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Abstract

As natural language processing (NLP) has re-
cently seen an unprecedented level of excite-
ment, and more people are eager to enter the
field, it is unclear whether current research
reproducibility efforts are sufficient for this
group of beginners to apply the latest devel-
opments. To understand their needs, we con-
ducted a study with 93 students in an introduc-
tory NLP course, where students reproduced
the results of recent NLP papers. Surprisingly,
we find that their programming skill and com-
prehension of research papers have a limited
impact on their effort spent completing the ex-
ercise. Instead, we find accessibility efforts by
research authors to be the key to success, in-
cluding complete documentation, better coding
practice, and easier access to data files. Going
forward, we recommend that NLP researchers
pay close attention to these simple aspects of
open-sourcing their work, and use insights from
beginners’ feedback to provide actionable ideas
on how to better support them.

1 Introduction

As natural language processing (NLP) research
continues to grab public attention and excitement,
it becomes increasingly important for it to be ac-
cessible to a broad audience. While the research
community works to democratize NLP, it remains
unclear whether beginners in the field can easily
apply the latest developments. How easy is it for
them to reproduce experimental results? Will their
programming background or comprehension of pa-
pers play a role? What key elements affect their
experience here?

To address these questions, we conducted a con-
trolled user study in an introductory NLP class.
We first identified and successfully reproduced
the results of three recent NLP publications our-
selves. We surveyed students on their background
in machine learning and programming, then di-
vided them into three skill level groups based on

the survey results. Each group was asked to repro-
duce the results of the three papers. As students
conducted experiments, they tracked their own ef-
forts, while their computational resource usage was
logged by a shared high-performance computing
system. After conducting the experiments, students
answered questions and provided feedback about
their experiences.

Our results show that beginners’ technical skill
level and comprehension of the papers play only
a small part in their experience in reproducing the
results, and we observed a strikingly wide range
of time spent on the exercise regardless of these
user-specific factors. Meanwhile, we show that re-
producibility efforts by paper authors make a much
larger impact on user experience, and based on di-
rect feedback from these beginners, we find that
they encounter a range of roadblocks related to the
documentation and ease of use of open-sourced ma-
terials. These findings shed light on the extra steps
NLP researchers can take to make state-of-the-art
technology more accessible to beginners, an impor-
tant direction to continue democratizing NLP to its
growing audience. To this end, we make several
concrete recommendations in Section 5 on how
the NLP research community can further improve
accessibility to beginners.

2 Related Work

Amidst growing concern of a reproducibility crisis
across many scientific disciplines (Baker, 2016),
recent years have seen an increasing amount of
work studying trends and proposing guidelines to
improve research reproducibility in NLP and neigh-
boring disciplines (Arabas et al., 2014; Rozier and
Rozier, 2014; Sethi and Gil, 2016; Henderson et al.,
2018; Crane, 2018; Cohen et al., 2018; Tatman
et al., 2018; Dodge et al., 2019; Pineau, 2020;
Pineau et al., 2021; Rogers et al., 2021; Belz, 2022).
As part of these efforts, the Association for Compu-
tational Linguistics (ACL) has also adopted author
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checklists for reproducibility and responsible re-
search practice.

As a prerequisite for reproducibility in NLP,
prior work has studied the availability of code and
data at scale (Wieling et al., 2018). Where code and
data are available, large-scale and multi-test studies
have assessed the reproducibility of results (An-
tónio Rodrigues et al., 2020; Branco et al., 2020).
Various venues have invited individual reproduc-
tions and replications of work in machine learn-
ing and NLP, including the Reproducibility, Inex-
plicability, and Generalizability of Results Work-
shop (Arguello et al., 2016) in information retrieval,
the Reproducibility in ML workshops1 at the Inter-
national Conference on Machine Learning (ICML)
and International Conference on Learning Repre-
sentations (ICLR), and the ML Reproducibility
Challenges2 at ICLR and Neural Information Pro-
cessing Systems (NeurIPS). Belz et al. (2021) re-
viewed and aggregated many of these efforts in
NLP, finding only up to 14% of experiments led to
accurately reproduced results. Unlike prior work,
we are not focused on the accuracy of results, but
rather NLP beginners’ experiences in reproducing
results that are pre-verified to be reproducible.

3 Methodology

Next, we introduce the methodology for our study,
including the steps taken for data collection, and
the variables of interest we study in our analysis of
beginners’ experience reproducing NLP results.

3.1 Data Collection
Data collection for this study consisted of several
steps, outlined below.

3.1.1 Pre-Survey
First, we conducted a pre-survey on students’ back-
grounds and their understanding of course material.
We pose our questions based on the categories pro-
posed by Feigenspan et al. (2012) to measure pro-
gramming experience, and ask students to provide
informed consent to use their survey responses for
the purpose of this study. The full set of pre-survey
questions can be found in Appendix D.

3.1.2 Paper Selection & Expert Reproduction
Next, we carefully selected a small number of pa-
pers in recent ACL conferences, verifying that we

1https://sites.google.com/view/
icml-reproducibility-workshop/

2https://paperswithcode.com/rc2021

could reproduce their results in a comparable, rea-
sonable amount of time and effort using a single
GPU3 from an institution-provided computing clus-
ter managed with Slurm.4 In line with the defini-
tion of reproducibility from Rougier et al. (2017),
we used the code and data published by the pa-
per authors to attempt to reproduce results, rather
than re-implementing models and algorithms. Out
of 24 papers considered from 2018 through 2022,
we could accurately reproduce results within these
bounds from only 3 papers. Common reasons for
failure to reproduce results included long model
training time requirements, incompatibility of code
bases with our computing platform, incomplete
documentation, and discrepancies between repro-
duced results and those reported in papers. Selected
reproducible papers are identified in Table 1,5 while
the selection process is fully documented in Ap-
pendix C. Selected papers come from one track
(Sentence-Level Semantics and Textual Inference),
minimizing the impact of varying subject matter
complexity among different topic areas.

It is important to note that the goal of this re-
search is toward user reproducibility experience,
which is different from previous works focusing
on the accurate reproducibility of results. There-
fore, instead of having many papers to conduct the
experiments, we chose to control the study by se-
lecting a small number of comparable papers with
different characteristics in their released code. As
each paper was reproduced by a group of students
with different skill levels, we expected to gather
sufficient statistics to identify common trends in
responses to these characteristics.

3.1.3 Reproduction Process
In reproducing results themselves, students were
required to use the same GPU computing resources
within our university’s shared cluster to control for
the potential effect of computing infrastructure on
results. Students used Slurm to request and ac-
quire sole control of resources, and all resource
utilization was automatically tracked by this cen-
tralized platform. To further control the impact of
our specific computing environment, we ensured
students’ familiarity with the platform through an
earlier assignment to implement and run state-of-

3This restriction on effort was necessary as work was com-
pleted in a university course, but it also may have reduced
the impact that paper-specific roadblocks could have on time
taken to reproduce results, and ultimately students’ outlooks.

4https://slurm.schedmd.com/
5Papers identified at reviewers’ request.
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the-art NLP models on the platform. Each student
was assigned to reproduce results from one of the
selected papers (A, B, or C); more information
on paper assignment is provided in Section 3.2.2.
While reproducing experiments from their assigned
paper, students tracked time spent setting up the
code base, as directed in a homework assignment
associated with this study.6

3.1.4 Post-Survey
After reproducing the results of each paper, stu-
dents completed a survey about their experience.
Here, we asked questions about their comprehen-
sion of the paper, time spent and difficulties en-
countered reproducing the results, and general out-
looks on the experiment, including what helped
and blocked their ability to reproduce results. Post-
survey questions are listed in Appendix F.

3.2 Analysis of User Experience

Next, we introduce the key factors in interpreting
our collected data, and how they may be charac-
terized. Specifically, we consider a student’s ex-
perience reproducing the results of their assigned
paper as a dependent variable, and consider three
types of independent variables: students’ skill level,
students’ comprehension of a paper, and paper au-
thors’ specific efforts toward making results repro-
ducible. Our goal is to understand how each of
these variables can impact a beginner’s experience
in reproducing NLP results.

3.2.1 Defining User Reproducibility
Experience

In this reproducibility study, we aim to understand
a beginner’s experience in reproducing results. We
characterize this by students’ time spent and re-
ported difficulty to reproduce results.

Setup time and runtime. Time spent to repro-
duce results is divided into two phases:

1. Setup time: Downloading and setting up the
code, dataset, and external dependencies.

2. Runtime: Training and evaluating systems.

System setup time is self-reported in the post-
survey, while runtime is extracted from the central-
ized Slurm system using its resource usage tracking
feature, which accurately reports the total GPU us-
age time per student. As such, runtime may include
extra time a student may have spent for trial and

6Instructions given to students are listed in Appendix E.

Paper Reference Setup Runtime

A Zhou et al. (2021) 2 hrs. 0.5 hr.
B Donatelli et al. (2021) 2 hrs. 3 hrs.
C Gupta et al. (2020) 2 hrs. 2 hrs.

Table 1: Selected papers for the study, and research
team’s code setup time and runtime7 rounded to the near-
est half hour. All papers are from the Sentence-Level
Semantics and Textual Inference area in ACL venues.

error, including requesting extra GPUs that went
unused. Calculating runtime this way is suitable for
our purpose, as management of hardware resources
could pose a real barrier to NLP beginners. As run-
time varies significantly by paper, we quantify it
by percent error from the research team’s runtime
when reproducing the same result. These variables
can provide indirect yet objective measures on how
much a student struggled with the experiment com-
pared to other beginners and experts.

Difficulty ratings. For a more direct measure of
students’ experience, we also considered student
ratings for difficulty encountered in each step of
the experiment (on a scale from 1-5, 5 being most
difficult):

1. Downloading source code, which requires
cloning one or more GitHub repositories.

2. Downloading data, which may be hosted
somewhere different than the code.

3. Setting up the code base, including installing
external dependencies or pre-trained models.

4. Data preprocessing, which may entail run-
ning scripts or manual adjustment.

5. System training, which may require hyper-
parameter search or be informed by a pre-
selected hyperparameter configuration.

6. System evaluation, where evaluation metrics
directly comparable to the paper’s must be
calculated and reported.

3.2.2 Defining Skill Level
We may expect that a student’s skill level or techni-
cal background may have an impact on their expe-
rience. As such, we collected data about students’
programming background and understanding of
NLP coursework in the pre-survey. To characterize
student skill level, four variables are extracted from
their responses:

1. Python experience (years)
2. PyTorch experience (years)

7Calculation of setup time and runtime described in Sec-
tion 3.2.1.
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Paper Nov. Int. Adv. Total

A 12 11 11 34
B 10 10 10 30
C 10 9 10 29

Table 2: Distribution of assigned papers across skill
level groups (novice, intermediate, and advanced).

3. LSTM understanding (1-5 from worst to
best understanding)

4. Transformer understanding (1-5 from worst
to best understanding)

All skill level factors are self-reported. We fo-
cus on Python and PyTorch as these are commonly
used in NLP research, including all selected papers.
As such, knowledge of them may most directly
transfer to reproducing NLP results. Meanwhile,
students’ understanding of LSTMs (Hochreiter and
Schmidhuber, 1997) and transformers (Vaswani
et al., 2017) is self-reported in the pre-survey based
on related past homework assignments requiring
students to implement them in PyTorch. This
hands-on experience could contribute to their abil-
ity to reproduce results from the selected papers,
each of which applied transformer-based models.
Accounting for these factors equally, we divide the
93 study participants into 3 skill level groups as
close to equal size as possible (considering ties):
novice, intermediate, and advanced. As shown in
Table 2, papers were distributed mostly uniformly
within each skill level.8

3.2.3 Defining Comprehension
Meanwhile, we might expect that a student’s com-
prehension of a specific paper could also contribute
to their ability to reproduce its results. To measure
students’ comprehension of a paper objectively,
we carefully designed a set of four-way multiple-
choice questions about the key aspects of each
work. Specifically, we asked about each paper’s:

1. Motivation: Prior limitations in related work
addressed by the paper.

2. Problem Definition: Target task details.
3. Approaches: Inputs and outputs of repro-

duced system.
4. Implementation: Matching of a process de-

scribed in the paper to a file in the code.
5. Results: Evaluation criteria details.
6. Conclusion: Implications of results.

8Subject consent caused minor non-uniformity in assign-
ment distributions.

Students answered these questions in the post-
survey. Questions were posed in such a way that
the answers could not be found directly in the paper
or code. While the specific question and answers of
course varied by paper, their nature was standard,
enabling us to consistently characterize students’
comprehension of a paper. Together, answering
these questions correctly implies a comprehensive
understanding of the work which may be supported
not just by reading the paper, but also working
hands-on with the code. As such, we measure
comprehension of the paper by students’ accuracy
on these questions as a whole, and can even use
their correctness on specific questions to represent
comprehension of specific aspects. The specific
comprehension questions we asked students are
listed in Appendix G.

3.2.4 Defining Author Reproducibility Efforts
A strong source of guidance for reproducibility
in NLP is the ACL Reproducibility Checklist
(ACLRC)9 which authors must complete in order
to submit manuscripts to many ACL publication
venues.10 While the items listed on the ACLRC
are all important efforts for the reproducibility of
NLP research in general, we would like to under-
stand which of them are particularly important for
beginners’ success.

This is not straightforward for a few reasons.
First, whether an item on the checklist is satisfied
is subjective, as a paper’s code release may provide
some information pertaining to an item, but the de-
gree to which it is easy to find and understand may
vary. Second, the reproducibility of some papers
may benefit from efforts toward certain items more
than others. For example, if a paper entails a long
model training time, reporting the expected train-
ing time may be especially beneficial for users of
pay-per-use computing environments. Lastly, the
degree to which a reproducibility effort is found
helpful by users can be subjective. For example,
one may find a reproducibility effort helpful just
by its existence regardless of its quality, e.g., an
unclear hyperparameter configuration buried in the
code, while others may prioritize high quality.

For the most complete understanding of begin-
ners’ experiences, we make no restrictions along

9See Appendix A for the full checklist.
10More recently, some items of this checklist have been

adapted into the more comprehensive Responsible NLP Re-
search checklist used at some venues (Rogers et al., 2021).
We compare these checklists in Section 5.
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Skill Level Factor ρ (time) ρ (diff.)

Python Experience (Years) -0.291 -0.230
PyTorch Experience (Years) -0.251 -0.259
LSTM Understanding (1-5) -0.430 -0.396
Transformer Understanding (1-5) -0.317 -0.338

Table 3: Spearman correlation coefficients for how well
self-reported code setup time and difficulty is predicted
by skill level factors, including PyTorch and PyTorch ex-
perience, and self-reported understanding of NLP mod-
els covered in course homework assignments. All corre-
lations are statistically significant (p < 0.05); strongest
correlations for each dependent variable in bold.

these lines. For each paper, students selected items
from the ACLRC that they specifically found to be
most helpful toward reproducing the results of their
assigned paper.11 We use their responses to charac-
terize each paper’s efforts toward reproducibility.

4 Results & Findings

Here, we investigate how aspects of students’ back-
ground and understanding of papers, as well as
reproducibility efforts by the authors of papers,
affected students’ experience in reproducing exper-
imental results.12 Following prior work, we first
verify the accuracy of the results. Students on aver-
age produced results with a relative error within 3%
accuracy from reported results regardless of their
skill level or assigned paper.13 This is expected, as
we verified that all papers’ results can be accurately
reproduced.

Next, we systematically investigate the experi-
ence students had reproducing results from the pa-
pers. We analyze their experience from three per-
spectives: students’ skill level (Section 3.2.2), stu-
dents’ comprehension of their assigned paper (Sec-
tion 3.2.3), and paper authors’ efforts toward mak-
ing their results more reproducible (Section 3.2.4).

4.1 Student Skill Level
First, we examine the relationship of a student’s
skill level with their experience, specifically the
time taken to set up and run their experiment, as
well as their opinion on how difficult it was.

Relationship with time. Figure 1 shows the dis-
tribution of setup times and runtimes reported by
students. We observe a striking variation in setup
time across all skill levels, from under an hour to

11Summary of student responses in Appendix B.3.
12Data analysis code shared at https://github.com/

sled-group/NLP-Reproducibility-For-Beginners.
13See Appendix B.1 for more on accuracy of results.
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Figure 1: System setup time (minutes) and runtime
(percent difference from research team’s runtime) by
skill level (novice, intermediate, or advanced).

nearly 30 hours. As skill level increases, we ob-
serve that the median and minimum setup time, as
well as the overall range of setup times, marginally
decrease. To examine how factors used to assign
their skill level contribute to setup time, we calcu-
late the Spearman correlation between each skill
level factor and setup time in the second column
of Table 3. Indeed, we observe a significant cor-
relation, with understanding of the homework as-
signment on LSTMs having the strongest negative
association with setup time. As this assignment re-
quired implementing and training language models
in PyTorch, this suggests that these hands-on NLP
skills may save students’ time when reproducing
NLP results. However, if we interpret ρ2 as a coef-
ficient of determination, skill level factors explain
only up to ρ2 = 18.5% of variance in setup time.14

The large overlap in the setup time distribution be-
tween skill levels further suggests that there are
more factors at play here. Meanwhile, we see no
clear differences in runtimes based on skill level,
as each paper should have a consistent required
runtime to train and evaluate models.

Relationship with difficulty. For a more direct
measure of students’ experience, Figure 2 summa-
rizes student ratings for the difficulty of each step
of the experiment. For most steps of the experi-
ment, more novice students reported slightly more
difficulty. Students found code setup, data prepro-
cessing, and system training to be the most difficult
steps, and we observed a significant decrease in
difficulty with respect to skill level for code setup.
This suggests a relationship between students’ skill
level and their reported code setup difficulty.

14All variables have a high variance inflation factor, thus it is
likely that they similarly contribute to a student’s experience.
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Figure 2: Mean reproducibility difficulty rating (1-5,
5 being most difficult) for each step of experiments:
downloading the code and data, setting up the code, pre-
processing data, and training and evaluating the system.

To understand this relationship, we calculate the
Spearman correlation between each skill level fac-
tor and code setup difficulty rating, shown in the
third column of Table 3. Again, we find that all
skill level factors are significantly correlated, with
LSTM understanding again having the strongest
association with lower reported difficulty. Simi-
larly, though, we observe a maximum ρ2 = 15.7%,
suggesting that while some of students’ reported
difficulties may be explained by their skills, there
is likely more to the story. Further, it remains to
be seen what exactly makes novice students feel
worse about the difficulty of experiments, or why
the rating for code setup is leaning negative overall.
The remainder of our analysis provides possible
answers to these questions.

4.2 Student Comprehension of Paper

Knowledge in NLP is primarily transferred through
research papers. A student’s ability to absorb
knowledge from their assigned paper may relate to
their ability to reproduce its results. Here, we ex-
amine the relationship between their accuracies on
paper comprehension questions in the post-survey
and their experience, characterized by code setup
time and difficulty rating, which exhibit the most
significant variations across students.

As shown in Figure 3, we observed a wide range
of accuracies on these questions, with no clear cor-
relation to their reported setup time. There is not a
significant Spearman correlation between question
accuracy and setup time or difficulty rating, sug-
gesting that a student’s comprehension of the work
is not associated with their experience in reproduc-
ing its results. This shows that even the clearest,
most well understood paper may be difficult for
beginners to engage with hands-on, and thus effec-
tive open-sourcing of code remains a separate and
important issue to enable reproducibility.
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Figure 3: Students’ accuracy on comprehension ques-
tions versus time to set up the experiment.
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Figure 4: System setup time (minutes) and runtime
(percent difference from research team’s runtime) by
assigned paper.

4.3 Author Reproducibility Efforts

Our results so far are vexing, as they show that
students encounter vastly different levels of road-
blocks in reproducing results that are only some-
what attributed to their skills, and unrelated to their
comprehension of the work. To enable a frustration-
free experience for all beginners, it is essential to
understand what causes this disparity. To investi-
gate whether their experience instead depends on
authors’ specific efforts to make paper results re-
producible, we examine the variations between the
assigned papers in terms of time spent to repro-
duce results, as well as students’ feedback on the
experiments.

Relationship with time. First, we examine the
distribution of setup time and runtime by assigned
paper in Figure 4. A wide range of times is again
observed for each paper, and the median setup time
is consistently higher than the research staff’s setup
time of 2 hours, suggesting that compared to the
experts on the research team, beginners are still
learning to efficiently set up the code for an NLP
experiment. Meanwhile, the median runtime for all
papers is also higher than than those of the research
team, and a wide range of runtimes are again ob-
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served. This may suggest that across the board,
beginners encountered issues that caused them to
troubleshoot by running code repeatedly. Paper
C’s median and range of setup times, as well as
its range of runtimes, were the smallest, possibly
suggesting that the authors’ efforts on reproducibil-
ity were especially helpful in enabling beginners to
quickly reproduce their results.

To understand these observed differences across
papers, we take a closer look at reproducibility
efforts for each paper. After performing the experi-
ment, students indicated in the post-survey which
items from the ACLRC were most helpful in repro-
ducing the results from their specific paper.15 We
analyze their responses with respect to setup time
and runtime in Table 4 by performing a multiple
linear regression over items from the ACL Repro-
ducibility Checklist as predictors for students’ code
setup time and runtime.

We find several significant correlations between
checklist items and students’ setup time and run-
time. Specifically, reporting of best model hyper-
parameters (Paper A), model description (Paper B),
and dataset partition information (Paper C) are all
positively correlated with setup time, with hyper-
parameter bounds also positively correlated with
runtime for Paper A. This may suggest that stu-
dents encountered issues related to these factors
that contributed to longer observed setup times and
runtimes. Meanwhile, reporting of model selection
information was associated with faster runtimes for
Paper B, suggesting this was well addressed and
important for a successful reproduction.

This analysis provides detailed insights about
how each paper differed in terms of serving the
needs of beginners. Notably, the top-ranked re-
producibility efforts can explain a relatively large
amount of variance in setup time and runtime for
some papers. For example, R2 = 62% of variance
in Paper C’s setup time and 66% of variance in
Paper B’s runtime are explained by these efforts,
providing some strong reasons for the wide ranges
observed. This may suggest that these particular
efforts are crucial for beginners’ experience, and
in general, that authors’ reproducibility efforts can
have a much larger impact on their experience than
their technical skills or paper comprehension.

15Items 2 and 17, which refer to the prerequisite steps of
authors simply releasing their code and data, are omitted from
analysis due to high variance inflation factor.

Paper Top ACLRC Item, Setup Time β R2

A 10. Best Hyperparameters 4.24 0.53
B 1. Model Description 8.47 0.15
C 14. Dataset Partition Info 4.08 0.62

All 1. Model Description 1.89 0.40

Paper Top ACLRC Item, Runtime β R2

A 9. Hyperparameter Bounds 46.43 0.17
B 11. Model Selection Strategy -13.20 0.66
C 6. Val. Set Metrics -3.26 -0.04

All 9. Hyperparameter Bounds 6.61 0.07

Table 4: Multiple linear regression over items from
the ACL Reproducibility Checklist as predictors for
students’ code setup time and runtime (% difference
from research team). Most significant predictors for
each assigned paper and overall are listed, along with
their correlation coefficients β and adjusted R2 values.
Statistically significant (p < 0.05) coefficients in bold.

Paper Top ACLRC Item, Setup Difficulty β

A 10. Best Hyperparameters 1.82
B 11. Model Selection Strategy 4.26
C 5. Model Complexity Info -4.40

All 15. Data Preprocessing Info 0.65

Table 5: Ordinal logistic regression over items from
the ACL Reproducibility Checklist as predictors for
students’ reported code setup difficulty (1-5, 5 being
most difficult). Most significant predictors for each
assigned paper and overall are listed, along with their
correlation coefficients β. Statistically significant (p <
0.05) coefficients in bold.

Relationship with difficulty. In Table 5, we sim-
ilarly analyze how papers’ reproducibility efforts
affected students’ reported code setup difficulty,
which earlier showed significant variations with
respect to skill level.16 These results again indi-
cate model hyperparameters (Paper A) and model
selection strategy (Paper B) to be significantly asso-
ciated with higher reported difficulty. Meanwhile,
the reporting of model complexity was significantly
associated with lower difficulty in Paper C, suggest-
ing authors may have provided helpful information
related to this. This may provide some more clues
toward paper-specific variations in students’ expe-
rience.

Open-ended feedback. Beyond reproducibility
efforts from the ACLRC, we surveyed students di-
rectly for additional open-ended feedback on their
experience and outlooks on the experiments. We
asked students what aspects of their assigned pa-

16See more about difficulty ratings for each paper in Ap-
pendix B.2.
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Reproducibility Helper Frequency

Clear Code Usage Documentation 56
Example Scripts and Commands 27
Easy-to-Read Code 15
Easy-to-Access External Resources 13
Sufficient Code Dependency Specification 12

Other 11

Table 6: Top 5 reported categories of features that
helped students’ reproduction of results. Less frequent
responses aggregated in Other category.

Reproducibility Blocker Frequency

Insufficient Code Dependency Specification 38
Difficult-to-Access External Resources 27
Unclear Code Usage Documentation 17
Pre-Existing Bugs in Code 16
Difficult-to-Read Code 11

Other 30

Table 7: Top 5 reported categories of features that
blocked students’ reproduction of results. Less frequent
responses aggregated in Other category.

pers helped or blocked them in reproducing the
results, as well as what should be added to the
ACLRC to improve their experience. We catego-
rized student responses and aggregated them in
Tables 6, 7, and 8. Comments focused on several
aspects, varying by their assigned paper and unique
experience with reproducing its results. Nonethe-
less, common responses provide rich insights about
what NLP beginners need most to get their hands
on the latest research. These insights, primarily re-
lating to engineering issues in using released code
and data, are summarized in Section 5.

5 Discussion & Recommendations

Our study reveals a wealth of insights into enhanc-
ing the accessibility of NLP research to beginners.

Suggested ACLRC Addition Frequency

Standards for Documentation Clarity 22
Full Specification of Code Dependencies 18
Demonstration of Code Usage 9
Provision of Support for Issues 8
Standards for Code Clarity 5

Other 23
Already Included 23

Table 8: Top 5 suggested categories of additions to the
ACL Reproducibility Checklist (ACLRC). Less frequent
suggestions and those already addressed in the ACLRC
aggregated in Other and Already Included categories.

The most interesting insight is that deliberate repro-
ducibility efforts by authors beyond simply writing
a paper and releasing the code are more crucial to
beginners’ experience in reproducing results than
their programming skills and paper comprehension.
This finding behooves us researchers to diligently
make these efforts, which would result in a win-
win situation: people outside of the NLP research
community, e.g., researchers from other disciplines
and even the general public, can engage with our
research more, which will extend the impact of our
research.

Lastly, we share concrete, actionable recommen-
dations on how to do this, framed around students’
common feedback in Tables 6, 7, and 8. Where we
find that current reproducibility guidelines for NLP
research are insufficient, we make recommenda-
tions on how they may be strengthened to consider
beginners’ experiences.

Code dependencies. The most common com-
plaint from students (reported for all papers) was
the specification of code dependencies, e.g., the
versions of Python and Python packages. On the
ACLRC, this effort is only briefly mentioned in
Item 2, a general item about open-sourcing the code
which does not reference version numbers of de-
pendencies. Consequently, including more details
about dependencies, especially version numbers,
was the second most common suggestion by stu-
dents to add to the ACLRC. In contrast, the Respon-
sible NLP Research checklist (RNLPRC) recently
adopted at more ACL venues17 emphasizes these
efforts. Fortunately, NLP researchers can rely on
various computing environment management tools,
such as pip18, conda19, Poetry,20 and Docker.21

Simply utilizing such tools when sharing our work
can make a meaningful difference for beginners.

Instructions for reproducing results. Just re-
leasing source code is not enough for others to
reproduce results; it needs to be accompanied by
clear usage documentation with steps to reproduce
the results. Documentation was the most appre-
ciated effort by students, and also the third most
common complaint, suggesting that it can make
or break a beginner’s experience in reproducing

17https://aclrollingreview.org/
responsibleNLPresearch/

18https://pypi.org/project/pip/
19https://docs.conda.io/en/latest/
20https://python-poetry.org/
21https://www.docker.com/
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results. Standards for code documentation were the
most common suggested addition to the ACLRC
by students. Good code documentation is a huge
topic, and there are many resources available for
this matter (Parnas, 2011; Aghajani et al., 2019;
Hermann and Fehr, 2022). Furthermore, students’
specific feedback can also provide inspiration here.
For example, one common suggestion for docu-
mentation standards on the ACLRC was clearly
documenting the correspondence between code and
results in the paper to highlight how to reproduce
those results as reported. Related to documentation,
students’ second most appreciated effort was pro-
viding examples for code usage, and the third most
suggested addition to the ACLRC was a demonstra-
tion of code usage, whether it be an example script
or command, an interactive notebook, or even a
video. Neither the ACLRC or RNLPRC include
specific recommendations for code usage instruc-
tions or documentation. As such, we recommend
that clear documentation of code usage be consid-
ered as a criterion, and it may be worthwhile for
the ACL community to propose some standards for
future work to follow.

Availability of external resources. While all
code was released on GitHub, large artifacts (e.g.,
datasets or pre-trained models) that are not suitable
for git were hosted on other websites. Students re-
ported difficulties when attempting to access them,
such as broken links and dependency on third-party
software. Conversely, students commonly rated
ease of access to such resources helpful to reproduc-
ing results. While providing access to external re-
sources is already suggested in the ACLRC, it is not
explicitly mentioned in the RNLPRC, which may
give an impression that this is not important, de-
spite being essential to reproducibility. As such, we
recommend that this issue be discussed in the RNL-
PRC. Further, we suggest that NLP researchers
should take extra care by using a centralized sys-
tem like HuggingFace Datasets (Lhoest et al.,
2021),22 or, at a minimum, periodically verifying
that important resources are still accessible.

Code clarity and functionality. Students found
code clarity, including informative code comments
and variable names, neatness of code, and intu-
itive file structures, to be the third most helpful
effort in papers’ code bases. While the ACLRC
and RNLPRC make no recommendations for this,

22https://huggingface.co/docs/datasets

this was a common suggestion to add. Thankfully,
there are widely agreed upon standards for code
clarity (Martin, 2009; Wilson et al., 2014), and au-
tomated formatting tools like black23 can make
this easier. Further, many students were blocked by
minor bugs in the code when reproducing results.
Authors should take extra care to avoid them in or-
der to enable others to engage with their work with-
out frustration. One common student suggestion
for the ACLRC was to provide support for bugs,
whether interactively through forums like GitHub
Issues24 or proactively through an FAQ in their doc-
umentation. Another less common suggestion was
to perform a sanity check reproduction of results
on a clean copy of the code before open-sourcing
and after substantial changes. Such an effort to
mitigate even minor code bugs could make a sub-
stantial difference in the reproduction experience
for beginners.

Addressing these key issues in NLP research
practice25 could greatly improve the experience of
beginners when reproducing experimental results,
and extend the accessibility of the latest research
developments to those even beyond the research
community. As NLP and AI research have recently
attracted unprecedented global attention, we en-
courage the community to continue to dive deeper
into the outlooks of beginners in future work. For
example, given the recent paradigm shift in NLP
from fine-tuning pre-trained language models to
applying them directly to downstream tasks, there
may also be a shift in user reproducibility road-
blocks that will be important for the community to
understand as it continues to strive for reproducible
and accessible research. While some issues will
remain important (e.g., code dependencies or data
availability), other issues may become less crucial
(e.g., hyperparameter search), while completely
new issues may appear (e.g., choice of prompts
used with a model). More broadly, there are also
myriad opportunities to explore other topic areas
and subject populations, the differences in repro-
ducibility experiences between experts and begin-
ners, and beginners’ perception of state-of-the-art
NLP systems and how they interact with them.

23https://black.readthedocs.io/en/stable/
24https://github.com/features/issues
25While our study focused on NLP research, many of the re-

sulting insights are also applicable to neighboring disciplines.
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Limitations

Study scope. While our study only considers
three papers, this is by design. As our goal is to
study user experience, by fixing papers to be within
a specific topic area and time requirement, and hav-
ing people with different skill levels reproduce the
same papers, this allows us to have sufficient sam-
ples to understand general behaviors. It also blocks
other nuance factors (e.g., introduced by different
papers) on beginners’ experience. Each of our se-
lected papers presented students with unique repro-
ducibility barriers, and consequently resulted in a
wealth of helpful insights. Furthermore, finding re-
producible NLP papers that satisfied our constraints
(as laid out in Section 3.1.2) was surprisingly diffi-
cult, with only 3 out of 24 considered papers found
to be reproducible within our constraints. Never-
theless, this study is still on the small scale. En-
gaging a larger community in a large scale study
may provide additional insight. Related to this, our
study only includes a population of mostly graduate
students at our university. Considering beginners
from different educational backgrounds or regions
could reveal more comprehensive insights, and we
greatly encourage future efforts at a community
level toward better understanding the needs of NLP
beginners.

GPU runtime calculation. It is also worth not-
ing that it is difficult to consistently calculate run-
time (as introduced in Section 3.2.1) of code on
GPU hardware, as fluctuations may occur due to a
number of factors, including the specific GPU hard-
ware allocated to a student,27 driver versions, and

26https://arc.umich.edu/
27While experts used NVIDIA Tesla V100 GPUs with up

to 16GB memory to reproduce results, NVIDIA A40 GPUs
with up to 48GB memory are also available within the cluster.

file systems experiments were run with. To mini-
mize the impact of such issues, we chose to repro-
duce experiments that used small models and had
shorter expected runtimes. Given that we observed
runtimes up to several times larger than expert run-
times, we thus expect that trial and error in setting
up experiments accounted for most fluctuation in
observed runtimes.

Ethics Statement

This work was based on a study conducted as
part of a graduate-level course including survey
responses and computational resource usage statis-
tics. Our institution’s Institutional Review Board
(IRB) approved this human subjects research be-
fore the start of the study.28 Subjects completed an
informed FERPA-compliant consent form to opt
into the study and were not compensated, since
the collected data was part of a regular homework
assignment. As the research team for this work
was also the instructional team of the course, one
key ethical issue we aimed to mitigate was sub-
jects feeling pressured to consent to this research
in hopes it may benefit their grades. As such, we
designated one member of the research team who
was unable to view or modify student grades. Only
this team member had access to informed consent
responses from the students, and then linked and
de-identified data before sharing it with the rest
of the team. De-identification of data included
classifying all free-text responses into a number of
class labels so that students could not be recognized
from their responses. Students were made aware
that their participation was entirely optional, and
could not possibly impact their grade due to this
careful arrangement. Further, to ensure that stu-
dents were assigned a comparable amount of work,
we carefully selected papers with results that could
be reproduced by the research staff in a comparable
amount of time (i.e., 2 hours).29

The results of this study could have a positive im-
pact on the NLP research community, as it reveals
insights that may be helpful for NLP researchers
to better enable beginners to get their hands on
research artifacts and reproduce their results. If ap-

28Human subjects research approved by University
of Michigan Health Sciences and Behavioral Sciences
Institutional Review Board (IRB-HSBS), eResearch ID
HUM00224383.

29As mentioned in Appendix C, one considered paper was
discarded due to taking a significantly shorter amount of time
than the others.
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plied in future open-sourcing of research artifacts,
such insights could expand the accessibility of our
work to a broader audience. As NLP systems are
becoming more ubiquitous in society and attract-
ing attention beyond our research community, this
effort could result in the inclusion of more voices
in discussions around them and their future devel-
opment, which is essential for democratization.
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A ACL Reproducibility Checklist

The full ACL Reproducibility Checklist is provided
below.

• For all reported experimental results:

1. A clear description of the mathematical set-
ting, algorithm, and/or model;

2. A link to (anonymized, for submission) down-
loadable source code, with specification of all
dependencies, including external libraries;

3. A description of the computing infrastructure
used;

4. The average runtime for each model or algo-
rithm, or estimated energy cost;

5. The number of parameters in each model;
6. Corresponding validation performance for

each reported test result;
7. A clear definition of the specific evaluation

measure or statistics used to report results.

• For all results involving multiple experiments:

8. The exact number of training and evaluation
runs;

9. The bounds for each hyperparameter;
10. The hyperparameter configurations for best-

performing models;
11. The method of choosing hyperparameter val-

ues (e.g., manual tuning, uniform sampling,
etc.) and the criterion used to select among
them (e.g., accuracy);

12. Summary statistics of the results (e.g., mean,
variance, error bars, etc.).

• For all datasets used:

13. Relevant statistics such as number of exam-
ples and label distributions;

14. Details of train/validation/test splits;
15. An explanation of any data that were excluded,

and all pre-processing steps;
16. For natural language data, the name of the

language(s);
17. A link to a downloadable version of the dataset

or simulation environment;
18. For new data collected, a complete description

of the data collection process, such as owner-
ship/licensing, informed consent, instructions
to annotators and methods for quality control.
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Figure 5: Average reported relative error from paper
results, by students’ technical skill level.
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Figure 6: Relative error of students’ reported results
from those reported in the paper for each evaluation
setting, compared to our expert result (dotted line).

B Supplementary Results

Here, we include some extra results that, while
significant or informative, were less relevant to the
message of our paper.

B.1 Reproduced Accuracy

For each paper, we asked students to re-train one
NLP system and report the accuracy in the same
settings and on the same data partitions as reported
in the paper. Figure 5 averages the relative error
of students’ submitted results by experience group.
As shown, on average, student results do not vary
significantly by experience level. Further, on aver-
age, student results come close to those reported
in the paper, and for the most part, do not differ
significantly from our reproduced results.

In Figures 5 and 6, we compare the relative error
between students’ reported results for each skill
level, and for each setting of the reproduced system
and the results published in their corresponding pa-
pers. In both cases, the student-obtained results are
fairly aligned to the reported results in the paper (as
well as our own reproduced results), with standard
errors within 3% accuracy.

B.2 Reproducibility Difficulty by Paper

Figure 7 summarizes student ratings for how diffi-
cult each step of the exercise was. Code setup, data
preprocessing, and system training unsurprisingly
had the lowest ratings, and mean ratings did not
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Figure 8: Percentage of responses in which each ACL Reproducibility Checklist item (indexed by the ordering of
items) was selected as helpful by students in the study, by paper. See Appendix A for full text of checklist.
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Figure 7: Mean reproducibility difficulty rating (1-5,
higher being most difficult) for each step of experiments.

B.3 ACL Reproducibility Checklist Survey
After completing their assigned work, students in-
dicated which items on the ACL Reproducibility
Checklist were most helpful in reproducing the re-
sults. In Figure 8, we show the percentage of times
each item was selected, aggregated by paper. The
differences between items in the graph may give
further insights on which parts of the checklist are
most helpful to NLP beginners, and where our stud-
ied papers differed in terms of what was provided
in open-sourced materials.

C Paper Selection

To find experiments to reproduce for the study, we
considered papers from ACL conferences, which
are top venues for NLP research. We specifically
collected papers from the Annual Meeting of the
ACL, the Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), and the Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (NAACL HLT) from the years
2018 through 2022. Over these conferences, we
arbitrarily selected 24 long papers from two topic
areas: (A) Semantics: Sentence-level Semantics

and Textual Inference,30 and (B) Language Gener-
ation. All selected papers had publicly available
code, models (where applicable), and data with
licenses permitting academic research use.

For each selected paper, we attempted to repro-
duce the results of an experiment ourselves. If a
paper presented several experiments, e.g., for differ-
ent model variations, we chose the best-performing
instance based on the evaluation metrics applied.
If the best-performing instance could not be repro-
duced within a feasible amount of time or compute
resources, we chose the next best that fit within our
computing restrictions. For our expert reproduc-
tion of results, we limited the effort to 2 hours of
setup time and 4 hours of total code runtime (for
successful runs of the code) on a single GPU31 for
any model training or evaluation, while our com-
puting restrictions were dictated by the available
hardware and software within the environment used
to reproduce results.32

Out of these 24 papers, the results of only 4 pa-
pers could be successfully reproduced within the
above constraints, all of which belonged to Area
A. As this research was conducted as part of a
homework assignment, we discarded one of these
4 papers that took a significantly shorter time to
reproduce than the others. Common reasons that
the experiment failed included long model training
time requirements, incompatibility of code bases
with our computing platform, incompleteness of
documentation, and discrepancy between repro-

30Prior to EMNLP 2020, this area was referred to as Seman-
tics: Textual Inference and Other Areas of Semantics, but was
merged with another area.

31Setup time and runtime defined in Section 3.2.1.
32For reproducing all results, both experts and students

used an onsite computing cluster that offers access to NVIDIA
Tesla V100 GPUs with up to 16GB memory, and NVIDIA
A40 GPUs with up to 48GB memory.
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duced results and those reported in papers.
The specific papers we selected for the study are

listed in Table 1, and the distribution of paper as-
signments across skill levels is listed in Table 2. In
Appendix E, we describe the specific experiments
that we reproduced, and thus assigned for students
to reproduce.

D Pre-Survey Questions

As discussed in Section 3.1.1 we conducted a brief
survey on students’ background at the beginning
of the study. As mentioned in Section 3.2.2, the
results of this survey were used in characterizing
students’ skill levels. Pre-survey questions relevant
to the study are listed below.

1. Before taking this course, how many years of ex-
perience did you have specifically with Python?

2. Before taking this course, how many years of
experience did you have specifically with Py-
Torch?

3. To the best of your memory, how difficult was it
for you to complete these past homework prob-
lems?

Included pointers to specific homework prob-
lems on implementing LSTMs and transformers,
and asked about them individually.

• very difficult
• slightly difficult
• neutral
• slightly easy
• very easy

E Homework Assignment Content

We include some content from the homework as-
signment associated with this study which was used
to prepare students for the work and prime them
to report their results in the post-survey. Among
course-related administrative details (e.g., how to
access surveys, grading guidelines, etc.), we gave
them important information on which experiment
to reproduce from their assigned papers, what steps
they should take when reproducing the results, and
how to track their time spent on the experiment.

Assigned experiments. For each paper, the spe-
cific experiments we reproduced (and instructed
students to reproduce) were as follows.

For Paper A, we instructed students to reproduce
the following experiment from Zhou et al. (2021):
Fine-tune PTNTIME model to the uniform-prior
TRACIE dataset, then evaluate it on the testing
set (PTNTIME result with 76.6% "All" accuracy in
Table 2 from the paper). Report the Start, End, and
All accuracies on the testing set.

For Paper B, we instructed students to repro-
duce the following experiment from Donatelli et al.
(2021): Train the base alignment model with BERT
embeddings on the pre-tagged Action Alignment
Corpus, and evaluate on the testing set ("Our Align-
ment Model (base)" result in Table 4). Report the
combined accuracy on the testing set after cross-
validation.

For Paper C, we instructed students to reproduce
the following experiment from Gupta et al. (2020):
Train ROBERTA-base on the InfoTabs dataset with
TABFACT structured premise representation, and
evaluate it on the development set and all three
testing sets (ROBERTAB/ TABFACT result with
68.06% Dev accuracy in Table 7 from the paper).
Report the accuracy on the development set and all
three testing sets.

Reading the paper. The first step for this assign-
ment is to read the paper. This will make clear the
experiments and results the paper has contributed,
so that when you begin to reproduce the results,
you will already know what to expect.

Reproducing the results. Next, you should open
the code base for your paper and follow the au-
thors’ instructions for re- producing the results
(only those experiments that we specify). Their doc-
umentation will usually include some combination
of the following steps:

• Cloning a GitHub repo to your local environment
(make sure you have an account)

• Installing Python dependencies
• Downloading datasets and pre-trained models
• Training and validating models
• Testing models

Different papers will give varying degrees of
guidance for these steps. Documentation for a
paper’s code release may have typos or missing
information. You should use your understanding of
the paper, Python, and PyTorch to fill in any gaps.

Tracking your time. Please carefully track the
time you spend on the homework assignment. Cat-
egorize your time into the following activities:
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1. Closely reading the paper
2. Setting up the code base to successfully run ex-

periments, e.g., downloading the code and data,
preprocessing data, and installing dependencies

3. Training models (i.e., waiting for training code
to run)

4. Evaluating models (i.e., waiting for evaluation
code to run)

5. Documenting results and completing the post-
survey

You will be asked for this information in the post-
survey to help us understand the difficulties that
you ran into. Please report your time honestly;
your grade will not depend on how much time it
took to complete the assignment.

F Post-Survey Questions

As discussed in Section 3.1.4, students were asked
to complete a survey after reproducing their as-
signed results.33 Post-survey questions relevant to
the study are listed below.

1. A series of paper-specific reading comprehen-
sion questions, listed in Appendix G.

2. Were you able to reproduce the results of the
paper?

3. Please report the performance of your trained
model under each of the evaluation settings.

See Appendix E for specific results reported for
each paper.

4. How much time did it take you to set up the code
base for model training? Count from the time
the code base was downloaded until model train-
ing was successfully running, including data
preprocessing. Don’t count time spent actually
running training code. (in hours and minutes)

5. How much time did it take you to set up the
code base for model evaluation? Count from the
time the code base was downloaded until model
evaluation was successfully running, including
data preprocessing. Don’t count time spent ac-
tually running evaluation code. (in hours and
minutes)

33Students were primed for some of these questions through
assignment documents we distributed to introduce the ex-
pected work and students’ assigned papers and experiments.
Relevant content is included in Appendix E.

6. Please rate the level of difficulty you encoun-
tered in each step of the experiment. (1: very
difficult - 5: very easy)

• Downloading the code base.
• Downloading required data.
• Setting up the code base and its dependencies.
• Preprocessing the data.
• Training models.
• Evaluating models.

7. Did the authors provide anything in the code
release that helped make the results easier for
you to reproduce?

8. What could the authors have provided or done
better for you to reproduce the results faster or
with less frustration?

9. Which of the following items from the ACL
Reproducibility Checklist were especially help-
ful for reproducing the paper’s results? Please
check all that apply.

Checklist items listed in Appendix A.

10. Is there anything you would add to this checklist
that you wish authors would provide to help you
reproduce results faster or with less frustration?
Suggest up to 5.

G Comprehension Questions

Here, we list the specific comprehension questions
used in the post-survey for each paper (correct an-
swers in bold).

G.1 Paper A Questions

1. Motivation: Which of the following is not a
motivation of this work?

(a) Humans can recognize temporal relation-
ships between events both explicitly men-
tioned and implied (but not explicitly men-
tioned) in language.

(b) Past work in temporal reasoning has fo-
cused only on explicitly mentioned events.

(c) At the time of writing, there were no
benchmark datasets evaluating temporal
reasoning for NLP.

(d) Constructing a latent timeline of events is
essential for NLP systems to understand
stories.
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2. Problem Definition: What task is being studied
in this paper?

(a) Textual entailment with a focus on order-
ing of events.

(b) Question answering with a focus on tempo-
ral reasoning.

(c) Story generation with a coherent timeline
of events.

(d) Semantic role labeling for implicit events.

3. Approaches: What are the inputs to the PT-
NTIME system?

(a) A short story, a timeline of explicit and
implicit events, and a proposed ordering
of events.

(b) A story written in text, a hypothesis written
in text, and an inference label.

(c) A story written in text, with BIO tags de-
scribing the spans of text where a specific
event occurs.

(d) A story written in text, and a hypothesis
about the temporal ordering of events in
the story.

4. Approaches: What are the outputs of the PT-
NTIME system?

(a) Tags describing the span of text the target
event occurs.

(b) An inference label of entailment or con-
tradiction.

(c) An inference label of entailment, neutral,
or contradiction.

(d) A timeline of explicit and implicit events in
the text.

5. Implementation: Which of the following files
from the paper’s code base is responsible for
fine-tuning PTNTIME to TRACIE?

(a) tracie/code/models/symtime/
train_t5.py

(b) tracie/code/models/ptntime/
evaluator.py

(c) tracie/code/models/ptntime/
train_t5.py

(d) tracie/code/models/ptntime/
train_ptntime.py

6. Results: What is the meaning of the values in
the "Story" column in Table 1 of the paper?

(a) The average percentage of hypotheses
which were correctly classified for each
story.

(b) The percentage of stories which were cor-
rectly classified before a hypothesis was
introduced.

(c) The percentage of stories for which the sys-
tem made a correct prediction on any hy-
pothesis.

(d) The percentage of stories for which the
system made correct predictions on all hy-
potheses.

7. Conclusion: Which of the following CANNOT
be concluded based on the results in this paper?

(a) Symbolic temporal reasoning can be used
to improve language models’ temporal rea-
soning.

(b) Distant supervision on event durations can
be used to improve language models’ tem-
poral reasoning.

(c) The uniform-prior setting of TRACIE is
harder for baseline systems to solve than
the full dataset.

(d) When used in a zero-shot setting, the
proposed models consistently outperform
baselines from prior work fine-tuned on
the task.

G.2 Paper B Questions
1. Motivation: Which of the following is NOT a

motivation of this work?

(a) A key challenge with interpreting cooking
recipes is that for any dish, different recipes
may omit or emphasize different steps.

(b) Aligning recipes based only on actions ig-
nores rich information about the structure
of recipes and relationships between sen-
tences.

(c) Aligning multiple recipes for a single dish
would give a recipe understanding system
more complete information about making
that dish.

(d) Past work has not looked into aligning mul-
tiple recipes at the action level.

2. Problem Definition: What task is being studied
in this paper?

(a) Alignment of actions in multiple recipes
for the same dish.
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(b) Alignment of sentences in multiple recipes
for the same dish.

(c) Alignment of actions in recipes for similar
(but not identical) dishes.

(d) Alignment of sentences across recipes for
similar (but not identical) dishes.

3. Approaches: What are the inputs to the base
alignment model?

(a) One sentence describing one or more ac-
tions in a recipe.

(b) A span of steps in a recipe, each of which
is a sentence.

(c) Two recipes for a single dish, and a source
action selected from one of the recipes.

(d) Two recipes for two different dishes, and
a source action selected from one of the
recipes.

4. Approaches: What are the outputs of the base
alignment model?

(a) All actions from the target recipe such that
their confidence scores for aligning to the
given source action exceed a threshold
value.

(b) A single action from the target recipe which
best aligns to the given source action.

(c) Either one action from the target recipe
which best aligns to the given source ac-
tion, or no matching actions.

(d) The top five actions from the target recipe
which best align to the given source action.

5. Implementation: In which file are confidence
scores from the alignment model calculated?

(a) ara/Alignment_Model/main.py

(b) ara/Alignment_Model/utils.py

(c) ara/Alignment_Model/
training_testing.py

(d) ara/Alignment_Model/model.py

6. Results: How are the alignment model results
from Table 4 in the paper calculated?

(a) The model is trained on the training set,
validated on a validation set consisting of
recipes for the same dishes as the train-
ing set, then tested on a set of recipes for
dishes not seen in training or validation.
The accuracy on this testing set is reported
in Table 4.

(b) Ten instances of the alignment model are
trained using cross validation, where each
fold holds out the recipes from one of the
ten dishes as validation data, and from
another dish as testing data. The testing
results on each of the ten dishes are com-
bined from the ten model instances.

(c) The model is trained on the training set,
validated on a validation set consisting of
recipes for the same dishes as the training
set, then tested on a set of held-out recipes
for those same dishes. The accuracy on
this testing set is reported in Table 4.

(d) Ten instances of the alignment model are
trained using cross validation, where each
fold holds out one of the ten dishes as test-
ing data, and a validation set of recipes is
randomly sampled from the training data.
The testing results on each of the ten dishes
are combined from the ten model instances.

7. Conclusion: Which of the following CANNOT
be concluded based on the results in this paper?

(a) The alignment models struggle to gener-
alize, as they perform better on recipes for
dishes seen in training than those not seen
in training.

(b) Simply aligning recipe actions based on
their sequential order is not a viable base-
line for the task, but using cosine similarity
works better.

(c) Incorporating graphical information about
a recipe improves the alignment model’s
performance on aligning recipe actions.

(d) None of the proposed systems achieve hu-
man performance, demonstrating the diffi-
culty of the recipe alignment problem.

G.3 Paper C Questions
1. Motivation: Which of the following is NOT a

motivation of this work?

(a) Understanding tables requires reasoning
over multiple fragments of text in different
cells that may not otherwise seem related.

(b) Tables are uniquely challenging to under-
stand because they convey explicit infor-
mation that unstructured text does not.

(c) Transformer-based language models have
exceeded human performance on a variety
of natural language understanding tasks.
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(d) Semi-structured text can convey unstated
information that state-of-the-art language
models may fail to recognize.

2. Problem Definition: What task is being studied
in this paper?

(a) Question answering based on Wikipedia
info-boxes.

(b) Relation extraction for cells in Wikipedia
info-boxes.

(c) Table information summarization.
(d) Textual entailment based on a semi-

structured context.

3. Approaches: What are the inputs to the
ROBERTA baseline model with TabFact struc-
tured premise representation?

(a) A table converted to a paragraph, and a
proposed fact about the table.

(b) A table converted to a set of key-value
pairs, and a proposed fact about the ta-
ble.

(c) A proposed fact about the table, and the
most similar sentence to it from the table.

(d) A proposed fact about the table, and the
most similar three sentences to it from the
table.

4. Approaches: What are the outputs of the
ROBERTA baseline model with TabFact struc-
tured premise representation?

(a) A one-sentence summary of the table in
text.

(b) An inference label of entailment or contra-
diction.

(c) An inference label of entailment, neutral,
or contradiction.

(d) Tags describing the span of cells that an-
swer the question about the table.

5. Implementation: In which file are tables con-
verted to TabFact structured premises?

(a) infotabs-code/scripts/preprocess/
json_to_struct.py

(b) infotabs-code/scripts/preprocess/
json_to_wmd.py

(c) infotabs-code/scripts/roberta/
preprocess_roberta.py

(d) infotabs-code/scripts/roberta/
json_to_struct.py

6. Results: What is the difference between the
“α2” and “α3” columns in Table 7 of the paper?

(a) The α2 test set includes tables from a differ-
ent domain than the training set, while the
α3 test set includes hypothesis sentences
that have been adversarially edited by hu-
man annotators.

(b) The α2 test set includes hypothesis sen-
tences from a different domain than the
training set, while the α3 test set includes
tables that have been adversarially edited
by human annotators.

(c) Models that overfit to superficial lexi-
cal cues will struggle with the α2 test
set, while models that overfit to domain-
specific statistical cues will struggle with
the α3 test set.

(d) Models that overfit to domain-specific sta-
tistical cues will struggle with the α2 test
set, while models that overfit to superficial
lexical cues will struggle with the α3 test
set.

7. Conclusion: Which of the following CANNOT
be concluded based on the results in this paper?

(a) Pre-trained state-of-the-art natural lan-
guage inference systems do not perform
well when applied directly to tasks requir-
ing reasoning over tables.

(b) A support vector machine performs better
than transformer-based language models
on InfoTabs when representing tables as
paragraphs.

(c) Encoding a table in structured language
rather than an unstructured paragraph
helps improve performance of language
models on InfoTabs.

(d) The proposed systems for InfoTabs tend to
struggle most with cross-domain general-
ization.
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