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Abstract

Adaptive learning aims to provide customized
educational activities (e.g., exercises) to ad-
dress individual learning needs. However, man-
ual construction and delivery of such activities
is a laborious process. Thus, in this paper, we
study a novel task of adaptive and personalized
exercise generation for online language learn-
ing. To this end, we combine a knowledge trac-
ing model that estimates each student’s evolv-
ing knowledge states from their learning history
and a controlled text generation model that gen-
erates exercise sentences based on the student’s
current estimated knowledge state and instruc-
tor requirements of desired properties (e.g., do-
main knowledge and difficulty). We train and
evaluate our model on real-world learner in-
teraction data from Duolingo and demonstrate
that LMs guided by student states can gener-
ate superior exercises. Then, we discuss the
potential use of our model in educational ap-
plications using various simulations. These
simulations show that our model can adapt to
students’ individual abilities and can facilitate
their learning efficiency by personalizing learn-
ing sequences.1

1 Introduction

Adaptive learning technologies which continuously
monitor student progress to dynamically adjust the
level or type of learning materials based on the in-
dividual’s abilities are quite popular (Becker et al.,
2018). Empirical studies have shown various bene-
fits of adaptive learning, such as improved student
learning outcomes (Bailey et al., 2018; Holthaus
et al., 2019), lower dropout rates (Daines et al.,
2016), and increased instructor satisfaction (Yarnall
et al., 2016). Despite their effectiveness, designing
adaptive systems is challenging as it usually in-
volves planning a series of exercises that is person-
alized and adaptive to each student, which requires

1Our implementation is available at https://github.com/
nlpcui/AdaptiveQG.

Figure 1: We first assess student knowledge states from
their learning history and then generate exercises based
on estimated states and instructor control of desired
properties including domain knowledge (vocabulary)
and difficulty levels (expected error numbers).

diverse exercise planning as well as an understand-
ing of the student learning process.

On the other hand, powered by advances in neu-
ral NLP, works have been done for automatically
generating text-based exercises or questions for
educational purposes in second language learn-
ing (Heck and Meurers, 2022; Perez and Cuadros,
2017), mathematics (Polozov et al., 2015; Zhou
and Huang, 2019; Wang et al., 2021), and com-
puter science (Susanti et al., 2017). Nevertheless,
how to apply these approaches in adaptive systems
remains an open question. First, existing meth-
ods largely rely on pre-defined question templates
or specified information sources (e.g., a passage),
thereby resulting in limited knowledge coverage
and low question difficulty control, and as a conse-
quence, do not meet each student’s individual and
nuanced learning needs. Besides, they are usually
designed to generate standalone exercises, whereas
adaptive learning systems usually require a con-
tinuous supply of exercises. Another related line
of research studies exercise recommendation to
customize learning content based on individual ca-
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pabilities and goals (Wu et al., 2020; Huang et al.,
2022). However, these systems are limited by the
diversity of the exercise pool.

To address the above limitations, we study the
task of exercise generation in the context of adap-
tive learning, where we hypothesize that a student’s
dynamic knowledge state holds the key to gener-
ating adaptive and personalized exercises. Specif-
ically, we ground our study in the domain of lan-
guage learning to create exercise sentences for
translation, of which Figure 1 illustrates the overall
process. We start with an assumption about the dy-
namics between exercise difficulty, vocabulary, and
a student’s knowledge state (§ 3). Then, we propose
an approach (§ 4) that marries knowledge tracing
(KT; Corbett and Anderson (1994)), a technique for
estimating students’ mastery states of knowledge
components from their learning history, with a con-
trolled text generation model that generates the next
exercise based on instructor requirements, such as
specified domain knowledge and target difficulty.
We further explore various strategies to adapt the
generation of exercises based on students’ chang-
ing knowledge states. In doing this, our model not
only supports personalized generation where the
instructor (or the system) can express some desired
properties of the generated exercises but is also
adaptive to each student’s learning progress.

We conduct extensive experiments on real-world
student learning data from Duolingo2, a popular
online language learning platform that offers struc-
tured and individualized learning content. Our re-
sults (§ 5) show that pre-trained LMs can help KT
assess student language knowledge while student
states estimated by KT can guide LMs to generate
adaptive and personalized exercises. We further
discuss the potential use of our model in educa-
tional applications with simulations. The simu-
lations show that our model can dynamically ad-
just exercise difficulty to match individual learning
progress and facilitate their learning efficiency by
customizing exercise sequences.

2 Related Work

Adaptive Learning technologies that dynamically
monitor student progress and adjust the course con-
tent based on an individual’s abilities have demon-
strated various benefits in education (Becker et al.,
2018). Such systems usually consist of three core
components: (1) a domain model which refers to

2https://www.duolingo.com/

the content and structure of the topic to be taught,
(2) a learner model which repeatedly measures and
updates learner characteristics, and (3) an adap-
tion model which combines information from the
domain and learner model to offer adaptive in-
structions (Vagale and Niedrite, 2012; Imhof et al.,
2020). In this study, we build the learner model
based on the KT technique and combine the domain
and adaption model into an LM which generates
learning content adaptively based on user features
captured by the learner model.
Knowledge Tracing (Corbett and Anderson, 1994)
is the technique to estimate students’ knowledge
mastery s from their practiced exercises (e) and
responses (r):

st+1 = fKT ((e1, r1), (e2, r2), ..., (et, rt)). (1)

Early KT approaches model fKT as variants of lo-
gistic regression, such as Item Response Theory
(IRT) and Additive Factor Model (AFM) (Cen et al.,
2008), or probabilistic models such as Bayesian
Knowledge Tracing (Corbett and Anderson, 1994)
and its variants (Yudelson et al., 2013; Käser et al.,
2017). These approaches heavily rely on their as-
sumptions of the learning process which are of-
ten incomplete. In recent years, neural networks
have become the dominant method in this area.
Piech et al. (2015) proposed the first Deep Knowl-
edge Tracing model based on Recurrent Neural Net-
works. After that, various architectures have been
applied to model different characteristics of learn-
ing, such as self-attention (Pandey and Karypis,
2019; Shin et al., 2021), memory networks (Ab-
delrahman and Wang, 2019), and graph neural net-
works (Tong et al., 2020).
Exercise Generation. Previous exercise genera-
tion approaches for language learning primarily
retrieve and manipulate text to create fixed types
of exercises, such as gap fill and multiple-choice
exercises (Agarwal and Mannem, 2011; Perez and
Cuadros, 2017; Heck and Meurers, 2022), which
are limited by the richness of the corpus. Besides
them, some Question Generation (QG) approaches
have been proposed for educational purposes (Zhao
et al., 2022; Wang et al., 2021). While some of
them allow for user control of certain question prop-
erties, they do not consider learners’ individual and
dynamic learning needs and progress. Thus, they
cannot achieve the goal of adaptive learning. Re-
cently, Srivastava and Goodman (2021) proposed
an adaptive question generation model that con-
nects question difficulty with student knowledge.
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However, it neither models students’ fine-grained
knowledge states nor provides control over domain
knowledge. Consequently, it is insufficient for prac-
tical use.
Controlled Text Generation (CTG) methods aim
to steer text generation toward certain attributes.
Existing CTG approaches can be broadly clas-
sified into three types: directly training a class-
conditional language model (CCLM) (Keskar et al.,
2019; Ziegler et al., 2019; Ficler and Goldberg,
2017), guiding a model via an attribute discrimi-
nator (Dathathri et al., 2020; Liu et al., 2020), or
manipulating decoder’s logits (also referred to as
weighted decoding) (Holtzman et al., 2018; Yang
and Klein, 2021). This study explores difficulty
and lexical control in generating language learn-
ing exercises. Additionally, we seek to adapt the
model’s controllability to different users by build-
ing the dependency between control signals and
individual states.

3 Problem Formalization

Let H≤n = {(e1, r1), ..., (en, rn)} be a student’s
learning history consisting of n exercises and re-
sponses. Here, ei = {wi,1, ..., wi,|ei|} is an exer-
cise sentence for translation and ri ∈ {0, 1}|ei|
is the correctness label for each word in ei. We
generate the next exercise en+1 based on:

• Cn+1: knowledge components that should
be involved in en+1. In language learning, we
consider a word as a knowledge component,
and therefore Cn+1 = {c1, ..., c|Cn+1||c∗ ∈
V} is a subset of vocabulary V that should be
included in the output. In general, the knowl-
edge components can be user or system de-
fined based on the current learning material.

• sn+1: a student’s knowledge state for the
knowledge components (the vocabulary) af-
ter n interactions. sn+1 can be formalized
as a |V|-dimensional vector with each entry
between 0 and 1 indicating the mastery proba-
bility of that word.

• dn+1: the expected difficulty of en+1. We
use individual performance to estimate prob-
lem difficulty. For a particular student, the
difficulty of an exercise is defined as the ex-
pected number of word errors the student
would make in translating it.

Given the above setting, we formalize our task as:

en+1 = argmax
e

P (e|sn+1, dn+1, Cn+1), (2)

where en+1 satisfies the following constraints:

∀c ∈ Cn+1 : ∃i, en+1i:i+|c| = c, (3)

dn+1 =
∑

w∈en+1

(1− sn+1[w]), (4)

corresponding to word constraint and difficulty con-
straint, respectively. Here, sn+1[w] represents the
correct probability of translating word w; therefore,
the sum of {1− s[w]|, w ∈ e} is the expected num-
ber of errors in translating e, which can be seen as
a measure of the difficulty of e.

Our task is distinct from previous CTG works
in two aspects: 1) our control is dynamic; student
states acting as control are also learnable; 2) there
is a strong dependency among control signals (Eqs.
3 and 4), which is non-trivial to learn. Note that in
this work, we measure difficulty via student perfor-
mance and only consider vocabulary knowledge in
defining s for simplicity. Other definitions of sen-
tence difficulty (e.g., definitions that incorporate
other types of linguistic knowledge such as syntax)
can be explored in future work.

4 Methodology

Our model is illustrated in Figure 2. We first em-
ploy a knowledge tracer T (§ 4.1) to estimate a
student’s time-varying knowledge states. Then, we
build an LM-based exercise generator G (§ 4.2) to
create exercises based on estimated states and spec-
ified difficulty and knowledge components (words).
We jointly optimize the two modules with an in-
consistency loss (§ 4.3) at training and apply a con-
strained decoding strategy (§ 4.4) at inference. Fi-
nally, we discuss how our model can accommodate
personalized learning recommendation algorithms
on the fly (§ 4.5).

4.1 Knowledge Tracing
The goal of our knowledge tracing model T is to
estimate a student’s latest knowledge state sn+1

given previous interactions H≤n. We adopt the
deep knowledge tracing (DKT) model proposed
by Piech et al. (2015). We concatenate past exer-
cises as a word sequence e1:n = {w1,1, ..., wn,|en|}
and past responses as a label sequence r1:n =
{r1,1, ..., rn,|en|}, where wi,j and ri,j represent the
jth word or label of the ith exercise. Then we
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Figure 2: The framework of our proposed model. We
estimate a student’s latest knowledge state sn+1 from
the learning history Hn, and then combine it with user-
specified difficulty dn+1 and knowledge components
Cn+1 to generate the next exercise en+1. The two mod-
ules are jointly trained with an inconsistency loss to
penalize their disagreement.

convert the two sequences into word embeddings
e⃗1:n and label embeddings r⃗1:n and send them to
an LSTM encoder to predict the next state sn+1:

hn = LSTM(⃗en + r⃗n;hn−1), (5)

sn+1 = sigmoid(Ws ∗ hn + bs). (6)

The model is trained to predict the binary word la-
bels of the next exercise using the estimated knowl-
edge state. The cross-entropy loss for a single stu-
dent’s history of N interactions is computed as:

Lce =

|N |∑

i=1

|ei|∑

j=1

CE(ri,j , si[wi,j ]). (7)

We adopt the regularization strategy proposed
by Yeung and Yeung (2018) to stabilize training:

Lr{1,2} =

N∑

n=2

|V|∑

i=1

|sn(i) − sn−1
(i)|{1,2}, (8)

where Lr1 ensures that only the states of relevant
knowledge components are updated, and Lr2 pe-
nalizes the vibration. The final objective of T is
LT = Lce+λ1 ∗Lr1 +λ2 ∗Lr2 with λ for balance.

4.2 Controllable Exercise Generator
Our exercise generator G is fine-tuned from a pre-
trained LM. Specifically, we generate an exercise
e based on a student’s current knowledge state s,
target words C, and expected difficulty d (we drop
the interaction index to reduce clutter). We param-
eterize the inputs as follows:

x = [fs(s); fd(d);Emb(c1, ..., c|C|)], (9)

where knowledge state s and scalar difficulty d are
projected to control vectors via two feedforward
layers fs and fd, and C are mapped to word em-
beddings. The training objective for generating a
single exercise is defined as:

LG = −
|e|∑

t

logP (wt|w1, ..., wt−1,x). (10)

During training, we sample a proportion of words
from reference exercises as C and calculate dif-
ficulty d from ground-truth correctness labels,
whereas states s are estimated by T . At inference,
d and C can be determined by instructors or the sys-
tem, allowing automated and human intervention.

4.3 Joint Learning with Inconsistency Loss
We jointly optimize the knowledge tracer T and
exercise generator G with an inconsistency loss
inspired by Cui and Hu (2021), enabling the two
modules to learn from each other. Concretely, after
generating an exercise e, we calculate its difficulty
using input state s via Eq. 4, which should be as
close to the input difficulty d as possible:

Linc = |d−
∑

w∈e
(1− s[w])|. (11)

Since the second term is non-differentiable due to
the argmax operation involved in producing e, we
replace it with "soft" tokens:

Linc = |d−
|e|∑

t

(1− pt ⊙ s)|, (12)

where pt = softmax(ot/τ) is the tth distribution
normalized from its logits ot ∈ R|V| with a temper-
ature parameter τ , and ⊙ represents dot product.

For the generator G, this loss constrains the gen-
eration toward the target difficulty. For T , the LM
distributions pθ provide similarity information be-
tween vocabulary words. This is analogous to the
relationship of knowledge components, which has
been shown helpful in knowledge tracing (Tong
et al., 2020). The final objective of our model is
L = LT + γ1LG + γ2Linc.

4.4 Lexical Difficulty Constrained Decoding
We propose a beam search-based decoding algo-
rithm to enforce the constraints introduced in § 3.
At each step, we update the beam according to:

Yt= argtopk
y<t∈Yt−1,yt∈V

logP (y≤t|x) +
∑

Fi∈F
αiFi(y≤t),

(13)
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where Yt is the set of decoded hypotheses in step
t and k is the beam size. The first term is the stan-
dard objective of beam search and the second term
is a weighted combination of additional scoring
functions in terms of the satisfaction of different
constraints. We formulate our constraints F in Eqs.
3 and 4 as:

Fc(y) =
∑

c∈C
I(c,y), and Fd(y) = −|d− h(y)|,

corresponding to the satisfaction of word constraint
and difficulty constraint, respectively. I(c, y) is a
Boolean predicate indicating whether word c is
included in sequence y and h(y) calculates its dif-
ficulty via Eq. 4.

Succinctly, the decoding algorithm works in
three steps. First, we expand the current k hy-
potheses to k × |V| candidates. Then, we prune
the search space by dropping candidates that are
not in the top-kF list of any scoring functions F .
Finally, we rescore the pruned candidates based
on the full objective (Eq. 13) and select the k-best
ones to update the beam.

However, we found that greedily applying Fd in
the rescoring step would bias the decoder toward
sequences with difficult words in the earlier steps.
Drawing inspiration from Lu et al. (2022), we use
lookahead heuristics that incorporate future esti-
mates into the decoding process. Concretely, to
score a subsequence y<t, we first greedily decode
the next l + 1 steps "soft" tokens (i.e., distribu-
tions): ỹt:t+l=[pt, ...,pt+l]. Then, we combine the
constraint satisfaction of decoded y<t and the esti-
mated future ỹt:t+l:

F̃c(y<t)=
∑

c∈C
max(I(c,y<t), max

j∈[t,t+l]
P (yj = c)),

F̃d(y<t) = −|d− h(y<t)−
t+l∑

j=t

1− pj ⊙ s|.

The procedure of our decoding algorithm is in Ap-
pendix A.

4.5 Plug-and-Play Personalized Generation

Our model can be flexibly plugged into an existing
personalized learning recommendation algorithm
to automatically generate novel and customized ex-
ercises. We showcase this functionality using the
EXPECTIMAX curriculum planning strategy de-
rived from DKT. Given a student’s current state sn,
we can calculate the expected knowledge state after

Model Word-level Exercise-level

Seen Unseen Seen Unseen

Ensemble 73.41 70.58 65.55 64.93
Standard DKT 80.46 75.54 72.32 71.54

DKTLM,τ=0.5 80.47 75.51 72.39 71.47
DKTLM,τ=1.0 80.49 75.54 72.38 71.49
DKTLM,τ=2.0 80.55 75.69 72.41 71.74
DKTLM,τ=3.0 80.54 75.48 72.33 71.52
DKTLM,τ=5.0 80.31 75.46 72.28 71.50

Table 1: AUC (× 100) performance of knowledge trac-
ing models on seen and unseen text examples. Exercise-
level results are obtained by averaging word-level pre-
dictions.

practicing a new exercise e using our KT model T :

s̃n+1 =
∑

r∈{0,1}|e|
P (r) ∗ T (sn, (e, r)), (14)

where T (·) computes the updated knowledge state
given a new interaction (e, r). The probability of la-
bel sequence r is computed from sn assuming con-
ditional independence P (r) =

∏|e|
i=1 P (ri), where

P (ri) = sn[ei]. EXPECTIMAX scores e based
on how well it can improve a student’s average
knowledge state, i.e., Fk(e) = s̃n+1 − sn , where
s denotes mean of the vector. We incorporate Fk

into the decoding objective (Eq. 13) and call it
EXPECTIMAX-GEN.

In principle, our model can accommodate dif-
ferent recommendation algorithms with different
ranking functions Fk. The key benefit is that our
model can generate novel exercises, while retrieval-
based systems can only select exercises from an
existing pool.

5 Experimental Results and Analysis

We experiment on the English track of Duolingo
Second Language Acquisition Modeling (SLAM)
dataset (Settles et al., 2018), which contains about
1 million interactions of 2.6k learners over the first
30 days of learning a second language. For each
student, we use the first 80% of interactions for
training, and the subsequent and the last 10% for
validation and testing, respectively. Details of the
dataset and experimental setup are in Appendix B.

We first evaluate the ability of the KT model to
estimate student knowledge states in § 5.1. Then,
we analyze the effectiveness of the exercise gener-
ator in § 5.2. Lastly, we showcase the superiority
of our model in two educational scenarios with
simulation experiments in § 5.3.
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Models BLEU ↑ METEOR ↑ KC-Coverage (%) ↑ D-MAE ↓ Invalid (%) ↓
Seen Unseen Seen Unseen Seen Unseen Seen Unseen

EGH 9.23 <0.01 18.79 6.05 14.26 2.49 0.396 1.500 0.071
AQGH+d 10.28 <0.01 20.15 7.16 15.84 2.95 0.463 0.985 1.674
EGC 18.41 5.21 45.36 36.14 99.77 90.63 0.367 0.837 0.301
EGC+d 11.84 15.94 40.89 42.10 96.23 91.62 0.564 0.679 0.385

APEGs+C+d 22.47 34.60 56.15 44.01 99.61 95.71 0.246 0.604 0.283
- joint learning 22.01 33.15 55.80 42.85 99.63 94.08 0.251 0.619 0.281
- constrained decoding 21.58 32.06 55.43 40.49 99.59 94.77 0.263 0.681 0.277

Upper bound 53.65 41.24 74.97 52.10 99.75 95.96 0.060 0.302 0.233

Table 2: Results of exercise generation. APEG is our proposed model, and AQG is an adaptively difficulty-controlled
question generation model proposed by Srivastava and Goodman (2021). The subscripts represent whether historical
interactions (H), target words (C), difficulty (d), and student state (s) are used to generate exercises.

5.1 Knowledge Tracing Evaluation

We use the standard AUC (ROC) as the metric
of knowledge tracing in accordance with Settles
et al. (2018). We denote our DKT model jointly
trained with the LM-based exercise generator as
DKTLM and compare it with the following base-
lines: 1) Ensemble (Osika et al., 2018) which is one
of the winning methods of the SLAM challenge
that combines a RNN and a GBDT classifier. We
reimplement this model to use texts only as input
and remove other side features, such as response
time. We do this because we are interested in its
performance in a general setting where we do not
assume the availability of diverse side information;
2) the standard DKT (Piech et al., 2015) which is
trained only with the KT loss LT . We use it to ver-
ify whether jointly learning with an LM can help
predict student language knowledge.

We present the results in Table 1, where we can
see that DKT outperforms the Ensemble model
when only text features are used, and our best
model DKTLM,τ=2 outperforms DKT on all met-
rics. We hypothesize the performance gain comes
from the word similarity information entailed in
the output distributions pθ of the LM. This can be
regarded as the relationship between knowledge
components, which is demonstrated effective in
knowledge tracing (Tong et al., 2020). To verify
this, we tune the temperature τ which controls the
sparsity of output distributions: τ → 0 produces a
sparse distribution that is too assertive and provides
little relationship information, while τ → ∞ pro-
duces a uniform distribution where all words are
evenly related. The results in the second section
of Table 1 suggest that a medium τ improves the
performance, while a small (τ=1) or large (τ=5)
is harmful, particularly for predicting unseen data.

The broader message from this observation is that
the knowledge encoded in pre-trained LMs has the
potential to improve knowledge tracing in the do-
main of language learning. We also conduct an
analysis of the influence of regularization terms Eq.
8, detailed in Appendix C.

5.2 Exercise Generation Evaluation

The main results of exercise generation are pre-
sented in Table 2, which are split according to
whether the exercises are seen in the training set.
Evaluation metrics include reference-based BLEU
(Papineni et al., 2002) and METEOR (Banerjee
and Lavie, 2005), KC-Coverage which is the per-
centage of target knowledge components (words)
that appear in the outputs, D-MAE which is the
mean absolute error between the input difficulty
and output difficulty, Invalid which is the percent-
age of exercises that have grammar errors detected
using an automatic tool3. Since we generate ex-
ercises for language learning, we expect a valid
exercise to be grammatically correct. We analyze
the performance from the following aspects.
Lexical Controllability. We first examine the lex-
ical controllability of our model, which is crucial
for generating personalized exercises for language
learning. We compare our model with two base-
lines:1) EGH which generates the next exercise
based on the student’s historical interactions; and
2) AGQH+d

4 which generates the next exercise
based on historical interactions and a target diffi-
culty. The two baselines perform poorly on BLEU,
METEOR, and KC-Coverage metrics, particularly

3https://github.com/jxmorris12/language_tool_python.
4We obtain its results using the code released by the au-

thors. Note that AQG is built on a different definition of
difficulty. Thus, the D-MAE result might bias toward our
model. We report this metric for reference only.
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BLEU ↑ Coverage (%) ↑ D-MAE ↓
w/o lookahead 20.46 99.18 0.263
w/ lookahead 21.20 99.30 0.257

Table 3: Comparison of generation performance with
and without lookahead on the validation set.

for unseen data. This indicates that they cannot pre-
dict the accurate content of the next exercise based
on historical data or difficulty information, possi-
bly because there is no strong connection within a
sequence of exercises or such connection cannot
be captured by an LM. We note that EGH performs
well on the validness metric. However, upon in-
specting its results, we found the model almost only
copies exercises from history, with less than 0.02%
novel generations. The same issue is observed in
AQGH+d where more than 90% exercises are repet-
itive. We follow Srivastava and Goodman (2021)
to improve its novelty using a repetition penalty
during the generation, but this results in far more
invalid exercises (1.7%). In comparison, our model
achieves a better balance between generalization
ability and fluency.
Effect of Student Modeling. To investigate
whether student modeling helps exercise genera-
tion, we build two baselines without student knowl-
edge states: 1) EGC which conditions generation
on target KCs (words) only, and 2) EGC+d on both
target words and difficulty. The former variant
can be considered a keyword-to-text generation
model, while the latter imposes additional diffi-
culty control. Our full model APEGs+C+d signif-
icantly outperforms both of them, which proves
our aforementioned hypothesis that a student’s dy-
namic knowledge states must be considered in gen-
erating adaptive and personalized exercises. An
interesting observation is that incorporating diffi-
culty control improves the performance on unseen
data, indicating the model to some degree learns
generalizable difficulty information. Nevertheless,
our further analysis shows the model is not adap-
tive to students of different abilities, which will be
discussed in § 5.3.
Ablation Study. The key challenge of our task is
to learn the dependency between student knowl-
edge, vocabulary, and exercise difficulty (Eqs. 3
and 4). To understand which parts of our model
contribute to this goal, we build two ablated vari-
ants by removing the joint learning strategy (§ 4.3)
and the constrained decoding algorithm (§ 4.4), re-

Figure 3: Distributions of accumulated word difficulty
in four equally sized segments of 2000 sampled exercise
sentences.

spectively. As shown in the second section of Table
2, the search-based method is slightly better than
the learning-based method, while combining them
leads to the best performance.

We further explore the effect of the lookahead
strategy on difficulty constraints. Table 3 presents
the ablation results on the validation set, where we
can see lookahead strategy improves both genera-
tion quality and controllability. To understand how
it works, we measure the distribution of difficulty
in different regions of exercise sentences. Such
distribution is computed as the accumulated word
difficulty in four equally sized segments of 2000
sampled sentences. As shown in Figure 3, the dif-
ficult words of reference exercises are largely con-
centrated in the 2nd and 4th quarter. Our decoding
algorithm with lookahead produces a similar result,
while removing lookahead would bias the distribu-
tion toward 2nd and 3rd quarter. This confirms our
assumption that naively applying Fd would greed-
ily select difficult words in the early steps, which
is not the distribution of reference exercises. Our
decoding algorithm avoids this issue by estimating
the future and therefore achieves better results.
Upper Bound Analysis. When we train our model,
we use ground-truth difficulty d and target words
C obtained from references; however, the student
states s are estimated from the KT model. We
conduct an upper bound analysis to understand the
influence of the accuracy of s on the generation
performance. Since a student’s actual mastery of
every vocabulary word is not available, we choose
to replace the ground-truth difficulty levels d with
those estimated from s. As shown in the last sec-
tion of Table 2, all metrics are considerably boosted
when the inconsistency between states s and diffi-
culty d is eliminated. This again proves the effect
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Figure 4: Generating 50 additional exercises of specified difficulty levels for different student groups using
APEGs+C+d (adaptive) and non-adaptive EGC+d models. The Y-axis is the ratio of output difficulty dout to input
difficulty din; the closer to 1 (dotted line) the better. Solid lines are averaged results of group students at each step,
and shadows represent standard deviations.

din Target words Generated exercises dout

Avg. knowledge state s = 0.32
1.0 {men} Fifteen men . 1.25
2.0 {study} I study English . 2.18
3.0 {airport} Where is the airport ? 2.73

Avg. knowledge state s = 0.65
1.0 {profile} He has a famous profile . 0.94
2.0 {white, bitter} The white mushroom is bitter . 1.75
3.0 {hit, nail} She hit the nail on the head . 2.89

Table 4: Examples of exercises based on different con-
trols. din is the input difficulty while dout is the output
difficulty estimated by our knowledge tracing model.
The degree of highlight represents a student’s mastery
of vocabulary words (the darker the harder).

of incorporating student states and explains how
such information comes to play: the knowledge
states explicitly convey the dynamics between con-
trol signals d, C, and target exercises e, which is
non-trivial to learn by the model itself.
Case Study. We provide a few cases in Table 4.
We can see our model can dynamically adjust the
exercise content according to specified words, tar-
get difficulty, as well as students’ different mastery
states of the vocabulary. The exercises generated
for advanced students (avg. state = 0.65) are gener-
ally more difficult than for poor students (avg. state
= 0.32) under the same input difficulty.

5.3 Educational Applications
In this subsection, we showcase the potential appli-
cations of our model in two educational scenarios
with simulation experiments.

5.3.1 Adaptive Difficulty Calibration
A crucial requirement for adaptive learning sys-
tems is to dynamically adjust the difficulty of
learning items to match each student’s learning

progress (Becker et al., 2018). However, previ-
ous difficulty-controlled question generation ap-
proaches are mainly based on inherent problem dif-
ficulty, independent of individual abilities (Susanti
et al., 2017; Kumar et al., 2019). Ideally, our model
can achieve this goal by learning the dependency
between difficulty and student knowledge states.
To verify this, we generate 50 additional exercises
of specified difficulties for each student after their
existing interactions. At each step, we construct in-
put by sampling a target word from the vocabulary
and a difficulty level from a uniform distribution
[1, 3]. We compare our full model APEGs+C+d

with its variant EGC+d which achieves the best dif-
ficulty controllability for unseen data. This baseline
can be considered a vanilla non-adaptive difficulty-
controlled exercise generation model.

In this simulation, we are interested in whether
the difficulty controllability of our model can adapt
to students of various knowledge levels. To this end,
we rank students based on their average knowledge
states s and split the result accordingly. As shown
in Figure 4, the difficulty controllability of the base-
line is not reliable across different groups. In par-
ticular, it tends to generate harder (up to 2 × din)
exercises for the bottom 10 percentile students but
easier (up to 1

2 × din) ones for the top 10 percentile
students, although it performs well for the interme-
diate 80 percentile students. In comparison, our
adaptive model is also slightly biased toward the in-
termediate group but much more consistent than the
baseline, with less than 20% fluctuations on aver-
age. Besides, we can see from the shadows that the
baseline experiences huge variances at each step,
indicating it is not adaptive to different knowledge
states, even though the students within a group are
at a similar level.
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Figure 5: Simulation results over 30 exercises. The
X-axis is the number of exercises, and the Y-axis is
students’ average predicted knowledge state s̃ indicating
a student’s overall mastery of the vocabulary.

5.3.2 Improving Learning Efficiency

We now examine whether our model can be used to
improve student learning efficiency by personaliz-
ing exercise sequences. To this end, we customize
30 continuous exercises for 50 sampled students
using our proposed EXPECTIMAX-GEN (§ 4.5)
and the original EXPECTIMAX. Both of them aim
to maximize the expected knowledge state of the
next step s̃n+1. For the former, at each step, we
first find the best single word that can maximize
s̃n+1 and then generate the next exercise based on
the selected word and a fixed difficulty of 1. For
the latter, we directly select the best exercise from
the pool. We update students’ knowledge states
after each practice and repeat this process until we
collect 30 exercises. We compare the change in
s̃ to measure which strategy is more efficient in
improving students’ knowledge.

The simulation results are shown in Figure
5. We also include a randomly selected exercise
sequence as a lower bound, which turns out to harm
student learning most of the time. The decrease in
knowledge state is possibly caused by overly diffi-
cult exercises which would lead to wrong answers
and reduce the predicted probability. Under the
same practice opportunities, exercises generated
by EXPECTIMAX-GEN lead to faster knowledge
growth than those selected by EXPECTIMAX.
Upon further inspection, we found about 70% of
them are unseen in the corpus. This explains the
efficiency of EXPECTIMAX-GEN as it can create
novel exercises targeting individual needs on the
fly while EXPECTIMAX is limited by the pool.

5.3.3 Qualitative Discussions on Simulation
Our simulations are based on the DKT model. We
note that some previous studies have observed in-
consistencies between DKT behaviors and the hu-
man learning process (Shen et al., 2021). Thus,
we adopt a simple regularization approach (Eqs.
5 and 6) to alleviate such inconsistencies (Yeung
and Yeung, 2018), which we found can reduce the
variance of simulation results and improve KT per-
formance (Appendix C).

A popular argument regarding the relationship
between the difficulty of learning content and stu-
dent outcomes is that the level of difficulty should
be set just above the learner’s current knowledge,
i.e., d ≈ 0.5 (Settles and Meeder, 2016; Gallego-
Durán et al., 2018). During the simulations, we
found EXPECTIMAX does not follow this heuris-
tic but tends to generate relatively easy exercises
(d < 0.3 mostly) repeatedly using certain words,
consistent with the finding in Tschiatschek et al.
(2022). One possible reason is that easier exercises
are more likely to produce correct answers, which
in turn increases the averaged predicted probability
of DKT (i.e., estimated knowledge state).

Nevertheless, the above observations do not in-
fluence our conclusion as the superiority of our
model comes from its ability to adapt to students’
knowledge (§ 5.3.1) and generate customized exer-
cises targeting individual needs (§ 5.3.2), indepen-
dent of the simulation policy.

6 Conclusion

We propose an adaptive and personalized exercise
generation model combining recent advances in
knowledge tracing and controllable generation us-
ing pre-trained LMs. Our approach works by learn-
ing the dynamics between exercise difficulty and
student vocabulary knowledge in the domain of lan-
guage learning. Experimental results on real-world
language learning data from Duolingo demonstrate
that our model can generate adaptive and person-
alized exercises needed in an Educational setting.
We further showcase our model’s applicability in
Education with simulation studies.

Ethics Statement

The learner data used in this study are anonymized
by Settles et al. (2018) and, to the best of our knowl-
edge, do not contain sensitive information. We
foresee no further ethical or privacy concerns with
the work.
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Limitations

We state the limitations of this work from the fol-
lowing aspects. First, we make an initial assump-
tion about the dynamics between exercise difficulty,
vocabulary, and student knowledge. While we be-
lieve our assumption is sensible in the domain of
language learning, we acknowledge that we make
some simplifications for the ease of modeling. For
example, we measure difficulty using individual
performance, whereas a better way could be com-
bining it with inherent problem difficulty, e.g., text
complexity. Besides, we only consider vocabulary
mastery in defining student knowledge and predict-
ing their performance. Exploring more dimensions
of language knowledge (e.g., syntax) might lead to
a finer-grained personalization. Second, our model
relies on student learning logs to estimate their real-
time knowledge states. This model might face the
cold start problem when dealing with insufficient
history. Though it is beyond the scope of this study,
techniques like computerized adaptive testing can
be used to combat this problem. Lastly, due to the
lack of a real learning environment, we discuss the
educational promise of our model with simulation
experiments. In the future, a user study can be
incorporated to validate our conclusions.

References
Ghodai Abdelrahman and Qing Wang. 2019. Knowl-

edge tracing with sequential key-value memory net-
works. In Proceedings of the 42nd International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 175–184.

Manish Agarwal and Prashanth Mannem. 2011. Auto-
matic gap-fill question generation from text books. In
Proceedings of the sixth workshop on innovative use
of NLP for building educational applications, pages
56–64.

Allison Bailey, Nithya Vaduganathan, Tyce Henry, Re-
nee Laverdiere, and Lou Pugliese. 2018. Making
digital learning work: Success strategies from six
leading universities and community colleges. Boston:
Massachusetts: Boston Consulting Group.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved cor-
relation with human judgments. In Proceedings of
the acl workshop on intrinsic and extrinsic evaluation
measures for machine translation and/or summariza-
tion, pages 65–72.

Samantha Adams Becker, Malcolm Brown, Eden
Dahlstrom, Annie Davis, Kristi DePaul, Veronica
Diaz, and Jeffrey Pomerantz. 2018. Horizon report

2018 higher education edition brought to you by edu-
cause. Technical report, EDUCAUSE.

Hao Cen, Kenneth Koedinger, and Brian Junker. 2008.
Comparing two irt models for conjunctive skills. In
International Conference on Intelligent Tutoring Sys-
tems, pages 796–798. Springer.

Albert T Corbett and John R Anderson. 1994. Knowl-
edge tracing: Modeling the acquisition of procedural
knowledge. User modeling and user-adapted inter-
action, 4(4):253–278.

Peng Cui and Le Hu. 2021. Topic-guided abstractive
multi-document summarization. In Findings of the
Association for Computational Linguistics: EMNLP
2021, pages 1463–1472, Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Jennifer B Daines, Tonya Troka, and John M Santiago.
2016. Improving performance in trigonometry and
pre-calculus by incorporating adaptive learning tech-
nology into blended models on campus. In 2016
ASEE Annual Conference & Exposition.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2020. Plug and play language models:
A simple approach to controlled text generation. In
International Conference on Learning Representa-
tions.

Jessica Ficler and Yoav Goldberg. 2017. Controlling
linguistic style aspects in neural language generation.
In Proceedings of the Workshop on Stylistic Variation,
pages 94–104, Copenhagen, Denmark. Association
for Computational Linguistics.

Francisco J Gallego-Durán, Rafael Molina-Carmona,
and Faraón Llorens-Largo. 2018. Measuring the dif-
ficulty of activities for adaptive learning. Universal
access in the information society, 17:335–348.

Tanja Heck and Detmar Meurers. 2022. Parametrizable
exercise generation from authentic texts: Effectively
targeting the language means on the curriculum. In
Proceedings of the 17th Workshop on Innovative Use
of NLP for Building Educational Applications (BEA
2022), pages 154–166.

Matthias Holthaus, Tansu Pancar, and Per Bergamin.
2019. Recommendation acceptance in a simple adap-
tive learning system.

Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine
Bosselut, David Golub, and Yejin Choi. 2018. Learn-
ing to write with cooperative discriminators. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1638–1649, Melbourne, Australia. As-
sociation for Computational Linguistics.

Shuyan Huang, Qiongqiong Liu, Jiahao Chen, Xiangen
Hu, Zitao Liu, and Weiqi Luo. 2022. A design of a
simple yet effective exercise recommendation system
in k-12 online learning. In International Conference

10193

https://doi.org/10.18653/v1/2021.findings-emnlp.126
https://doi.org/10.18653/v1/2021.findings-emnlp.126
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
https://doi.org/10.18653/v1/W17-4912
https://doi.org/10.18653/v1/W17-4912
https://doi.org/10.18653/v1/P18-1152
https://doi.org/10.18653/v1/P18-1152


on Artificial Intelligence in Education, pages 208–
212. Springer.

Christof Imhof, Per Bergamin, and Stéphanie McGarrity.
2020. Implementation of adaptive learning systems:
Current state and potential. Online teaching and
learning in higher education, pages 93–115.

Tanja Käser, Severin Klingler, Alexander G Schwing,
and Markus Gross. 2017. Dynamic bayesian net-
works for student modeling. IEEE Transactions on
Learning Technologies, 10(4):450–462.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney,
Caiming Xiong, and Richard Socher. 2019. Ctrl: A
conditional transformer language model for control-
lable generation. arXiv preprint arXiv:1909.05858.

Vishwajeet Kumar, Yuncheng Hua, Ganesh Ramakrish-
nan, Guilin Qi, Lianli Gao, and Yuan-Fang Li. 2019.
Difficulty-controllable multi-hop question generation
from knowledge graphs. In International Semantic
Web Conference, pages 382–398. Springer.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Ruibo Liu, Guangxuan Xu, Chenyan Jia, Weicheng
Ma, Lili Wang, and Soroush Vosoughi. 2020. Data
boost: Text data augmentation through reinforcement
learning guided conditional generation. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
9031–9041, Online. Association for Computational
Linguistics.

Ximing Lu, Sean Welleck, Peter West, Liwei Jiang,
Jungo Kasai, Daniel Khashabi, Ronan Le Bras, Lian-
hui Qin, Youngjae Yu, Rowan Zellers, Noah A. Smith,
and Yejin Choi. 2022. NeuroLogic a*esque decoding:
Constrained text generation with lookahead heuris-
tics. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 780–799, Seattle, United States. Associa-
tion for Computational Linguistics.

Anton Osika, Susanna Nilsson, Andrii Sydorchuk,
Faruk Sahin, and Anders Huss. 2018. Second lan-
guage acquisition modeling: An ensemble approach.
In Proceedings of the Thirteenth Workshop on In-
novative Use of NLP for Building Educational Ap-
plications, pages 217–222, New Orleans, Louisiana.
Association for Computational Linguistics.

Shalini Pandey and George Karypis. 2019. A self at-
tentive model for knowledge tracing. In Proceedings
of the 12th International Conference on Educational
Data Mining, EDM 2019, Montréal, Canada, July

2-5, 2019. International Educational Data Mining
Society (IEDMS).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Naiara Perez and Montse Cuadros. 2017. Multilingual
call framework for automatic language exercise gen-
eration from free text. In Proceedings of the Software
Demonstrations of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 49–52.

Chris Piech, Jonathan Bassen, Jonathan Huang, Surya
Ganguli, Mehran Sahami, Leonidas J Guibas, and
Jascha Sohl-Dickstein. 2015. Deep knowledge trac-
ing. Advances in neural information processing sys-
tems, 28.

Oleksandr Polozov, Eleanor O’Rourke, Adam M
Smith, Luke Zettlemoyer, Sumit Gulwani, and Zo-
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A Decoding Algorithm

Algorithm 1 Pseudo-code for our Lexical Diffi-
culty Constrained Decoding
Input: Target words C, difficulty d, a collection of score

functions F and their weights α, max step T , beam size k
Output: k hypotheses YT in the last step
1: Y0 ← InitBeam() ▷ {<BOS>}
2: for t = 1, t ≤ T, t++ do
3: Yt ← ∅
4: Candidates← Generate(Yt−1, 1) ▷ expand
5: for F ∈ F do ▷ prune candidates
6: Yt ← Yt ∪ argtopk

y≤t∈Candidates
F (y≤t)

7: end for
8: for y≤t ∈ Yt do ▷ generate l-step lookaheads
9: ỹt+1:t+l = Generate(y≤t, l)

10: end for
11: Yt ← argtopk

y≤t∈Yt

∑
Fi∈F αiFi(y≤t ◦ ỹt+1:t+l)

12: end for
13: return YT

B Experimental Setup

B.1 Dataset Details
The statistics of our dataset are summarized in Ta-
ble 5. Each interaction records a target sentence,
per-token correctness labels of the student’s re-
sponse, and meta information such as user nation-
ality and response time. We group interactions by
user_id (anonymous) in temporal order to obtain
per-student interaction sequences. Refer to Settles
et al. (2018) for more descriptions of the dataset.

Statistics Split

Train Dev Test

# of students 2,593 2,593 2,593
# of interactions 824,012 115,770 114,586
# of questions 7,780 5,524 5,847
# of words (KCs) 1,967 1,839 1,879

Table 5: The statistics of SLAM English track.

B.2 Implementation Details
We implement our models using the Transform-
ers library (Wolf et al., 2020)5. Our knowledge
tracing model is a three-layer LSTM with a hid-
den size of 100. We train it for 10 epochs with
the regularization weights λ1 = 0.5, λ2 = 0.1,
selected on the validation set. For the exercise
generator, we fine-tune a pre-trained BART-base

5https://huggingface.co/docs/transformers/index

(Lewis et al., 2020) for up to 10 epochs. An early
stop strategy is applied when the loss on the vali-
dation set does not decrease for three continuous
epochs. We first train the DKT and exercise gener-
ator separately until both of them converge. Then,
we jointly optimized the two models with hypear-
ameters: γ1 = 1, γ2 = 0.8, τ = 2. During genera-
tion, we set the beam size to 4. The weights α for
word and difficulty constraints are set to 0.1 and
0.5 as the word constraint is easy to achieve in our
experiments. We use Nvidia Tesla A100 with 40
GB of GPU memory for training and inference. On
a single GPU, one training epoch of the exercise
generator takes about 30 minutes, and that of DKT
takes about 7 minutes when they are separately
trained. Joint training takes a longer time, about an
hour for one epoch. We report the average results
over three runs.

C Influence of Regularization in KT

To inspect the influence of regularization terms
(Eq. 8) on the KT performance, we conduct a grid
search for λ1 and λ2 on the validation set. As can
be seen from Table 6 and Table 7, Lr1 consistently
improves exercise-level performance at the cost of
sacrificing word-level performance, whereas Lr2

with a suitable weight (λ2 = 0.3) can improve
both in most cases. This suggests the students’
knowledge states transit gradually over time. We
choose λ1 = 0.5, λ2 = 0.1 for the best balance.

λ1

AUC λ2
0.0 0.1 0.3 0.5

0.0 79.51 79.50 79.57 79.53
0.1 79.44 79.45 79.49 79.52
0.3 79.42 79.40 79.44 79.36
0.5 79.32 79.43 79.41 79.30

Table 6: Validation results (AUC×100) of word-level
prediction under varying regularization weights.

λ1

AUC λ2
0.0 0.1 0.3 0.5

0.0 70.89 70.98 70.85 71.15
0.1 71.04 71.02 71.06 71.23
0.3 71.41 71.31 71.43 71.31
0.5 71.41 71.48 71.45 71.45

Table 7: Validation results (AUC×100) of exercise-level
prediction under varying regularization weights.
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etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Appendix B.1

C �3 Did you run computational experiments?
Appendix B.2

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Appendix B.2

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.
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�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Appendix B.2

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Appendix B.2

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Appendix B.2

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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