
rect copyright. The artifacts we used (e.g., MT5,
other codes, etc) are consistent with their intended
use and meet corresponding licenses. The mother
tongue of all annotators is Chinese and the annota-
tors are recruited by the human resources depart-
ments and the payment is adequate enough (The an-

notators receive an hourly wage of 80 RMB, about
12 USD) according to the laws and regulations of
our country. Before the experiments, we report key
information about the requirements for human an-
notators, including the evaluation criteria and the
usage of their annotations. We have used the data
under the consensus of the industry and research
and the final information used for research does not
include any protected category.

Acknowledgements

This work was partially supported by the Na-
tional Natural Science Foundation of China (No.
62072462) and the National Key R&D Program of
China under Grant No.2020AAA0108600.

References
Hangbo Bao, Shaohan Huang, Furu Wei, Lei Cui,

Yu Wu, Chuanqi Tan, Songhao Piao, and Ming Zhou.
2019. Neural melody composition from lyrics. In
CCF International Conference on Natural Language
Processing and Chinese Computing, pages 499–511.
Springer.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Pablo Samuel Castro and Maria Attarian. 2018. Com-
bining learned lyrical structures and vocabulary
for improved lyric generation. arXiv preprint
arXiv:1811.04651.

Yihao Chen and Alexander Lerch. 2020. Melody-
conditioned lyrics generation with seqgans. In 2020
IEEE International Symposium on Multimedia (ISM),
pages 189–196. IEEE.

Shangzhe Di, Zeren Jiang, Si Liu, Zhaokai Wang, Leyan
Zhu, Zexin He, Hongming Liu, and Shuicheng Yan.
2021. Video background music generation with con-
trollable music transformer. In Proceedings of the
29th ACM International Conference on Multimedia,
pages 2037–2045.

Haoshen Fan, Jie Wang, Bojin Zhuang, Shaojun Wang,
and Jing Xiao. 2019. A hierarchical attention based
seq2seq model for chinese lyrics generation. In Pa-
cific Rim International Conference on Artificial Intel-
ligence, pages 279–288. Springer.

Satoru Fukayama, Kei Nakatsuma, Shinji Sako, Takuya
Nishimoto, and Shigeki Sagayama. 2010. Automatic
song composition from the lyrics exploiting prosody
of the japanese language. In Proc. 7th Sound and Mu-
sic Computing Conference (SMC), pages 299–302.

991

Harrison Gill, Daniel Lee, and Nick Marwell. 2020.
Deep learning in musical lyric generation: an lstm-
based approach. The Yale Undergraduate Research
Journal, 1(1):1.

Zeqian Ju, Peiling Lu, Xu Tan, Rui Wang, Chen Zhang,
Songruoyao Wu, Kejun Zhang, Xiangyang Li, Tao
Qin, and Tie-Yan Liu. 2021. Telemelody: Lyric-to-
melody generation with a template-based two-stage
method. arXiv preprint arXiv:2109.09617.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of NAACL-HLT, pages 4171–4186.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Hsin-Pei Lee, Jhih-Sheng Fang, and Wei-Yun Ma. 2019.
icomposer: An automatic songwriting system for
chinese popular music. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics (Demon-
strations), pages 84–88.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Piji Li, Haisong Zhang, Xiaojiang Liu, and Shuming Shi.
2020. Rigid formats controlled text generation. In
Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 742–751.

Xu Lu, Jie Wang, Bojin Zhuang, Shaojun Wang, and
Jing Xiao. 2019. A syllable-structured, contextually-
based conditionally generation of chinese lyrics. In
Pacific Rim International Conference on Artificial
Intelligence, pages 257–265. Springer.

Michael McAuliffe, Michaela Socolof, Sarah Mihuc,
Michael Wagner, and Morgan Sonderegger. 2017.
Montreal forced aligner: Trainable text-speech align-
ment using kaldi. In Interspeech, volume 2017, pages
498–502.

Kristine Monteith, Tony R Martinez, and Dan Ventura.
2012. Automatic generation of melodic accompani-
ments for lyrics. In ICCC, pages 87–94.

Peter Potash, Alexey Romanov, and Anna Rumshisky.
2015. Ghostwriter: Using an lstm for automatic rap
lyric generation. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1919–1924.

Tao Qian, Jiatong Shi, Shuai Guo, Peter Wu, and Qin Jin.
2022. Training strategies for automatic song writing:
A unified framework perspective. In ICASSP 2022-
2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 4738–
4742. IEEE.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Yi Ren, Xu Tan, Tao Qin, Jian Luan, Zhou Zhao, et al.
2020. Deepsinger: Singing voice synthesis with data
mined from the web. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1979–1989.

Asir Saeed, Suzana Ilić, and Eva Zangerle. 2019.
Creative gans for generating poems, lyrics, and
metaphors. arXiv preprint arXiv:1909.09534.

Noam Shazeer. 2020. Glu variants improve transformer.
arXiv preprint arXiv:2002.05202.

Zhonghao Sheng, Kaitao Song, Xu Tan, Yi Ren, Wei Ye,
Shikun Zhang, and Tao Qin. 2021. Songmass: Auto-
matic song writing with pre-training and alignment
constraint. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 13798–
13805.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, et al. 2017. Attention is
all you need. In Advances in neural information
processing systems, pages 5998–6008.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Lanqing Xue, Kaitao Song, Duocai Wu, Xu Tan,
Nevin L Zhang, Tao Qin, Wei-Qiang Zhang, and Tie-
Yan Liu. 2021a. Deeprapper: Neural rap generation
with rhyme and rhythm modeling. arXiv preprint
arXiv:2107.01875.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021b. mt5: A massively multilingual
pre-trained text-to-text transformer. In NAACL-HLT.

Rongsheng Zhang, Xiaoxi Mao, Le Li, Lin Jiang, Lin
Chen, Zhiwei Hu, Yadong Xi, Changjie Fan, and
Minlie Huang. 2020. Youling: an ai-assisted lyrics
creation system. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 85–91.

992

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. 2019. Bertscore: Evaluating
text generation with bert. In International Confer-
ence on Learning Representations.

A Details of Lyric-to-Beat Model

The Lyric-to-Beat model aims to extract the rhythm
patterns B from lyrics L. Previous works usually
generate a fixed rhythm pattern with a rule-based
method and lots of handcraft design is needed
which constrains the diversity of rhythm patterns
(Fukayama et al., 2010; Monteith et al., 2012). Fol-
lowing the method in previous work and the re-
leased project11, we obtain the lyric-beat dataset
for training (Ju et al., 2021; Ren et al., 2020; Xue
et al., 2021a). With such lyric-beat data, we adopt
the sequence-to-sequence (Seq2Seq) framework to
train this model:

LL2B = − logP (B|L)
= −Σn

i=1 logP (bi|b<i; l1, ..., ln),
(6)

where L = (li)
n
i=1 and B = (li)

n
i=1 denote the

lyric and beat sequence and n indicate the length
of the sequence (Vaswani et al., 2017). The b<i

stands for sequence (b1,b2,...,bi−1).
We conduct objective experiments with different

settings on the lyric-beat dataset. The results are
shown in Table 6 and we chose the MT5-based
model for our framework. The Lyric-to-Beat model
achieves average perplexity of 1.13 and accuracy
of 92.18%. Due to high accuracy, the Lyric-to-
Beat model provides a more efficient method than
previous work to obtain the paired lyrics and beats
data (Ju et al., 2021).

Table 6: The results of the Lyric-to-Beat model on lyric-
beat testset, where L means the numbers of encoder and
decoder layers, H means the attention heads of each
layer, and D means the dimension of the hidden state.

PPL Beat Acc(%)

L=4,H=4,D=256 1.37 90.01
L=8,H=6,D=512 1.42 91.34
L=8,H=6,D=512(MT5) 1.13 92.18

B Statics of Lyric-Template Dataset

Under the review of our legal team, the data for
research is under legally correct copyright. And
the statistics of this Lyric-Template dataset are as
shown in Table 7.

11https://github.com/microsoft/muzic/tree/main/
telemelody

Table 7: The statistics of Lyric-Template dataset.

data samples 249,007
average sents. per sample 37.01
average words per sample 293.36

C Details of Lyric-to-Structure Model

Inspired by (Zhang et al., 2019), we train a Lyric-
to-Structure model on Song8k to verify the perfor-
mance of our framework. With Song8k, we split 50
songs each for validation and test sets and others for
training the Lyric-to-Structure model. Similar to
the Lyric-to-Beat model in Appendix A, the Lyric-
to-Structure model predicts structure information
for given lyrics. With Song8k dataset (mentioned
in Section 4.1), we construct the lyric-structure
dataset to train the Lyric-to-Structure model. We
adopt the Seq2Seq framework to train this model:

LL2S = − logP (S|L)
= −Σm

i=1 logP (si|s<i; l1, ..., ln),
(7)

where L = (li)
n
i=1 and S = (si)

m
i=1 stands for

lyrics sequence, li, si (si ∈ {Chorus,Verse})
stands for ith token in L and S, and n indicate
the length of lyrics and m indicate the sentence
numbers of lyrics (it’s also the length of S). The
Lyric-to-Structure model achieves average perplex-
ity of 1.78 and accuracy of 80.66%.

D Module Details In Inference Procedure
Algorithm

In this section, we will provide more details about
the Lyric-to-Beat, MIDI-to-Beat, and Audio-to-
Beat modules. Note that the relationship between
generated lyrics and inputs is only rhythm patterns
and the semantic information should be introduced
through masked lyrics (as Algorithm 1 in Section
3.4) in our framework. Notice that the UniLG only
produces lyrics and these outputs can be produced
by using the alignment of input signals and tem-
plates.

D.1 Lyric-to-Beat Module
This module contains a Lyric-to-Beat model as de-
scribed in Appendix A. The Lyric-to-Beat model
extracts the beat sequence from the lyrics.

D.2 MIDI-to-Beat Module
Similar to TeleMelody (Ju et al., 2021), we extract
the melody track from MIDI files and calculate the

993

https://github.com/microsoft/muzic/tree/main/telemelody
https://github.com/microsoft/muzic/tree/main/telemelody

beats information of notes in melody track12.

D.3 Audio-to-Beat Module

We use Audio-to-MIDI tools13 to transcript the
audio to MIDI file and use MIDI-to-Beat to extract
the beats information from audio file.

D.4 Video-to-Beat Module*

Similar to recent video background music genera-
tion work, we can extract the visual beats14 from
videos and map visual beats to our beats informa-
tion (Di et al., 2021). But we haven’t done this part
yet.

E Model Configuration and Training
Settings

Lyric-to-Beat Model In recent years, pre-trained
auto-regressive language models have improved
various downstream tasks’ performance signif-
icantly. We adopt MT5-based15 Lyric-to-Beat
model in Seq2Seq framework (Xue et al., 2021b).
The Lyric-to-Beat model consists of 8 encoder lay-
ers and 8 decoder layers and 6 attention heads for
each layer. The hidden size of each layer is 512.
The model is trained on a GeForce RTX 3090, and
the batch size is 32 with 4096 tokens for each sam-
ple in the batch. Dropout with the rate of 0.1 is
used for training and the activate function is gated-
gelu (Shazeer, 2020). The model is finetuning with
Adam optimizer with a learning rate of 0.0005 for
40,000 steps on the lyric-beat dataset (Kingma and
Ba, 2015).

Lyric-to-Structure Model Inspired by
BERTscore, we train a standard Seq2Seq
Transformer to evaluate the performance of the
structural modeling (Zhang et al., 2019). The
Lyric-to-Structure model consists of 4 encoder
layers and 4 decoder layers, and 4 attention heads
for each layer. The hidden size of each layer is
256. The model is trained on a GeForce RTX 3090,
and the batch size is 32 with 4096 tokens for each
sample in the batch. Dropout with the rate of 0.2
is used for training. The model is trained with
Adam optimizer with a learning rate of 0.0005 for

12https://github.com/microsoft/muzic/blob/main/
telemelody/training/template2melody/gen.py

13https://github.com/SJTMusicTeam/
Audio-to-midi

14https://colab.research.google.com/github/
wzk1015/video-bgm-generation/blob/main/CMT.ipynb

15https://huggingface.co/google/mt5-small

40,000 steps on the Song8k dataset (Kingma and
Ba, 2015).

Model Comparison Similar to the Lyric-to-Beat
module, we use the MT5-small from hugging face
as initialization for following models (Wolf et al.,
2020).

MT5 We fine-tune the MT5-small version with
masked lyrics and lyrics data with Adam optimizer
with a learning rate of 0.0001 and 8,000 warmup
steps for 5 epochs on the lyric-template dataset.
We use Masked Lyric and Lyric of the compound
template as the input for the encoder and decoder
of MT5, respectively, under the standard Seq2Seq
framework. The MT5 doesn’t incorporate any mu-
sical and texture information.

SongNet We rewrite SongNet in the MT5 frame-
work. Based on MT5, we tune the model with
Adam optimizer with a learning rate of 0.0001
and 8,000 warmup steps for 5 epochs on the lyric-
template dataset. SongNet constructs its input
with masked lyrics, intro-position, and segments
of the compound template. We use Segment, Intro-
position, Masked Lyric and Lyric of the compound
template as the input for the encoder and decoder of
SongNet, respectively, under the standard Seq2Seq
framework. The SongNet doesn’t incorporate any
musical information.

UniLG The parameters are the same as MT5.
The Template-to-Lyric model is trained with The
hyper-parameter of the CCL α (in Section 3.3) is
determined by performance on the validation set
and is 0.03. And the Lyric-to-Beat model for CCL
is an MT5-based model in Table 6. The UniLG
train with Adam optimizer with a learning rate of
0.0001 and 8,000 warmup steps for 5 epochs on
the lyric-template dataset.

F Definition of Objective Metrics

Integrity The Integrity is the metric to evaluate
the sentence integrity (Li et al., 2020). Integrity
calculates the average probability of the separation
token given previous tokens. The formulation of
Integrity is:

Integrity =
1

|Y |Σy∈Y 2− logP (y|y||y1,...,y|y|−1), (8)

where Y is one piece of song, and y is one sentence
of Y . |y| denotes the length of sentence y and |Y |
denotes the number of sentences in Y .

994

https://github.com/microsoft/muzic/blob/main/telemelody/training/template2melody/gen.py
https://github.com/microsoft/muzic/blob/main/telemelody/training/template2melody/gen.py
https://github.com/SJTMusicTeam/Audio-to-midi
https://github.com/SJTMusicTeam/Audio-to-midi
https://colab.research.google.com/github/wzk1015/video-bgm-generation/blob/main/CMT.ipynb
https://colab.research.google.com/github/wzk1015/video-bgm-generation/blob/main/CMT.ipynb
https://huggingface.co/google/mt5-small

F1 scores For given two sequences A = (ai)
n
i=1

and A′ = (a′i)
m
i=1, we define the formulation of

Format F1 score is that:

F1(A,A′) =
2 ∗ Σmin(n,m)

i=1 [ai == a′i]
n+m

, (9)

where [*] denote 1 for * is true or 0 otherwise.
There are several F1 scores in our experiments,
including Format F1, Beat F1, and Structure F1
scores.

Format F1 score We use P = (pi)
n
i=1 stands

for n positions of separation tokens in template
of input data. And P ′ = (p′i)

m
i=1 stands for m

positions of separation tokens in corresponding
generated results. The formulation of Format F1
score is: Format F1= F1(P, P ′).

Beat F1 score Similarly, we use B = (bi)
n
i=1

stands for beat sequence with n tokens of input
data. With the help of the Lyric-to-Beat model (de-
tails in Appendix A), we predicted beat sequence
from generated lyrics with m tokens and annotate
predicted beat sequence as B′ = {b′1, b′2, ..., b′m}.
The formulation of Beat F1 score is: Beat F1=
F1(B,B′).

Structure F1 score Similar to Format F1 score,
we use S = {s1, s2, ..., sn} stands for structure
information sequence with n tokens of annotated
8,000 songs. We use the Lyric-to-Structure model
(details in Appendix C) to predict structure in-
formation from generated lyrics. We use S′ =
{s′1, s′2, ..., s′m} to stand for predicted structure in-
formation. The formulation of the Structure F1
score (Struc. F1) is Struc. F1= F1(S, S′).

G Models’ Decoding Settings in
Experiments

For the Lyric-to-Beat and Lyric-to-Structure mod-
ules, we use top-k sampling and the k in top-k is 2,
the beams are 1, and the temperature is 0.5.

For the Template-to-Lyric module, we use a
sample-based beam search strategy 16 in subjec-
tive experiments with temperature 2.0, k of top-k
48, beams is 12, repetition penalty is 1.5, and score
time decay is 0.98 and adopts top-k sampling de-
coding strategy in objective experiments for effi-
ciency with temperature 1.5, k of top-k 32, beams
is 1, and repetition penalty is 1.1.

16https://github.com/huggingface/transformers/
blob/c4d4e8bdbd25d9463d41de6398940329c89b7fb6/
src/transformers/generation_utils.py

H Case Studies for Different Conditional
Signals

We show some cases for different inputs with
rhythm resources. In the following figures (Fig-
ure 5-9), we use dotted boxes to address the cor-
responding or chorus parts. It’s obvious that the
automatic template construction is less satisfying
because the template may not contain chorus and
verse parts. The template which is handcrafted or
extracted from other resources achieves satisfying
results. It’s clear that our framework can capture
the correspondence between sentences with mu-
sical and textual structural information. And our
framework can generate lyrics with structure and
handle multiple inputs with rhythm resources.

It is worth noticing that UniLG cannot rely on
multiple modalities at the same time. The essence
is still to generate lyrics given beats, ignoring the
additional information of multimodal inputs. And
our new experiments such that the different input
modalities of the same song are given as input to
the framework show consistency between beats
and lyrics as same as Figures 5, 6, 7, 8, and 9. The
only differences of results in experiments indicate
that the Audio-to-Beat suffers the performance of
Audio-to-MIDI tools. To avoid redundant content,
we don’t include these results.

I Examples and Instructions For Other
Languages

In Figure 1 and 10, the rhythm patterns shown are
the start beat of the corresponding word and it’s
flexible for any time signature and any-to-any cor-
respondence between notes and words. To simplify
the description, we only state our method with a
4/4 time signature, for it’s widely used in songwrit-
ing. In Figure 1 and 10, the same rhythm pattern
may repeat several times when meeting the cho-
rus parts of the song through the melody are not
exactly the same. These figures also illustrate the
concept of chorus parts of lyrics, similar sentences
with correspondence.

It is obvious that the basic elements of Chi-
nese words (Chinese characters) and English words
(words) have different attributes in phonemes. The
correspondence between notes and Chinese charac-
ters is one-to-many. However, the correspondence
between notes and English words is many-to-many.
Even though, the UniLG needs little adjustments
except for generation lyrics on the music score
and audio. For many-to-many correspondence lan-

995

https://github.com/huggingface/transformers/blob/c4d4e8bdbd25d9463d41de6398940329c89b7fb6/src/transformers/generation_utils.py
https://github.com/huggingface/transformers/blob/c4d4e8bdbd25d9463d41de6398940329c89b7fb6/src/transformers/generation_utils.py
https://github.com/huggingface/transformers/blob/c4d4e8bdbd25d9463d41de6398940329c89b7fb6/src/transformers/generation_utils.py

Sentence Lengths:
6,7,6,8,9,10,6,7,6,8,9,10
keywords:
自由,迷惘,回家
Generated Lyrics:
我愿为你歌唱
一次次和你分享
如问爱要怎样
我宁愿放弃这渴望
也不要再说什么心慌
我很想再去自由地流浪
或许有点迷惘
一次次和你流浪
如果要问怎样
我们依然还是倔强
也不需要别人的眼光
我很想再和你如诉衷肠

Sentence Lengths:
7,4,7,9,7,8,7,6,7,10
keywords:
无意,茶,聆听
Generated Lyrics:
一个人漂泊远方
我们走在
一个陌生的山岗
你看那熟悉的茶树下
我静静聆听风声
仿佛还在原地飞翔
你从来不曾忘记
我也不曾忘记
你从来不曾怀念
你在我心中永远的地方

Sentence Lengths:
4,6,7,7,9,7,7,10,7,6,13
keywords:
美,交换,难过
Generated Lyrics:
是美是愁
爱情在我眼中
有多少甜蜜温柔
才能够让你快乐
我用一生去为你停泊
有多少付出承诺
才能够让人值得
因为你的爱还存在心中
每当我不再难过
我不想要逃避
我知道现在的你就是我的唯一

Figure 5: The Cases of the generated results with automatic template construction in Section 3.4. The dotted boxes
are used to address the corresponding or chorus parts.

guages, the procedure of extraction beats from
MIDI should add a post-procession, that randomly
skips 0 - 2 notes for each note and memorizes this
information as the alignments for final outputs.

996

Sentence Lengths: 10, 7, 10, 7, 1, 8
Rhythm Pattern:
3 0 0 1 1 2 2 3 3 0
3 0 1 1 2 2 3
3 0 0 1 1 2 2 3 3 0
3 0 1 1 2 2 3
1
3 0 1 1 2 2 3
3 0 1 1 2 2 3
0 0 1 1 2 2 3 3
0 1 1 2
1
3 0 1 1 2 2 3
3 0 1 1 2 2 3
0 0 1 1 2 2 3 3
0 1 1 2
1
3 0 1 1 2 2 3
3 0 1 1 2 2 3
0 0 1 1 2 2 3 3
0 1 1 2
0 1 1 2
0 1 1 2

Sentence Lengths: 10, 7, 10, 7, 1, 8
Generated Lyrics:
!"#$%&'()*
+,-./01
!"#$%&'()*
2345678
9
!:";'<=
>+?'@AB
5CDD+'EF
GHIJ
9
KLMNOPQ
5%R'(ST
UVWXYZ[\
GHIJ
9
]2^_(`a
bc!d(ec
5CDDf'gc
hiIj
bcIj
kcIj

Sentence Lengths: 10, 7, 10, 7, 1, 8
Generated Lyrics:
lmnopqrs(t
"u"vwxy
%&zec('({|
-}~Y���
9
lmno(��
!:��h��
]m$�"2c�
�H��
�
lmno(��
5C!����
;l��(���
.C��
9
lmno(��
!:��h��
]m$�"2c�
����
����
����

Figure 6: The Cases of the generated results for simple handcraft constructed lyrics.

Sentence Lengths: 4, 7, 7, 3, 3, 13,
7, 3, 3, 7, 6, 10, 7, 3, 3, 7, 6, 7, 3, 3,
7, 6, 6
Raw Input Lyrics:
!"#$
%&'()*+
%&'()*+
,-.
/01
23(4+56"78)9:
;;<=>?@
ABC
DEE
:FG01HI
JKL01F
)MNO01PQRS
TUVW:XY
Z[\
X':
]^_`Ka]
3b/:01
;;<=>?@
ABC
DEE
:FG01HI
cde:01
fgO:01

Sentence Lengths: 4, 7, 7, 3, 3, 13,
7, 3, 3, 7, 6, 10, 7, 3, 3, 7, 6, 7, 3, 3,
7, 6, 6
Predicted Rhythm Pattern:
3 0 0 1
3 0 0 1 1 2 2
3 0 0 1 1 2 2
0 1 2
0 1 2
0 1 2 2 3 3 9 9 1 1 2 2 3
3 0 0 1 1 2 2
0 1 2
0 1 2
3 0 1 1 2 2 3
0 1 2 3 3 0
2 3 3 0 0 1 1 2 2 3
3 0 0 1 1 2 2
0 1 2
0 1 2
3 0 0 1 1 2 2
0 1 2 3 3 0
3 0 0 1 1 2 2
0 1 2
0 1 2
3 0 0 1 1 2 2
0 1 2 3 3 0
0 1 2 3 3 0

Sentence Lengths: 4, 7, 7, 3, 3, 13, 7,
3, 3, 7, 6, 10, 7, 3, 3, 7, 6, 7, 3, 3, 7,
6, 6
Generated Lyrics without keywords:
Khij
k$lmnoQ
3pqrstu
mbQ
RvQ
cwxyzcwxm{Q|}
#~��O��
mbQ
RvQ
k���Q��
k�����
���2��~Q��
Q�k����
���
���
Q�k����
k��rcQ
kO���cQ
3�d
3��
�K$QO��
mhsO �
¡Q¢£ �

Sentence Lengths: 4, 7, 7, 3, 3, 13, 7,
3, 3, 7, 6, 10, 7, 3, 3, 7, 6, 7, 3, 3, 7,
6, 6
Generated Lyrics with keywords:
!I¤I
¥N¦c)§¨
¥©¦c:*+
ªª«
ªª«
A¬¬~+Y®¯°�:^
±N¦c3�²
ªª«
AEE
³&k´µ¶I
�µN·�F
K¸¹2Nz¯�RI
º»,I,z¼
½[\
¾[\
¥^»¿�ÀL
�c¥AÁ»
K¸��Â?I
AÁ»
ÃÄÅ
k°3Æ^3�
K��ÇÈÉ
Q©~k�Ê

Figure 7: The Cases of the generated results for polishing lyrics with/without part of raw keywords.

997

Melody Extraction
Beat Extraction

……

Sentence Lengths:
6, 7, 6, 8, 10, 7, 10, 11, 10, 7
Predicted Rhythm Pattern:
1 1 2 2 3 3
0 1 2 3 0 0 1
2 2 3 3 0 1
2 2 3 3 0 0 1 1
0 0 1 2 2 3 3 1 2 2
3 3 1 1 2 2 3
3 3 1 2 2 1 2 2 3 3
3 1 2 2 3 3 1 2 2 2 3
3 1 2 2 3 3 1 2 2 2
3 3 1 2 2 3 3
Generated Lyrics:
!"#$%&
'($)*+,
-./012
3456(789
!":;<=>?@A
BCDEFGH
8):IJ#KDLM
NOPQRS:ITUV
!":;<=>?@A
BCDEFGH

Figure 8: The Cases of the generated results condition on music score inputs.

Melody Extraction
Beat Extraction

……

……

Audio-to-MIDI

Sentence Lengths: 6, 7, 6, 8, 6
Generated Lyrics:
!"#$%&
'()*+,-
./+012
3456789:
;<=>?+

Figure 9: The Cases of the generated results condition on audio inputs. There is an audio fragment to verify the
feasibility of our framework.

998

···
Rhythm Pattern

Chorus lyrics 1

33221

goyou-er-evWher

33221

doyou-er-evWhat

332211

rightbewillI

3322110

youfor-ingwaithere

···

33221

takesit-er-evWhat

33221

breaksheartmyhowOr

332211

rightbewillI

3322110

youfor-ingwaithere

Rhythm Pattern

Chorus lyrics 2

Figure 10: Example chorus parts of a song in English. Similar to Figure 1, we use different colors for different beats
within the bar and rhythm patterns are shown in 4/4 time signatures. These lines show similar melody with similar
lyrics.

999

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Section: Limitation

�3 A2. Did you discuss any potential risks of your work?
Section: Limitation

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Section: Abstract, Introduction

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section: Method, Experimental Settings, Experiments Results

�3 B1. Did you cite the creators of artifacts you used?
Section: Related Work, Method, Experimental Settings, Experiments Results

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Section: Experimental Settings, Ethics Statement, Appendix B Statics of Lyric-Template Dataset

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Section: Experimental Settings, Experiments Results, Appendix A Details of Lyric-to-Beat Model, E
Model Configuration and Training Settings, G Models’ Decoding Settings in Experiments

�3 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Section: Appendix B Statics of Lyric-Template Dataset

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Section: Experimental Settings, Appendix E Model Configuration and Training Settings

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section: Experimental Settings, Appendix A Details of Lyric-to-Beat Model, B Statics of Lyric-
Template Dataset, C Details of Lyric-to-Structure Model

C �3 Did you run computational experiments?
Section: Experiments Results, Appendix A Details of Lyric-to-Beat Model, C Details of Lyric-to-

Structure Model
The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

1000

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section: Appendix A Details of Lyric-to-Beat Model, C Details of Lyric-to-Structure Model, E Model
Configuration and Training Settings

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section: Appendix E Model Configuration and Training Settings, G Models’ Decoding Settings in
Experiments

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section: Experiments Results, Appendix A Details of Lyric-to-Beat Model, B Statics of Lyric-Template
Dataset, C Details of Lyric-to-Structure Model,

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section: Appendix A Details of Lyric-to-Beat Model, C Details of Lyric-to-Structure Model

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Section: Experiments Results

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. We report key information about the requirements for human annotators, and we
report this in Ethics Statement.

�3 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Section: Ethics Statement

�3 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Section: Ethics Statement

�3 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Section: Ethics Statement

�3 D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Section: Ethics Statement

1001

